首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 383 毫秒
1.
Edge influence, characterized by differences in ecosystem characteristics between the edge and the interior of remnants in fragmented landscapes, affects a variety of organisms and ecosystem processes. An important feature that may be affected by edges is the amount of plant litter, which provides important habitat for a large variety of organisms and influences ecological processes such as fire dynamics. We studied edge influence on plant litter and fine woody debris in the cerrado of São Paulo state, south‐eastern Brazil. We collected, sorted, dried and weighed plant litter along 180 m‐long transects perpendicular to three savanna and eleven forest edges adjacent to different anthropogenic land uses, with four to five transect per edge. There tended to be less biomass of the finer portions of fine woody debris at both savanna and forest edges. Graminoid litter at savanna edges was greater than in the corresponding interior areas, whereas other litter portions were either unaffected by edges or did not show consistent patterns in either savanna or forest. Edge influence was usually restricted to the first 20 m from the edge, was not influenced by edge characteristics and exhibited no clear differences between savanna and forest areas. Several mechanisms may have led to the variable patterns observed including variation in the plant community, plant architecture, and invasive species. The edge‐related variation in plant litter may putatively lead to, for example, increased fire frequency and intensity at the savanna edges and altered trophic dynamics at forest edges; the mechanisms and consequences of this edge influence should be addressed in future studies.  相似文献   

2.
When a forest is fragmented, this increases the amount of forest edge relative to the interior. Edge effects can lead to loss of animal and plant species and decreased plant biomass near forest edges. We examined the influence of an anthropogenic forest edge comprising cattle pasture, coconut plantations, and human settlement on the mantled howler (Alouatta palliata), white-faced capuchin (Cebus capucinus), Central American spider monkey (Ateles geoffroyi), and plant populations at La Suerte Biological Research Station (LSBRS), Costa Rica. We predicted that there would be lower monkey encounter rate, mean tree species richness, and diameter at breast height (DBH) in forest edge versus interior, and that monkeys would show species-specific responses to edge based on diet, body size, and canopy height preferences. Specifically, we predicted that howler monkeys would show positive or neutral edge effects due to their flexible folivorous diet, large body size, and preference for high canopy, capuchins would show positive edge effects due to their diverse diet, small body size, and preference for low to middle canopy, and spider monkeys would show negative edge effects due their reliance on ripe fruit, large body size, and preference for high upper canopy. We conducted population and vegetation surveys along edge and interior transects at LSBRS. Contrary to predictions, total monkey encounter rate did not vary between the forest edge and forest interior. Furthermore, all three species showed neutral edge effects with no significant differences in encounter rate between forest edge and interior. Interior transects had significantly higher mean tree species richness than edge transects, and interior trees had greater DBH than edge trees, although this difference was not significant. These results suggest that forest edges negatively impact plant populations at La Suerte but that the monkeys are able to withstand these differences in vegetation.  相似文献   

3.
Amazonian forest fragments and second-growth forests often differ substantially from undisturbed forests in their microclimate, plant-species composition, and soil fauna. To determine if these changes could affect litter decomposition, we quantified the mass loss of two contrasting leaf-litter mixtures, in the presence or absence of soil macroinvertebrates, and in three forest habitats. Leaf-litter decomposition rates in second-growth forests (>10 years old) and in fragment edges (<100 m from the edge) did not differ from that in the forest interior (>250 m from the edges of primary forests). In all three habitats, experimental exclusion of soil invertebrates resulted in slower decomposition rates. Faunal-exclosure effects were stronger for litter of the primary forest, composed mostly of leaves of old-growth trees, than for litter of second-growth forests, which was dominated by leaves of successional species. The latter had a significantly lower initial concentration of N, higher C:N and lignin:N ratios, and decomposed at a slower rate than did litter from forest interiors. Our results indicate that land-cover changes in Amazonia affect decomposition mainly through changes in plant species composition, which in turn affect litter quality. Similar effects may occur on fragment edges, particularly on very disturbed edges, where successional trees become dominant. The drier microclimatic conditions in fragment edges and second-growth forests (>10 years old) did not appear to inhibit decomposition. Finally, although soil invertebrates play a key role in leaf-litter decomposition, we found no evidence that differences in the abundance, species richness, or species composition of invertebrates between disturbed and undisturbed forests significantly altered decomposition rates.  相似文献   

4.
伊朗稀疏橡木林片段对草本植物物种多样性和土壤特性的边缘影响 温带和热带森林中的森林边缘现象已经得到了很好的研究,但在稀疏的橡木林片段中的相关研究却较为缺乏。本文研究了稀疏橡木林片段对植物物种多样性和土壤特性的边缘影响。本研究沿着伊朗克尔曼沙赫省3个小型(<10 ha)和3个大型(>10 ha)橡木林片段的3个横断面收集了从边缘到内部的相 关数据,测量了0(森林边缘)、25、50、100和150 m处的草本植物(高度<0.5 m)和土壤特性。使用香农指数量化了物种多样性,使用稀疏标准化方法比较了两个大小不同片段中的物种丰富度,并应用了非度量多维测度排序研究了物种组成的变化。通过随机化测试估算了边缘影响的距离,并利用Tukey HSD事后检验法的广义线性混合模型评估了距边缘距离和片段大小对多样性和土壤特性的影响。研究结果表明,大小片段边缘具有较高的物种丰富度、多样性和均匀度,而大片段边缘的土壤氮和有机碳含量则较内部更低(边缘50 m范围内的变化最大)。大小片段的物种组成、土壤有机碳和氮总量都存在显 著差异。本研究关于这些稀疏森林对草本植物和土壤特性产生显著边缘影响的发现,对于边缘研究,尤其是边缘和草本植物的相关研究具有重大贡献。  相似文献   

5.
Edge structure is one of the principal determinants of the extent and magnitude of edge effects in forest fragments. In central Amazonia, natural succession at forest edges typically produces a dense wall of vegetation dominated by Cecropia spp. that buffers the forest interior. Fire encroachment into forest edges, however, eliminates the soil seed bank, enhances plant mortality, and promotes succession to an open, Vismia–dominated edge that does not buffer the forest interior. Contrasting open, fire–encroached forest edges and closed, non–fire–encroached edges were examined in central Amazonia to assess the effects of edge structure on microclimate and vegetation structure in tropical forest fragments. Edge penetration distances for most microclimate and vegetation structure variables were as much as two to five times greater at open edges than at closed edges. The magnitude of these differences suggests that edge structure is one of the main determinants of microclimate and vegetation structure within tropical forest fragments. Edge effects also varied systematically with fragment area. For a given edge type, 100–ha fragments had consistently lower canopy height, higher foliage density, higher temperature, a higher rate of evaporative drying, lower leaf litter moisture content, and lower litter depth than continuous forest, at all distances from the forest edge. These differences, however, were relatively minor compared to the striking differences in edge penetration between open and closed forest edges. For organisms in small fragments, the difference between open and closed edges may be the difference between total edge encroachment on one hand and an effective nature reserve on the other, relatively independent of absolute fragment area.  相似文献   

6.
Abstract The conservation of biodiversity is dependent on protecting ecosystem‐level processes. We investigated the effects of fragment size and habitat edge on the relative functioning of three ecological processes – decomposition, predation and regeneration of trees – in small Afromontane forests in KwaZulu‐Natal, South Africa. Ten sampling stations were placed in each of four forest categories: the interior of three large indigenous forest fragments (100 m from the edge), the edges of these large fragments, 10 small indigenous fragments (<1 ha) and 10 small exotic woodlands (<0.5 ha). Fragment size and edge effects did not affect the abundance of the amphipod Talitriator africana, a litter decomposer, and overall dung beetle abundance and species richness significantly. Bird egg predation was marginally greater at large patch edges compared with the other forest categories, while seed predation did not differ among forest categories. Tree seedling assemblage composition did not differ significantly among large patch interiors and edges, and small indigenous fragments. Sapling and canopy assemblage composition each differed significantly among these three indigenous forest categories. Thus, while tree recruitment was not negatively affected by patch size or distance from the edge, conditions in small fragments and at edges appear to affect the composition of advanced tree regeneration. These ecological processes in Afromontane forests appear to be resilient to fragmentation effects. We speculate that this is because the organisms in these forests have evolved under fragmented conditions. Repeated extreme changes in climate and vegetation over the Pleistocene have acted as significant distribution and ecological extinction filters on these southern hemisphere forest biota, resulting in fauna and flora that are potentially resilient to contemporary fragmentation effects. We argue that because small patches and habitat edges appear to be ecologically viable they should be included in future conservation decisions.  相似文献   

7.
The aim of this study was to investigate whether there were differences in the genetic variability and rate and velocity of the seed germination produced by Psychotria tenuinervis located at anthropogenic edges, natural edges, and in the forest interior. The populations of P. tenuinervis showed no differences in genetic variability or structure among the three habitats. There was, however, an indication of inbreeding, which was significantly higher in natural edges than in anthropogenic edges and the forest interior. Within-habitat variation was considerable, but there were no differences in seed mass or rate and velocity of germination among the three habitats. These results suggest that seed characteristics were not influenced by the genetic pattern of P. tenuinervis and that other characteristics of the forest fragment, such as gaps, edge age, and type of matrix exert more influence on seed mass and germination than the distance from the edges.  相似文献   

8.
Abstract In the Waikato Region of New Zealand, Pinus radiata (D. Don) plantations are becoming increasingly common on land adjacent to native forest fragments. It is unclear whether this juxtaposition is beneficial or detrimental to native forest fragment quality and persistence. We hypothesized that adjacent dense plantations buffer native fragments from microclimatic exposure, reducing edge effects and expanding the area of interior‐like native forest. Microclimate parameters were measured in native forest fragments adjacent to grazed pasture (‘abrupt’ edges) and in fragments adjacent to mature P. radiata plantations (‘embedded’ edges) during late summer. Photosynthetically active radiation, air temperature and vapour pressure deficit (VPD) were measured along transects perpendicular to edges during the mid‐afternoon, when gradients were typically steady and maximal, to investigate spatial variation. At paired abrupt versus embedded edges these same variables were monitored for week‐long periods to determine temporal variation. In fragments adjacent to pasture, conditions were significantly lighter and warmer (but not drier) than the interior along transects at distances up to 20 m from the edge. In contrast, no variables differed significantly along transects adjacent to pine. The different microclimate variables measured at edges (except VPD) contributed to edge effects at different times through a daily cycle. Photosynthetically active radiation was significantly different between abrupt and embedded edges at all times of the day. Air temperature was significantly different during mid‐day and afternoon, but not during the morning nor at night. Vapour pressure deficit varied considerably over time and between sites, but was never consistently higher at one type of edge. We conclude that pine plantations in the Waikato Region provide valuable microclimate buffering during the day, principally due to their effect in reducing light and temperature to interior‐like conditions at native forest edges. Consequently, plantations are a compatible neighbouring land use to forest fragments. Such buffering could be extended through the pine harvesting‐replanting phase with appropriate management, such as leaving an undisturbed margin during harvest.  相似文献   

9.
We summarize a long-term study of the effects of edge creation on establishment of the economically important arboreal palm Oenocarpus bacaba in an experimentally fragmented landscape in central Amazonia. Recruitment and mortality of large individuals (≥10 cm diameter-at-breast-height) were recorded within 21 1-ha plots in fragmented and intact forests for periods of up to 22 years. In addition, 12 small (0.7 × 14 m) sub-plots within each 1-ha plot were used to enumerate the abundance of seedlings and saplings (5–400 cm tall). On average, the recruitment of large trees was over two times faster near forest edges, leading to a sharp (90%) increase in the mean population density of large individuals near forest edges, whereas the density of larger trees remained constant in the forest interior. Overall seedling and sapling density was significantly lower in edge than interior plots, but edge plots had a much higher proportion of larger (>100 cm tall) saplings. Our findings demonstrate that forest edges can have complex effects on tree demography and that one must consider all tree life stages in order to effectively assess their effects on plant populations.  相似文献   

10.
1. Our understanding of the structure and spatial organisation of biological assemblages in human‐modified tropical landscapes has critical importance to improve conservation actions. Investigations on this topic have focused on local (α) diversity patterns, overlooking the changes in species turnover (β diversity) between sites, and its consequences on total (γ) diversity. 2. This study assessed the differences in α, β and γ diversities of galling insects and their host plants (saplings) in a fragmented Atlantic forest landscape in northeast Brazil. Both assemblages were recorded in 30 plots (total of 0.1 ha for each forest type) located in the interior and on the edges of a large fragment and small forest fragments (10 plots per forest type). 3. α diversity of host plants and galling insect assemblages was significantly higher in interior (reference) plots than in edge and fragment plots. Yet, both assemblages showed higher β diversity in fragment and edge plots than in reference plots – a finding potentially associated with the hyperdynamism of fragmented forests and consistent with the landscape divergence hypothesis. 4. However, biotic differentiation of host plant and galling insects was not great enough to compensate the loss of α diversity, and thus γ diversity, because most host plant and galling insect species in forest fragments were also registered in reference plots. Our findings indicate that, despite each small forest fragment being very dissimilar from each other, they have low importance for the conservation of plant assemblages and their specialized herbivores at landscape scale.  相似文献   

11.
Forest fragmentation and local disturbance are prevailing threats to tropical forest ecosystems and affect frugivore communities and animal seed dispersal in different ways. However, very little is known about the effects of anthropogenic forest edges and of local disturbance on the structure and robustness of plant–frugivore networks. We carried out focal tree observations to record the frugivore species feeding on eight canopy tree species in the forest interior and at forest–farmland edges in a little and a highly disturbed part of a Kenyan rain forest. For each frugivore species, we recorded its body mass and its forest dependence. We examined how forest edge and local disturbance affected the abundance, the richness and the composition of the frugivore community and tested whether forest edge and local disturbance affected plant frugivore networks. Abundance and species richness of frugivores were higher at edges than in the forest interior. Forest visitors and small‐bodied frugivores increased, while forest specialists decreased in abundance at forest edges. The changes in frugivore community composition resulted in plant–frugivore networks that were more connected, more nested and more robust against species extinctions at forest–farmland edges than in the forest interior. Network specialization was lower at forest edges than in the forest interior because at the edges plant specialization on frugivores was very low in small‐fruited species. In contrast, small‐fruited plants were more specialized than large‐fruited plants in the forest interior. Our findings suggest that forest‐visiting birds may stabilize seed‐dispersal services for small‐fruited plant species at rain forest margins, while seed‐dispersal services for large‐fruited plant species may be disrupted at forest edges due to the decrease of large‐bodied frugviores. To assess the ultimate consequences of bird movements from farmland to forest edges for ecosystem functioning, future studies are required to investigate the seed‐dispersal qualities provided by forest‐visiting bird species in the tropics.  相似文献   

12.
Abstract If changes in the structural characteristics of rainforest at edges are caused by wind, then physical damage from a tropical cyclone might be greatest at edges or in small fragments that have a high proportion of edge. We tested whether this was true of a fragmented rainforest landscape impacted by a category 4 severe tropical cyclone in March 2006. Six structural variables (canopy cover, canopy height, cover of ground vegetation, leaf litter, stem density and counts of woody debris) were surveyed at 18 rainforest sites (six small linear remnants, and both edges and interiors of six large remnants) on the Atherton Tableland in north‐eastern Queensland, Australia. Data collected 7 and 12 months after the passage of Cyclone Larry were compared with an identical survey conducted 4 years prior to the cyclone. The cyclone had large effects across many components of forest structure. However, sites within 30 m of forest edges in small and large remnants were not impacted more than the interiors of large remnants. It is likely that the high wind intensity from severe tropical cyclones overrides the modest wind protection provided by surrounding forest. The cyclone's effects were highly patchy at local scales (0.5–1.0 km), leading to an increase in among‐site variation in forest structure and the disappearance of significant spatial autocorrelation among large remnant edge‐interior site pairs which had existed prior to the cyclone. The main effect of Cyclone Larry at these study sites was to increase the spatial heterogeneity of forest structure at local scales.  相似文献   

13.
Plant reproductive success is supposedly influenced by phenology and individual size, which may be modified under edge effects. We tested if reproductive success, estimated by fruit set, in Senefeldera verticillata (Euphorbiaceae) is related to flowering synchrony and tree size, including plant height and circumference at breast height. The study was carried out in the interior and in edges of clearings for gas pipelines and electric lines of a lowland rainforest in south‐eastern Brazil. Monthly observations were performed during one reproductive season, of 19 individuals that grew at edges of electric lines and gas pipelines and at forest interior. Reproductive success was significantly higher at forest interior than at gas pipeline area; there was no significant difference between gas pipeline and electric line areas or between forest interior and electric line area. In the forest edges, only plant height was positively related to plant reproductive success. This is probably related to crown exposure to sunlight, which enhances flower production. At forest interior, reproductive success was positively influenced by the synchrony of flowering activity among neighbouring individuals. In contrast, flowering synchrony based on phenophase intensity negatively impacted reproductive success. Senefeldera verticillata shows temporal dioecy and is mainly pollinated by small social bees, and the high degree of flowering synchrony at low intensity may increase the number of mating partners and therefore enhance its reproductive success. Inside the forest fragments, individuals with thicker trunks showed lower reproductive success, which may be related to a loss of reproductive capacity of older individuals. Our results evidenced the complexity of responses experienced by tropical plants subjected to forest fragmentation because of linear clearings.  相似文献   

14.
Urban landscapes often expose wildlife populations to enhanced edge effects where the biotic and abiotic attributes of native ecosystems have been significantly altered. While some species may respond favourably to edges, there are likely to be varying negative consequences for many forest‐dependent species. In particular, marsupial gliders are influenced by changes in forest composition and structure near edges due to highly specific feeding and nesting requirements, and a high reliance on tree cover to traverse a landscape. We addressed this problem using the squirrel glider (Petaurus norfolcensis) in the fragmented urban landscape of southeast Queensland, Australia. Analysis of variance was applied to determine differences in habitat resources and structure in relation to glider presence and trap success rates in forest fragment interiors compared with road (minor & major) and residential edge habitats. We postulate that an increased presence of squirrel gliders in sites adjacent to minor road and residential edges may be due to the availability of additional resources and/or varying dispersal opportunities. Conversely, forest fragment interiors contain a higher abundance of nest hollows and large trees, together with a greater floristic species richness providing more reliable seasonal foraging sources, which may explain the greater trap success rates of squirrel gliders in these sites. We conclude that while forest fragment interiors provide habitat suitable for year‐round use by greater numbers of squirrel gliders, the conservation value of some edge habitats that provide additional resources and dispersal opportunities should not be underestimated for forest‐dependent mammals; however, each edge type must be assessed individually.  相似文献   

15.
Landscape and area effects on beetle assemblages in Ontario   总被引:5,自引:0,他引:5  
Dawn Burke  Henri Goulet 《Ecography》1998,21(5):472-479
We compared beetles collected from eight forest fragments in a suburban-agricultural setting and one contiguous forest in south-central Ontario. Samples were collected by pan traps from the interior of continuous forest and upland deciduous forest fragments ranging in size from 43 to 2350 ha. The pooled sample was composed of 4561 individuals from 117 species. Differences in beetle assemblages was primarily due to variation in patch isolation, although actual fragment size had a significant effect on the abundance of native and forest specializing carabid species, and the amount of forest interior habitat had a significant effect on the total number of beetle species and ground beetle species richness (family Carabidae). Fragments which were less isolated on a local scale (within a 2 km radius) had a species composition most similar to that found in continuous forest, regardless of whether the actual forest area was small or large. Marked differences in abundance and biomass were also attributed to variation in the amount of local forest cover. We suggest that a reduction in patch isolation may be an appropriate conservation strategy to improve beetle diversity and abundance in fragmented landscapes.  相似文献   

16.
The effects of immediately adjacent agricultural fertilization on nitrogen (N) at upland forest edges have not been previously studied. Our objective was to determine whether N from fertilized agriculture enters northern Idaho forest edges and significantly impacts their N status. We stratified 27 forest edge sampling sites by the N fertilization history of the adjacent land: current, historical, and never. We measured N stable isotopes (δ15N), N concentration (%N), and carbon-to-nitrogen (C/N) ratios of conifer tree and deciduous shrub foliage, shrub roots, and bulk soil, as well as soil available N. Conifer foliage δ15N and %N, shrub root δ15N, and bulk soil N were greater and soil C/N ratios lower (P < 0.05) at forest edges than interiors, regardless of adjacent fertilization history. For shrub foliage and bulk soil δ15N, shrub root %N and C/N ratios, and soil nitrate, significant edge–interior differences were limited to forests bordering lands that had been fertilized currently or historically. Foliage and soil δ15N were most enriched at forest edges bordering currently fertilized agriculture, suggesting that these forests are receiving N fertilizer inputs. Shrub root %N was greater at forest edges bordering currently fertilized agriculture than at those bordering grasslands that had never been fertilized (P = 0.01). Elevated N at forest edges may increase vegetation growth, as well as susceptibility to disease and insects. The higher N we found at forest edges bordering agriculture may also be found elsewhere, given similar agricultural practices in other regions and the prevalence of forest fragmentation.  相似文献   

17.
《新西兰生态学杂志》2011,28(2):195-206
This study examined how forest edges influenced leaf and floral herbivory, as well as seed predation, in a native New Zealand mistletoe species, Alepis flavida. Plants growing on forest edges and in forest interior were compared, and effects of plant size and the neighbouring conspecific plant community were also examined. Leaf herbivory by possums was significantly greater on forest edges than in forest interior in a year of high possum damage, but not in a year with low damage levels. Insect leaf herbivory did not differ between forest edges and interior. Although equal numbers of plants on edges v. interior experienced some floral damage by a specialist caterpillar, there were significantly higher levels of damage on plants growing in the forest interior than on forest edges. Plants with floral damage were larger than plants without damage, and distance to neighbouring mistletoe plants was positively correlated with amount of floral damage, but only for plants in the interior. Significantly greater numbers of plants on edges than in the interior exhibited seed predation by the same specialist caterpillar that caused floral damage, suggesting greater fruit abortion rates in the interior. Amounts of seed damage were inversely correlated with plant size. Forest edges had much stronger effects on leaf herbivory by possums, as well as floral herbivory and seed predation, than did plant size or the neighbouring plant community.  相似文献   

18.
Abstract:  We evaluated the preferred home ranges of three saproxylic beetle taxa along transects from the open field into the forest interior, and from the forest floor up to the canopy. By means of trap sets on metal scaffolds, vertical and horizontal strata were sampled across two types of forest edges: soft-edge ecotones with a gradual transition from the field into the forest and hard edges with an abrupt transition. The forest edges consisted of different strata such as herbaceous fringe, shrub belt, unmanaged forest and managed forest. The thermophilic buprestids were mainly caught in the open land (herbaceous fringe and agricultural land) and in the upper forest mantle. In general, the cerambycids were most abundant in the open land and the lower forest mantle, but a few species favoured the forest interior. The bark beetles (Scolytinae) were equally distributed in all habitats. These distribution patterns of the taxa were observed in terms of both species numbers and abundances. Each species with at least five collected specimens was assigned to one of the three habitat types: open land, forest mantle and forest interior. Of 74 ranked species, only 16% were prevalent in the forest interior and are thus considered to be true forest species. The other 84% of the species were attributed to open land or the forest mantle and are, therefore, forest edge species. Soft forest edges generally supported a higher species richness than hard edges, particularly as regards Cerambycidae and Scolytinae. In terms of Shannon diversity, soft edges tended to be more diverse in buprestids and cerambycids. Overall, the forest interior showed the least species richness and diversity. Therefore, for the conservation of saproxylic beetles, not only the amount and quality of dead wood is important, but also the presence and design of forest boundary structures.  相似文献   

19.
Loss and fragmentation of natural ecosystems are widely recognized as the most important threats to biodiversity conservation, with Neotropical dry forests among the most endangered ecosystems. Area and edge effects are major factors in fragmented landscapes. Here, we examine area and edge effects and their interaction, on ensembles of arthropods associated to native vegetation in a fragmented Chaco Serrano forest. We analyzed family richness and community composition of herbivores, predators, and parasitoids on three native plant species in 12 fragments of varying size and at edge/interior positions. We also looked for indicator families by using Indicator Species Analysis. Loss of family richness with the reduction of forest fragment area was observed for the three functional groups, with similar magnitude. Herbivores were richer at the edges without interaction between edge and area effects, whereas predators were not affected by edge/interior position and parasitoid richness showed an interaction between area and position, with a steeper area slope at the edges. Family composition of herbivore, predator, and parasitoid assemblages was also affected by forest area and/or edge/interior situation. We found three indicator families for large remnants and five for edges. Our results support the key role of forest area for conservation of arthropods taxonomic and functional diversity in a highly threatened region, and emphasize the need to understand the interactions between area and edge effects on such diversity.  相似文献   

20.
The marked negative impact of habitat fragmentation and the edge effect on many populations of bird species is a recent major concern in conservation biology. Here, we focus on the edge effect in different sized forest patches in Central European farmland. In particular, we tested whether the distribution of mammalian mesopredators is related to fragment size and distance to habitat edge, and whether the contribution of these factors is additive or interactive. To assess fine-scale utilization of forest edges, we established transects of four scent stations at different distances from forest edges into the interior (0, 25, 50, 100 m) in 146 forest fragments of variable patch size (3.2–5099.6 ha) from May to June, 2008–2009. This large sample size allowed us to perform detailed analyses separately for all detected species. Our findings confirm that mammalian mesopredators strongly prefer habitat edges and small forest fragments. The probability of occurrence tended to decrease with increasing distance from the edge for all seven carnivore species detected. The carnivores’ occurrence was also negatively correlated with forest fragment area. All detected species tended to prefer small fragments, with the exception of the Eurasian badger (showing the reverse but non-significant pattern) and the red fox (no effect of fragment size). In addition, the non-significant interaction between fragment size and distance to edge suggests that both of these factors contribute independently and additively to mesopredator-mediated effects on biota in a fragmented landscape.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号