首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Regulation of rat liver fructose 2,6-bisphosphatase   总被引:17,自引:0,他引:17  
An enzyme activity that catalyzes the hydrolysis of phosphate from the C-2 position of fructose 2,6-bisphosphate has been detected in rat liver cytoplasm. The S0.5 for fructose 2,6-bisphosphate was about 15 microM and the enzyme was inhibited by fructose 6-phosphate (Ki 40 microM) and activated by Pi (KA 1 mM). Fructose 2,6-bisphosphatase activity was purified to homogeneity by specific elution from phosphocellulose with fructose by specific elution from phosphocellulose with fructose 6-phosphate and had an apparent molecular weight of about 100,000, 6-phosphofructo 2-kinase activity copurified with fructose 2,6-bisphosphatase activity at each step of the purification scheme. Incubation of the purified protein with [gamma-32P]ATP and the catalytic subunit of the cAMP-dependent protein kinase resulted in the incorporation of 1 mol of 32P/mol of enzyme subunit (Mr = 50,000). Concomitant with this phosphorylation was an activation of the fructose 2,6-bisphosphatase and an inhibition of the 6-phosphofructo 2-kinase activity. Glucagon addition to isolated hepatocytes also resulted in an inhibition of 6-phosphofructo 2-kinase and activation of fructose 2,6-bisphosphatase measured in cell extracts, suggesting that the hormone regulates the level of fructose 2,6-bisphosphate by affecting both synthesis and degradation of the compound. These findings suggest that this enzyme has both phosphohydrolase and phosphotransferase activities i.e. that it is bifunctional, and that both activities can be regulated by cAMP-dependent phosphorylation.  相似文献   

2.
The influence of tumour promoters and growth factors on glycolysis and on fructose-2,6-bisphosphate concentration was studied in isolated mouse spleen lymphocytes and in purified B-cells. The intracellular concentration of fructose 2,6-bisphosphate and the rate of lactate release were increased 2-3-fold in spleen lymphocytes exposed to active phorbol esters, mitogenic lectins, interleukin 4 or lipopolysaccharide. The maximal effect was observed after 1 h of exposure. In these cells hexose 6-phosphates increased 2-fold and 6-phosphofructo-2-kinase activity remained unchanged after treatment with phorbol 12,13-dibutyrate or with lectins. Exposure of B-cells to phorbol 12,13-dibutyrate, interleukin 4 or lipopolysaccharide increased the glycolytic flux and the concentration of fructose 2,6-bisphosphate without relation to their mitogenic activity. Lymphocytes and rat liver 6-phosphofructo-2-kinase were partially purified using the same procedure. The lymphocyte enzyme was not inhibited by sn-glycerol 3-phosphate in contrast to the potent inhibition observed in liver. Treatment of both enzymes with the catalytic subunit of the cyclic-AMP-dependent protein kinase failed to inactivate 6-phosphofructo-2-kinase from lymphocytes. These differences suggest that lymphocytes and liver contain different forms of this enzyme.  相似文献   

3.
Fructose-2,6-bisphosphatase was purified from yeast and separated from 6-phosphofructo-2-kinase and alkaline phosphatase. The enzyme released Pi from the 2-position of fructose 2,6-bisphosphate and formed fructose 6-phosphate in stoichiometric amounts. The enzyme displays hyperbolic kinetics towards fructose 2,6-bisphosphate, with a Km value of 0.3 microM. It is strongly inhibited by fructose 6-phosphate. The inhibition is counteracted by L-glycerol 3-phosphate. Phosphorylation of the enzyme by cyclic-AMP-dependent protein kinase causes inactivation, which is reversible by the action of protein phosphatase 2A.  相似文献   

4.
The cytoplasmic form of fructose 1,6-bisphosphatase (FBPase) was purified over 60-fold from germinating castor bean endosperm (Ricinus communis). The kinetic properties of the purified enzyme were studied. The preparation was specific for fructose 1,6-bisphosphate and exhibited optimum activity at pH 7.5. The affinity of the enzyme for fructose 1,6-bisphosphate was reduced by AMP, which was a mixed linear inhibitor. Fructose 2,6-bisphosphate also inhibited FBPase and induced a sigmoid response to fructose 1,6-bisphosphate. The effects of fructose 2,6-bisphosphate were enhanced by low levels of AMP. The latter two compounds interacted synergistically in inhibiting FBPase, and their interaction was enhanced by phosphate which, by itself, had little effect. The enzyme was also inhibited by ADP, ATP, UDP and, to a lesser extent, phosphoenolpyruvate. There was no apparent synergism between UDP, a mixed inhibitor, and fructose 2,6-bisphosphate. Similarly ADP, a predominantly competitive inhibitor, did not interact with fructose 2,6-bisphosphate. Possible roles for fructose 2,6-bisphosphate and the other effectors in regulating FBPase are discussed.  相似文献   

5.
Pyrophosphate:fructose-6-phosphate phosphotransferase (PFP) was purified over 500-cold from endosperm of germinating castor bean (Ricinus commiunis L. var. Hale). The kinetic properties of the purified enzyme were studied. PFP was specific for pyrophosphate and had a requirement for a divalent metal ion. The pH optimum for activity was 7.3 to 7.7. The enzyme had similar activities in the forward and reverse directions and exhibited hyperbolic kinetics with all substrates. Kinetic constants were determined in the presence of fructose 2,6-bisphosphate, which stimulated activity about 20-fold and increased the affinity of the enzyme for fructose 6-phosphate, fructose 1,6-bisphosphate, and pyrophosphate up to 10-fold. Half-maximum activation of PFP by fructose 2,6-bisphosphate was obtained at 10 nanomolar. The affinity of PFP for this activator was reduced by decreasing the concentration of fructose 6-phosphate or increasing that of phosphate. Phosphate inhibited PFP when the reaction was measured in the reverse direction, i.e. fructose 6-phosphate production. In the presence of fructose 2,6-bisphosphate, phosphate was a mixed inhibitor with respect to both fructose 6-phosphate and pyrophosphate when the reaction was measured in the forward direction, i.e. fructose 1,6-bisphosphate production. The possible roles of fructose 2,6-bisphosphate, fructose 6-phosphate, and phosphate in the control of PFP are discussed.  相似文献   

6.
6-Phosphofructo-2-kinase was purified from rat liver and hepatoma (HTC) cells. The HTC cell enzyme had kinetic properties different from those of the liver enzyme (more sensitive to inhibition by citrate and not inhibited by sn-glycerol 3-phosphate) and was not a substrate of the cyclic-AMP-dependent protein kinase. Unlike the liver enzyme, which is bifunctional and phosphorylated by fructose 2,6-[2-32P]bisphosphate, the HTC cell enzyme contained no detectable fructose-2,6-bisphosphatase activity and phosphorylation by fructose 2,6-[2-32P]-bisphosphate could not be detected. HTC cell fructose-2,6-bisphosphatase could be separated from 6-phosphofructo-2-kinase activity by purification. Antibodies raised against liver 6-phosphofructo-2-kinase did not precipitate HTC cell fructose-2,6-bisphosphatase whose kinetic properties were completely different from those of the liver enzyme.  相似文献   

7.
Fructose 2,6-bisphosphate. A new activator of phosphofructokinase   总被引:13,自引:0,他引:13  
A new activator of rat liver phosphofructokinase was partially purified from rat hepatocyte extracts by DEAE-Sephadex chromatography. The activator, which eluted in the sugar diphosphate region, was sensitive to acid treatment but resistant to heating in alkali. Mild acid hydrolysis resulted in the appearance of a sugar monophosphate which was identified as fructose 6-phosphate by gas chromatography/mass spectroscopy. These observations suggest that the activator is fructose 2,6-bisphosphate. This compound was synthesized by first reacting fructose 1,6-bisphosphate with dicyclohexylcarbodiimide and then treating the cyclic intermediate with alkali. The structure of the synthetic compound was definitively identified as fructose 2,6-bisphosphate by 13C NMR spectroscopy. Fructose 2,6-bisphosphate had properties identical with those of the activator purified from hepatocyte extracts. It activated both the rat liver and rabbit skeletal muscle enzyme in the 0.1 microM range and was several orders of magnitude more effective than fructose 1,6-bisphosphate. Fructose 2,6-bisphosphate was not a substrate for aldolase or fructose 1,6-bisphosphatase. It is likely that this new activator is an important physiologic factor of phosphofructokinase in vivo.  相似文献   

8.
Phosphofructokinase 2 from Saccharomyces cerevisiae was purified 8500-fold by chromatography on blue Trisacryl, gel filtration on Superose 6B and chromatography on ATP-agarose. Its apparent molecular mass was close to 600 kDa. The purified enzyme could be activated fivefold upon incubation in the presence of [gamma-32P]ATP-Mg and the catalytic subunit of cyclic-AMP-dependent protein kinase from beef heart; there was a parallel incorporation of 32P into a 105-kDa peptide and also, but only faintly, into a 162-kDa subunit. A low-Km (0.1 microM) fructose-2,6-bisphosphatase could be identified both by its ability to hydrolyze fructose 2,6-[2-32P]bisphosphate and to form in its presence an intermediary radioactive phosphoprotein. This enzyme was purified 300-fold, had an apparent molecular mass of 110 kDa and was made of two 56-kDa subunits. It was inhibited by fructose 6-phosphate (Ki = 5 microM) and stimulated 2-3-fold by 50 mM benzoate or 20 mM salicylate. Remarkably, and in deep contrast to what is known of mammalian and plant enzymes, phosphofructokinase 2 and the low-Km fructose-2,6-bisphosphatase clearly separated from each other in all purification procedures used. A high-Km (approximately equal to 100 microM), apparently specific, fructose 2,6-bisphosphatase was separated by anion-exchange chromatography. This enzyme could play a major role in the physiological degradation of fructose 2,6-bisphosphate, which it converts to fructose 6-phosphate and Pi, because it is not inhibited by fructose 6-phosphate, glucose 6-phosphate or Pi. Several other phosphatases able to hydrolyze fructose 2,6-bisphosphate into a mixture of fructose 2-phosphate, fructose 6-phosphate and eventually fructose were identified. They have a low affinity for fructose 2,6-bisphosphate (Km greater than 50 microM), are most active at pH 6 and are deeply inhibited by inorganic phosphate and various phosphate esters.  相似文献   

9.
Glucagon and dibutyryl cyclic AMP inhibited glucose utilization and lowered fructose 2,6-bisphosphate levels of hepatocytes prepared from fed chickens. Partially purified preparations of chicken liver 6-phosphofructo-1-kinase and fructose 1,6-bisphosphatase were activated and inhibited by fructose 2,6-bisphosphate, respectively. The sensitivities of these enzymes and the changes observed in fructose 2,6-bisphosphate levels are consistent with an important role for this allosteric effector in hormonal regulation of carbohydrate metabolism in chicken liver. In contrast, oleate inhibition of glucose utilization by chicken hepatocytes occurred without change in fructose, 2,6-bisphosphate levels. Likewise, pyruvate inhibition of lactate gluconeogenesis in chicken hepatocytes cannot be explained by changes in fructose 2,6-bisphosphate levels. Exogenous glucose caused a marked increase in fructose 2,6-bisphosphate content of hepatocytes from fasted but not fed birds. Both glucagon and lactate prevented this glucose effect. Fasted chicken hepatocytes responded to lower glucose concentrations than fasted rat hepatocytes, perhaps reflecting the species difference in hexokinase isozymes.  相似文献   

10.
6-Phosphofructo-2-kinase and fructose-2,6-bisphosphatase activities were copurified to homogeneity from bovine liver. The purification scheme consisted of polyethylene glycol precipitation, anion-exchange and Blue-Sepharose chromatography, substrate elution from phosphocellulose, and gel filtration. The bifunctional enzyme had an apparent molecular weight of 102,000 and consisted of two subunits (Mr 49,000). The kinase had a Km for ATP of 12 microM and a S0.5 for fructose 6-phosphate of 150 microM while the bisphosphatase had a Km for fructose 2,6-bisphosphate of 7 microM. Both activities were subject to modulation by various effectors. Inorganic phosphate stimulated both activities, while alpha-glycerolphosphate inhibited the kinase and stimulated the bisphosphatase. The pH optimum for the 6-phosphofructo-2-kinase activity was 8.5, while the fructose-2,6-bisphosphatase reaction was maximal at pH 6.5. Incubation of the purified enzyme with [gamma-32P]ATP and the catalytic subunit of the cAMP-dependent protein kinase resulted in 32P incorporation to the extent of 0.7 mol/mol enzyme subunit with concomitant inhibition of the kinase activity and activation of the bisphosphatase activity. The mediation of the bisphosphatase reaction by a phosphoenzyme intermediate was suggested by the isolation of a stable labeled phosphoenzyme when the enzyme was incubated with fructose 2,6-[2-32P]bisphosphate. The pH dependence of hydrolysis of the phospho group suggested that it was linked to the N3 of a histidyl residue. The 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase from bovine liver has properties essentially identical to those of the rat liver enzyme, suggesting that hepatic fructose 2,6-bisphosphate metabolism is under the same control in both species.  相似文献   

11.
Fructose 2,6-bisphosphate inhibited all three fructose-1,6-bisphosphatases from the liver, intestine, and muscle of the mouse. The sensitivity of the liver enzyme to the inhibitor was significantly diminished when Mg2+ was replaced by Mn2+ as the activating cation. Inhibition of the liver enzyme by fructose 2,6-bisphosphate decreased as the concentration of the metal activator, Mn2+ or Mg2+, increased. The respective I50 values obtained by extrapolation of metal ion concentrations to zero were 40 microM with Mn2+ and 0.25 microM with Mg2+. The extent of desensitization to either fructose 2,6-bisphosphate or AMP inhibition by Mn2+ decreased in the order of the liver, intestine, and muscle enzyme. Only in the case of the liver enzyme was the substrate cooperativity induced by fructose 2,6-bisphosphate in the presence of Mg2+. In all three isoenzymes from the mouse, fructose 2,6-bisphosphate greatly potentiated the AMP inhibition of the enzyme in the presence of either Mg2+ or Mn2+. The liver enzyme with Mn2+ in addition to Mg2+ was still active in the presence of less than 1 microM fructose 2,6-bisphosphate, even though AMP was present at 100-200 microM.  相似文献   

12.
1. Fructose 6-phosphate, 2-kinase and fructose 2,6-bisphosphatase occurred in Euglena gracilis SM-ZK, and is located in cytosol. 2. Fructose 6-phosphate, 2-kinase and fructose 2,6-bisphosphatase were partially purified, and both enzyme activities were not separated during the partial purification. 3. The pH optimum for fructose 6-phosphate, 2-kinase activity was 7.0. The saturation curve of the enzyme activity for ATP concentration was hyperbolic, and the Km value for the substrate was 0.88 mM. On the other hand, the saturation curve of the enzyme activity for fructose 6-phosphate concentration was sigmoidal, and the K0.5 value for the substrate was 70 microM. 4. The pH optimum for fructose 2,6-bisphosphatase activity was 6.5. The saturation curve for fructose 2,6-bisphosphate concentration was sigmoidal, and the K0.5 value for the substrate was 1.29 microM. Fructose 2,6-bisphosphate showed a substrate inhibition at high concentration over 5 microM, and the enzyme activity was completely inhibited by 20 microM of fructose 2,6-bisphosphate.  相似文献   

13.
A new procedure for the purification of phosphofructokinase using Blue Dextran-Sepharose is described. This allowed an approx. 1000-fold purification of phosphofructokinase from rat white and brown adipose tissue to be achieved in essentially a single step. The purified enzymes from both tissues were found to exhibit hyperbolic kinetics with fructose 6-phosphate, to be inhibited by ATP and citrate, and to be activated by 5'-AMP, phosphate and fructose 2,6-bisphosphate. The enzymes were phosphorylated by the catalytic subunit of cyclic AMP-dependent protein kinase, and phosphorylation was found to be associated with increases in activity when the enzymes were assayed under appropriate sub-optimal conditions. In particular, the phosphorylated enzymes exhibited less inhibition by ATP and the white-adipose-tissue enzyme was more sensitive to activation by fructose 2,6-bisphosphate. It is suggested that an increase in the cytoplasmic concentration of cyclic AMP in tissues other than liver may result in an increase in glycolysis through the phosphorylation of phosphofructokinase by cyclic AMP-dependent protein kinase.  相似文献   

14.
Fructose-2,6-bisphosphatase from rat liver   总被引:16,自引:0,他引:16  
An enzyme that catalyzes the stoichiometric conversion of fructose 2,6-bisphosphate into fructose 6-phosphate and inorganic phosphate has been purified from rat liver. This fructose 2,6-bisphosphatase copurified with phosphofructokinase 2 (ATP: D-fructose 6-phosphate 2-phosphotransferase) in the several separation procedures used. The enzyme was active in the absence of Mg2+ and was stimulated by triphosphonucleotides in the presence of Mg2+ and also by glycerol 3-phosphate, glycerol 2-phosphate and dihydroxyacetone phosphate. It was strongly inhibited by fructose 6-phosphate at physiological concentrations and this inhibition was partially relieved by glycerol phosphate and dihydroxyacetone phosphate. The activity of fructose 2,6-bisphosphatase was increased severalfold upon incubation in the presence of cyclic-AMP-dependent protein kinase and cyclic AMP. The activation resulted from an increase in V (rate at infinite concentration of substrate) and from a greater sensitivity to the stimulatory action of ATP and of glycerol phosphate at neutral pH. The activity of fructose 2,6-bisphosphatase could also be measured in crude liver preparations and in extracts of hepatocytes. It was then increased severalfold by treatment of the cells with glucagon, when measured in the presence of triphosphonucleotides.  相似文献   

15.
1. The activity of fructose 1,6-bisphosphatase (EC 3.1.3.11) in the fatty endosperm of castor bean (Ricinus communis) increases 25-fold during germination and then declines. The developmental pattern follows that of catalase, a marker enzyme for gluconeogenesis in this tissue. 2. The enzyme at its peak of development was partially purified, and its properties were studied. It has an optimal activity at neutral pH (7.0-8.0). The apparent Km value for fructose 1,6-bisphosphate is 3.8 X 10(-5) M. The activity is inhibited by AMP allosterically with an apparent Ki value of 2.2 X 10(-4) M. The enzyme hydrolyses fructose 1,6-bisphosphate and not ribulose 1,5-bisphosphate or sedoehptulose 1,7-bisphosphate. 3. Treatment of the partially purified enzyme with acid leads to an 80% decrease in activity. The remaining activity is insensitive to AMP and has optimal activity at pH 6.7 and a high apparent Km value (2.5 X 10(-4) M) for fructose 1.6-bisphosphate. Enzyme extracted from the tissue with water instead of buffer has a similar modification. The effect of acid explains the discrepancies between this report and previous ones on the properties of the enzyme in this tissue. 4. The storage tissues of various fatty seedlings all contain a 'neutral' fructose 1,6-bisphosphatase. The activities of the enzyme from some of the tissues are inhibited by AMP. 5. The properties of the enzyme in fatty seedlings and in green leaves are discussed in comparison with that in animal tissues.  相似文献   

16.
When glucose was added to a suspension of Saccharomyces cerevisiae in stationary phase, it caused a transient increase in the concentration of cyclic AMP and a more persistent increase in the concentration of hexose 6-phosphate and of fructose 2,6-bisphosphate. These effects of glucose on cyclic AMP and fructose 2,6-bisphosphate but not that on hexose 6-phosphate were greatly decreased in the presence of 0.15 mM acridine orange or when a temperature-sensitive mutant deficient in adenylate cyclase was used at the restrictive temperature. Incubation of the cells in the presence of dinitrophenol and in the absence of glucose increased the concentration of both cyclic AMP and fructose 2,6-bisphosphate, but with a minimal change in that of hexose 6-phosphate. Glucose induced also in less than 3 min a severalfold increase in the activity of 6-phosphofructo-2-kinase and this effect was counteracted by the presence of acridine orange. When a cell-free extract of yeast in the stationary phase was incubated with ATP-Mg and cyclic AMP, there was a 10-fold activation of 6-phosphofructo-2-kinase. Finally, the latter enzyme was purified 150-fold and its activity could then be increased about 10-fold upon incubation with ATP-Mg and the catalytic subunit of cyclic-AMP-dependent protein kinase. This activation resulted from a 4.3-fold increase in V and a 2-fold decrease in Km. Both forms of the enzyme were inhibited by sn-glycerol 3-phosphate. From these results it is concluded that the effect of glucose in increasing the concentration of fructose 2,6-bisphosphate in S. cerevisiae is mediated by the successive activation of adenylate cyclase and of cyclic-AMP-dependent protein kinase and by the phosphorylation of 6-phosphofructo-2-kinase by the latter enzyme. In deep contrast with what is known of the liver enzyme, yeast 6-phosphofructo-2-kinase is activated by phosphorylation instead of being inactivated.  相似文献   

17.
Pyrophosphate : fructose-6-phosphate phosphotransferase (PPi-PFK) has been purified 150-fold from potato tubers and the kinetic properties of the purified enzyme have been investigated both in the forward and the reverse direction. Saturation curves for fructose 6-phosphate and also for fructose 1,6-bisphosphate were sigmoidal whereas those for PPi and Pi were hyperbolic. In the presence of fructose 2,6-bisphosphate, the affinity for fructose 6-phosphate and for fructose 1,6-bisphosphate were greatly increased and the kinetics became Micha?lian. The effect of fructose 2,6-bisphosphate was increased by the presence of fructose 6-phosphate and decreased by the presence of Pi. Consequently, the Ka for fructose 2,6-bisphosphate was as low as 5 nM for the forward reaction and reached 150 nM for the reverse reaction. On the basis of these properties, a procedure allowing one to measure fructose 2,6-bisphosphate in amounts lower than a picomole, is described.  相似文献   

18.
Characterization of rat muscle fructose 1,6-bisphosphatase   总被引:1,自引:0,他引:1  
Fructose 1,6-bisphosphatase has been purified from rat muscle. Although the specific activity of the enzyme in the crude extract of rat muscle was extremely low, purification by the present procedure is highly reproducible. The purified enzyme showed a single band in SDS-polyacrylamide gel electrophoresis. The subunit molecular weight of the muscle enzyme was 37,500 in contrast to 43,000 in the case of the liver enzyme. Immunoreactivity of the muscle enzyme to anti-muscle and anti-liver fructose 1,6-bisphosphatase sera was clearly distinct from that of the liver enzyme. All one-dimensional peptide mappings of the muscle enzyme with staphylococcal V8 protease, chymotrypsin, and papain showed different patterns from those of the liver enzyme. When incubated with subtilisin, the extent of activation of muscle fructose 1,6-bisphosphatase at pH 9.1 was smaller than that of the liver enzyme. The subtilisin digestion pattern of the muscle enzyme on SDS-polyacrylamide gel electrophoresis was distinct from that of the liver enzyme. The AMP-concentration giving 50% inhibition of the muscle enzyme was 0.54 microM, whereas that of the liver enzyme was 85 microM. The concentrations of fructose 2,6-bisphosphate that gave 50% inhibition of rat muscle and liver enzymes were 6.3 and 1.5 microM, respectively. Fructose 1,6-bisphosphatase protein was not detected in soleus muscle by immunoelectroblotting with anti-muscle fructose 1,6-bisphosphatase serum.  相似文献   

19.
To obtain information on the biological significance of yeast fructose-2,6-bisphosphate 6-phosphatase, kinetic data of the purified enzyme [(1987) Eur. J. Biochem. 164, 27-30] have been measured. Maximal activity was found between pH 6 and 7, the apparent Michaelis constant with fructose 2,6-bisphosphate was 7.2 microM at pH 6.0 and 79 microM at pH 7.0. Concentrations required for 50% inhibition of the enzyme at pH 6.0 were 8 microM Fru2P, 45 microM G1c6P, 80 microM Fru6P and 200 microM inorganic phosphate. The known intracellular steady-state level of about 10 microM fructose 2,6-bisphosphate in the presence of glucose is likely to be the result of a balance between the rapid synthesis of fructose 2,6-bisphosphate catalyzed by 6-phosphofructose 2-kinase and a fructose 2,6-bisphosphate degrading activity. The biological function of fructose-2,6-bisphosphate 6-phosphatase with an apparent Michaelis constant between 7 and 79 microM fructose 2,6-bisphosphate at pH 6-7 is therefore suggested to participate in the maintenance of a steady-state level of fructose 2,6-bisphosphate in a concentration range that fits well with the Michaelis constant of the enzyme.  相似文献   

20.
A new purification procedure for rat liver fructose-1,6-bisphosphatase that involves use of Procion Red-Sepharose is described. The purified enzyme was homogeneous, had a subunit Mr of 40 000-41 000 and seemed to be undegraded. The enzyme could be phosphorylated by cyclic AMP-dependent protein kinase with a stoicheiometry of one per subunit. Phosphorylation caused a 2-fold decrease in the Km of the enzyme for fructose 1,6-bisphosphate, but did not affect its allosteric responses to AMP, Mg2+ and fructose 2,6-bisphosphate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号