首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An analysis of the local processes occurring in a trickle-bed bioreactor (TBB) with a first-order bioreaction shows that the identification of the TBB operating regime requires knowledge of the substrate concentration in the liquid phase. If the substrate liquid concentration is close to 0, the rate-controlling step is mass transfer at the gas-liquid interface; when it is close to the value in equilibrium with the gas phase, the controlling step is the phenomena occurring in the biofilm. CS2 removal rate data obtained in a TBB with a Thiobacilii consortia biofilm are analyzed to obtain the mass transfer and kinetic parameters, and to show that the bioreactor operates in a regime mainly controlled by mass transfer. A TBB model with two experimentally determined parameters is developed and used to show how the bioreactor size depends on the rate-limiting step, the absorption factor, the substrate fractional conversion, and on the gas and liquid contact pattern. Under certain conditions, the TBB size is independent of the flowing phases' contact pattern. The model effectively describes substrate gas and liquid concentration data for mass transfer and biodegradation rate controlled processes.  相似文献   

2.
A monolith reactor for the synthesis of cephalexin was developed using capillary columns. The micro channel in the monolith reactor was coated with polyaniline (PANI), and penicillin G acylase was aggregated with PANI using 0.5% of glutaraldehyde as a cross-linker. The developed monolith reactor exhibited many advantages over other enzyme reactors such as batch and continuous reactors. It showed fast enzyme reaction rates owing to the decrease in external mass transfer and internal diffusion limitations. The reactor can easily be scaled up by bundling together multiple monolith reactors, enabling a corresponding increase in feed rate. Furthermore, the monolith reactor showed good operational stability, with 95% of its original activity maintained after 48 h of continuous operation. The PANI coating on the surface of the capillary column increased the enzyme immobilization capacity and conversion was increased from 15.4% to 70.6% after PANI coating. The conversion ratio increased to approximately 70.6% with an increase in residence time and reactor length.  相似文献   

3.
Biofilms in the environment can both cause detrimental and beneficial effects. However, their use in bioreactors provides many advantages including lesser tendencies to develop membrane fouling and lower required capital costs, their higher biomass density and operation stability, contribution to resistance of microorganisms, etc. Biofilm formation occurs naturally by the attachment of microbial cells to the support without use of any chemicals agent in biofilm reactors. Biofilm reactors have been studied and commercially used for waste water treatment and bench and pilot-scale production of value-added products in the past decades. It is important to understand the fundamentals of biofilm formation, physical and chemical properties of a biofilm matrix to run the biofilm reactor at optimum conditions. This review includes the principles of biofilm formation; properties of a biofilm matrix and their roles in the biofilm formation; factors that improve the biofilm formation, such as support materials; advantages and disadvantages of biofilm reactors; and industrial applications of biofilm reactors.  相似文献   

4.
This study proposed a nonwoven hybrid bioreactor (NWHBR) in which the nonwoven fabric played dual roles as a biofilm carrier and membrane‐like separation of the flocculent sludge in the reactor. The results of long‐term monitoring demonstrated that the NWHBR could achieve simultaneous nitrification and denitrification (SND), with nearly complete ammonium removal and 80% removal of total nitrogen. The biofilm attached to the nonwoven fabric removed 27% of the chemical oxygen demand (COD) and 36% of the nitrate in the reactor, an enhanced elimination of nutrients that was attributed to the increased mass transfer within the biofilm due to permeate drag. The results of batch experiments showed that the flocculent sludge played a more dominant role in nitrification and denitrification (79% and 61%, respectively) than the biofilm (21% and 36%, respectively). The batch experiments also revealed that the enforced mass transfer, with an effluent recirculation rate of 4.3 L/m2h (which was the same as the flux during the reactor's long‐term operation), improved the denitrification rate by 58% (i.e., from 9.0 to 14.2 mg‐NO‐N/h). Pyrosequencing of the 16S rRNA gene amplification revealed a high microbial diversity in both the flocculent sludge and biofilm, with Proteobacteria, Bacteroidetes and Chloroflexi as the dominant groups. A phylogenetic (P) test indicated that the NWHBR contained phylogenetically distinct microbial communities: those in the biofilm differed from those in the flocculent sludge. However, the communities on the exterior and interior of the biofilm were more similar to each other. Due to its good SND performance, low physical back‐washing frequency and low air‐to‐water ratio, the NWHBR represents an attractive alternative for the wider application of either low‐cost membrane bioreactors or biofilm reactors. Biotechnol. Bioeng. 2013; 110: 1903–1912. © 2013 Wiley Periodicals, Inc.  相似文献   

5.
Thiobacillus ferrooxidans was used in fixed-film bioreactors to oxidize ferrous sulfate to ferric sulfate. Glass beads, ion-exchange resin, and activated-carbon particles were tested as support matrix materials. Activated carbon was tested in both a packed-bed bioreactor and a fluidized-bed bioreactor; the other matrix materials were used in packed-bed reactors. Activated carbon displayed the most suitable characteristics for use as a support matrix of T. ferrooxidans fixed-film formation. The reactors were operated within a pH range of 1.35 to 1.5, which effectively reduced the amount of ferric iron precipitation and eliminated diffusion control of mass transfer due to precipitation. The activated-carbon packed-bed reactor displayed the most favorable biomass holdup and kinetic performance related to ferrous sulfate oxidation. The fastest kinetic performance achieved with the activated-carbon packed-bed bioreactor was 78 g of Fe oxidized per liter per h (1,400 mmol of Fe oxidized per liter per h) at a true dilution rate of 40/h, which represents a hydraulic retention time of 1.5 min.  相似文献   

6.
A non-comprehensive review of several technical developments in the field of aerobic biological waste-water treatment engineering is carried out, considering the active role the engineers have to play in this field. This paper brings together conventional and advanced problems in the field of aerobic biological waste-water treatment. Such an overview of biological waste-water treatment also precedes comments on some important aspects concerning the microorganisms responsible for waste-water treatment as well as considerations of the application of fundamentals and kinetics to the analysis of the biological processes used most commonly for aerobic biological waste-water treatment. A survey of the development of the biological activated-sludge process and some modifications are given. Some problems implied in the conventional activated-sludge waste-water treatment are analyzed, considering conventional processes and bioreactor models (the continuous stirred-tank reactor model and the plug-flow reactor models of the activated-sludge process) as well as aerated lagoons. Further, modifications of the activated-sludge process are presented. These include additional details on the bioreactor progress and applications, with emphasis on aspects concerning airlift bioreactors and their variants, deep-shaft bioreactors and reciprocating jet bioreactors which are considered as the third generation of bioreactors owing to their important advantages in design, operation and performance in waste-water treatment. Sequencing-batch reactors and aerobic digestion processes, including conventional aerobic digestion, high-purity oxygen digestion, thermophilic aerobic digestion and cryophylic aerobic digestion are also reviewed. Finally, some aspects regarding the operational factors that are involved in the selection of the reactor type are included.  相似文献   

7.

Aim

To provide deeper insights into nitrification process within aerobic bioreactors containing supplemental physical support media (hybrid bioreactors).

Methods and Results

Three bench‐scale hybrid bioreactors with different media size and one control bioreactor were operated to assess how biofilm integrity influences microbial community conditions and bioreactor performance. The systems were operated initially at a 5‐day hydraulic retention time (HRT), and all reactors displayed efficient nitrification and chemical oxygen demand (COD) removal (>95%). However, when HRT was reduced to 2·5 days, COD removal rates remained high, but nitrification efficiencies declined in all reactors after 19 days. To explain reduced performance, nitrifying bacterial communities (ammonia‐oxidizing bacteria, AOB; nitrite‐oxidizing bacteria, NOB) were examined in the liquid phase and also on the beads using qPCR, FISH and DGGE. Overall, the presence of the beads in a reactor promoted bacterial abundances and diversity, but as bead size was increased, biofilms with active coupled AOB–NOB activity were less apparent, resulting in incomplete nitrification.

Conclusions

Hybrid bioreactors have potential to sustain effective nitrification at low HRTs, but support media size and configuration type must be optimized to ensure coupled AOB and NOB activity in nitrification.

Significance and Impact of the Study

This study shows that AOB and NOB coupling must be accomplished to minimize nitrification failure.  相似文献   

8.
Understanding the bioreactor   总被引:1,自引:0,他引:1  
Analysis of bioreactors is central for successful design and operation of biotechnical processes. The bioreactor should provide optimum conditions, with respect to temperature, pH and substrate condition, for example, besides its basic function of containment. The ability to control the substrate concentration is an important function of the bioreactor. The substrate concentration can be subject to spatial variation – advertently or inadvertently – and may also change with time in batch or fed-batch operation. The cellular metabolism will depend on local concentrations in the reactor, as well as on the physiological status of the cell. In order to understand the bioreactor operation, cellular metabolism must be considered together with the flow profile and the mass transfer characteristics of the bioreactor. Some fundamental aspects of bioreactor operation for yeast and bacterial cultivations are discussed in this short review.  相似文献   

9.
Combining membrane technology with biological reactors for the treatment of municipal and industrial wastewaters has led to the development of three generic membrane processes within bioreactors: for separation and recycle of solids; for bubbleless aeration of the bioreactor; and for extraction of priority organic pollutants from hostile industrial wastewaters. Commercial aerobic and anaerobic membrane separation bioreactors already provide a small footprint alternative to conventional biological treatment methods, producing a high-quality effluent at high organic loading rates. Both the bubbleless aeration and extractive membrane bioreactors are in the development stages. The former uses gas-permeable membranes to improve the mass transfer of oxygen to the bioreactor by providing bubbleless oxygen. By using a silicone membrane process, extractive membrane bioreactors transfer organic pollutants from chemically hostile wastewaters to a nutrient medium for subsequent biodegradation. All three membrane bioreactor (MBR) processes are comparatively and critically reviewed. (c) 1996 John Wiley & Sons, Inc.  相似文献   

10.
In this article we present magnetic resonance microscopy (MRM) characterization of the advective transport in a biofilm capillary reactor. The biofilm generates non-axial flows that are up to 20% of the maximum axial velocity. The presence of secondary velocities of this magnitude alters the mass transport in the bioreactor relative to non-biofilm fouled reactors and questions the applicability of empirical mass transfer coefficient approaches. The data are discussed in the context of simulations and models of biofilm transport and conceptual aspects of transport modeling in complex flows are also discussed. The variation in the residence time distribution due to biofilm growth is calculated from the measured propagator of the motion. Dynamical systems methods applied to model fluid mixing in complex flows are indicated as a template for extending mass transport theory to quantitatively incorporate microscale data on the advection field into macroscale mass transfer models.  相似文献   

11.
A novel immobilised bioreactor has been developed especially for the treatment of pollutants characterized by high volatility along with high water solubility and low microbial yields. The new bioreactor referred to as the rotating rope bioreactor (RRB) provides higher interfacial area (per unit reactor liquid volume) along with high oxygen mass transfer rate, greater microbial culture stability; and consequently higher substrate loadings and removal rates in comparison to other conventional rectors for the treatment of volatile compounds. Pyridine was used as a model compound to demonstrate the enhanced performance with RRB, when compared to that reported with other conventional bioreactors. The experimental results indicate that the novel RRB system is able to degrade pyridine with removal efficiency of more than 85% at higher pyridine concentration (up to 1000 mg/l) and loading [up to 400 mg/m(2)/h (66.86 g/m(3)/h)], with a shorter hydraulic retention time (9-18 h). The reactor has been in operation for the past 15 months and no loss of activity has been observed.  相似文献   

12.
Membrane process for biological treatment of contaminated gas streams   总被引:5,自引:0,他引:5  
A hollow fiber membrane bioreactor was investigated for control of air emissions of biodegradable volatile organic compounds (VOCs). In the membrane bioreactor, gases containing VOCs pass through the lumen of microporous hydrophobic hollow fiber membranes. Soluble compounds diffuse through the membrane pores and partition into a VOC degrading biofilm. The hollow fiber membranes serve as a support for the microbial population and provide a large surface area for VOC and oxygen mass transfer. Experiments were performed to investigate the effects of toluene loading rate, gas residence time, and liquid phase turbulence on toluene removal in a laboratory-scale membrane bioreactor. Initial acclimation of the microbial culture to toluene occurred over a period of nine days, after which a 70% removal efficiency was achieved at an inlet toluene concentration of 200 ppm and a gas residence time of 1.8 s (elimination capacity of 20 g m-3 min-1). At higher toluene loading rates, a maximum elimination capacity of 42 g m-3 min-1 was observed. In the absence of a biofilm (abiotic operation), mass transfer rates were found to increase with increasing liquid recirculation rates. Abiotic mass transfer coefficients could be estimated using a correlation of dimensionless parameters developed for heat transfer. Liquid phase recirculation rate had no effect on toluene removal when the biofilm was present, however. Three models of the reactor were created: a numeric model, a first-order flat sheet model, and a zero-order flat sheet model. Only the numeric model fit the data well, although removal predicted as a function of gas residence time disagreed slightly with that observed. A modification in the model to account for membrane phase resistance resulted in an underprediction of removal. Sensitivity analysis of the numeric model indicated that removal was a strong function of the liquid phase biomass density and biofilm diffusion coefficient, with diffusion rates below 10(-9) m2 s-1 resulting in decreased removal rates.  相似文献   

13.
This article reports studies on a continuous pulsed plate bioreactor (PPBR) with the cells of Pseudomonas desmolyticum (NCIM2112) immobilized on granular activated carbon (GAC) used as a biofilm reactor for biodegradation of phenol. Almost complete removal of 200 ppm phenol could be achieved in this bioreactor. Biofilm structure and characteristics are influenced by hydrodynamic and shear conditions in bioreactors. In this article, the effect of shear stress induced by frequency of pulsation on biofilm characteristics during the startup period in the PPBR is reported. The startup time decreased with the increase in frequency of pulsation. The formation of biofilm in PPBR was found to have three phases: accumulation, compaction, and plateau. The effect of frequency on production of exoploymeric substances (EPS) such as, protein, carbohydrate, and humic substance is reported. An increase in shear stress induced by the frequency of pulsation increased the production of exopolymeric substances in the biofilm during startup of the bioreactor. Increase in shear stress caused a decrease in biofilm thickness and an increase in dry density of the biofilm. Increase in shear stress resulted in a smoother and thinner biofilm surface with more compact and dense structure.  相似文献   

14.
Fast Kinetics of Fe2+ Oxidation in Packed-Bed Reactors   总被引:6,自引:0,他引:6       下载免费PDF全文
Thiobacillus ferrooxidans was used in fixed-film bioreactors to oxidize ferrous sulfate to ferric sulfate. Glass beads, ion-exchange resin, and activated-carbon particles were tested as support matrix materials. Activated carbon was tested in both a packed-bed bioreactor and a fluidized-bed bioreactor; the other matrix materials were used in packed-bed reactors. Activated carbon displayed the most suitable characteristics for use as a support matrix of T. ferrooxidans fixed-film formation. The reactors were operated within a pH range of 1.35 to 1.5, which effectively reduced the amount of ferric iron precipitation and eliminated diffusion control of mass transfer due to precipitation. The activated-carbon packed-bed reactor displayed the most favorable biomass holdup and kinetic performance related to ferrous sulfate oxidation. The fastest kinetic performance achieved with the activated-carbon packed-bed bioreactor was 78 g of Fe2+ oxidized per liter per h (1,400 mmol of Fe2+ oxidized per liter per h) at a true dilution rate of 40/h, which represents a hydraulic retention time of 1.5 min.  相似文献   

15.
A potential method to improve biomass distribution and the stability of vapor-phase bioreactors is to operate them in a directionally switching mode such that the contaminant air stream direction is periodically reversed through the reactor. In this study, the effect of switching frequency (SF) on bioreactor performance and biodegradation activity was investigated at 1-, 3- and 7-day SFs using toluene as a model compound. Rapid losses of biodegradation capacity and serious bioreactor instability were observed in the bioreactor operated at a 1-day SF. It is hypothesized that the frequent dynamic loading conditions at the 1-day SF hindered biofilm development and ultimately bioreactor stability. In contrast, bioreactors operated at the 3- and 7-day SFs achieved overall removal efficiencies of greater than 99% for 72 and 59 days of operation, respectively. Following each air-stream reversal, the bioreactor operated at the 7-day SF required 48 h to fully restore biodegradation capacity in the inlet bioreactor section. The 1-day SF bioreactor required no such reacclimation period. The toluene-degrading activity in the inlet section of the 7-day SF bioreactor dropped by 71% during the 7-day cycle, whereas it decreased by only 11% in the inlet of the 3-day SF bioreactor. These declines suggest that continuous or near-continuous exposure to toluene can inhibit microbial activity. Of the three SFs examined, the 3-day SF yielded the most efficient bioreactor performance by balancing reacclimation requirements with biodegradation activity losses.  相似文献   

16.
This article describes the use of biofilm reactors for the production of various chemicals by fermentation and wastewater treatment. Biofilm formation is a natural process where microbial cells attach to the support (adsorbent) or form flocs/aggregates (also called granules) without use of chemicals and form thick layers of cells known as "biofilms." As a result of biofilm formation, cell densities in the reactor increase and cell concentrations as high as 74 gL-1 can be achieved. The reactor configurations can be as simple as a batch reactor, continuous stirred tank reactor (CSTR), packed bed reactor (PBR), fluidized bed reactor (FBR), airlift reactor (ALR), upflow anaerobic sludge blanket (UASB) reactor, or any other suitable configuration. In UASB granular biofilm particles are used. This article demonstrates that reactor productivities in these reactors have been superior to any other reactor types. This article describes production of ethanol, butanol, lactic acid, acetic acid/vinegar, succinic acid, and fumaric acid in addition to wastewater treatment in the biofilm reactors. As the title suggests, biofilm reactors have high potential to be employed in biotechnology/bioconversion industry for viable economic reasons. In this article, various reactor types have been compared for the above bioconversion processes.  相似文献   

17.
A rigorous steady-state model of anaerobic biofilm reactors taking into account acid-base and gas-phase equilibria in the reactor in conjunction with detailed chemical equilibria and mass transfer in acetate-utilizing methanogenic biofilms is presented. The performances of ideal completely stirred tank reactors (CSTRs) and plug-flow reactors, as well as reactors with nonideal hydraulic conditions, are simulated. Decreasing the surface loading rate increases the acetate removal efficiency, while decreasing the influent pH and increasing the buffering capacity improves the removal efficiency only if the bulk pH of the reactor shifts toward more optimal values between 6.8 to 7.0. The reactor can have negative or positive removal efficiencies depending on the start-up conditions. The respiration coefficient plays a critical role in determining the minimum influent pH required for reactor recovery after failure. Having multiple CSTRs-in-series generally increases the overall removal efficiency for the influent conditions investigated. Monitoring of the influent feed quality is critical for plug-flow reactors, becasue failure of the initial sections of the reactor may cause a cascading effect that may lead to a rapid reactor failure. (c) 1995 John Wiley & Sons, Inc.  相似文献   

18.
This contribution reviews the mass transfer aspects of biotechnological processes for gas treatment, with an emphasis on the underlying principles and technical feasible methods for mass transfer enhancements. Understanding of the mass transfer behavior in bioreactors for gas treatment will result in improved reactor designs, reactor operation, and modeling tools, which are important to maximize efficiency and minimize costs. Various methods are discussed that show the potential for a more effective treatment of compounds with poor water solubility.  相似文献   

19.
Attached media reactors are used for enhancement of wastewater treatment processes including anaerobic condition. Selection of a suitable biofilm carrier is a compelling method to improve anaerobic digestion systems. This study investigates the performance of four fibrous biofilms installed in batch biogas reactors for treatment of cow manure. BioCords HS1, HS2, LS1, and LS2 are manufactured by Bishop Water Technologies, ON, Canada. Effluents and attached growth media were analyzed after batch experiment; methane production, methane yield, transfer efficiencies, organic and solid removal efficiencies, pH, and attached volatile suspended solid (VSS) were measured; VSS attached to biofilms mainly correlated with the specific surface area of each biofilm. Additionally, SEM (scanning electron microscopy) was used for further understanding of biofilm formation process for BioCords and the dissimilarity in their performance. The results indicated that BioCord LS2 had positive impact on achieving higher methane production and removal efficiencies compared to other support media utilized in batch reactors. It was also demonstrated from the experiment that BioCord LS2 potentially could generate higher methane production than conventional batch bioreactor.  相似文献   

20.
Aspergillus oryzae ACM 4996 was grown on an artificial gel-based substrate and on steamed wheat bran during solid-state fermentations in 18.7 L rotating drum bioreactors. For gel fermentations fungal growth decreased as rotational speed increased, presumably due to increased shear. For wheat bran fermentations fungal growth improved under agitated compared to static culture conditions, due to superior heat and mass transfer. We conclude that the effects of operational variables on the performance of SSF bioreactors are mediated by their effects on transport phenomena such as mixing, shear, heat transfer, and mass transfer within the substrate bed. In addition, the substrate characteristics affect the need for and the rates of these transport processes. Different transport phenomena may be rate limiting with different substrates. This work improves understanding of the effects of bioreactor operation on SSF performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号