首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 692 毫秒
1.
We reasoned that with an optimal aiding horizontal force, the reduction in metabolic rate would reflect the cost of generating propulsive forces during normal walking. Furthermore, the reductions in ankle extensor electromyographic (EMG) activity would indicate the propulsive muscle actions. We applied horizontal forces at the waist, ranging from 15% body weight aiding to 15% body weight impeding, while subjects walked at 1.25 m/s. With an aiding horizontal force of 10% body weight, 1) the net metabolic cost of walking decreased to a minimum of 53% of normal walking, 2) the mean EMG of the medial gastrocnemius (MG) during the propulsive phase decreased to 59% of the normal walking magnitude, and yet 3) the mean EMG of the soleus (Sol) did not decrease significantly. Our data indicate that generating horizontal propulsive forces constitutes nearly half of the metabolic cost of normal walking. Additionally, it appears that the MG plays an important role in forward propulsion, whereas the Sol does not.  相似文献   

2.
The metabolic cost of leg swing in running is highly controversial. We investigated the cost of initiating and propagating leg swing at a moderate running speed and some of the muscular actions involved. We constructed an external swing assist (ESA) device that applied small anterior pulling forces to each foot during the first part of the swing phase. Subjects ran on a treadmill at 3.0 m/s normally and with ESA forces up to 4% body weight. With the greatest ESA force, net metabolic rate was 20.5% less than during normal running. Thus we infer that the metabolic cost of initiating and propagating leg swing comprises approximately 20% of the net cost of normal running. Even with the greatest ESA, mean electromyograph (mEMG) of the medial gastrocnemius and soleus muscles during later portions of stance phase did not change significantly compared with normal running, indicating that these muscles are not responsible for the initiation of leg swing. However, with ESA, rectus femoris mEMG during the early portions of swing phase was as much as 74% less than during normal running, confirming that it is responsible for the propagation of leg swing.  相似文献   

3.
We sought to understand how leg muscle function determines the metabolic cost of walking. We first indirectly assessed the metabolic cost of swinging the legs and then examined the cost of generating muscular force during the stance phase. Four men and four women walked at 0.5, 1.0, 1.5, and 2.0 m/s carrying loads equal to 0, 10, 20, and 30% body mass positioned symmetrically about the waist. The net metabolic rate increased in nearly direct proportion to the external mechanical power during moderate-speed (0.5-1.5 m/s) load carrying, suggesting that the cost of swinging the legs is relatively small. The active muscle volume required to generate force on the ground and the rate of generating this force accounted for >85% of the increase in net metabolic rate across moderate speeds and most loading conditions. Although these factors explained less of the increase in metabolic rate between 1.5 and 2.0 m/s ( approximately 50%), the cost of generating force per unit volume of active muscle [i.e., the cost coefficient (k)] was similar across all conditions [k = 0.11 +/- 0.03 (SD) J/cm3]. These data indicate that, regardless of the work muscles do, the metabolic cost of walking can be largely explained by the cost of generating muscular force during the stance phase.  相似文献   

4.
We used a simple model of passive dynamic walking, with the addition of active powering on level ground, to study the preferred relationship between speed and step length in humans. We tested several hypothetical metabolic costs, with one component proportional to the mechanical work associated with pushing off with the stance leg at toe-off, and another component associated with several possible costs of forcing oscillations of the swing leg. For this second component, a cost based on the amount of force needed to oscillate the leg divided by the time duration of that force predicts the preferred speed-step length relationship much better than other costs, such as the amount of mechanical work done in swinging the leg. The cost of force/time models the need to recruit fast muscle fibers for large forces at short durations. The actual mechanical work performed by muscles on the swing leg appears to be of relatively less importance, although it appears to be minimized by the use of short bursts of muscle activity in near-isometric conditions. The combined minimization of toe-off mechanical work and force divided by time predicts the preferred speed-step length relationship.  相似文献   

5.
To gain insight into the mechanical determinants of walking energetics, we investigated the effects of aging and arm swing on the metabolic cost of stabilization. We tested two hypotheses: (1) elderly adults consume more metabolic energy during walking than young adults because they consume more metabolic energy for lateral stabilization, and (2) arm swing reduces the metabolic cost of stabilization during walking in young and elderly adults. To test these hypotheses, we provided external lateral stabilization by applying bilateral forces (10% body weight) to a waist belt via elastic cords while young and elderly subjects walked at 1.3m/s on a motorized treadmill with arm swing and with no arm swing. We found that the external stabilizer reduced the net rate of metabolic energy consumption to a similar extent in elderly and young subjects. This reduction was greater (6-7%) when subjects walked with no arm swing than when they walked normally (3-4%). When young or elderly subjects eliminated arm swing while walking with no external stabilization, net metabolic power increased by 5-6%. We conclude that the greater metabolic cost of walking in elderly adults is not caused by a greater cost of lateral stabilization. Moreover, arm swing reduces the metabolic cost of walking in both young and elderly adults likely by contributing to stability.  相似文献   

6.
The net force and moment of a joint have been widely used to understand joint disease in the foot. Meanwhile, it does not reflect the physiological forces on muscles and contact surfaces. The objective of the study is to estimate active moments by muscles, passive moments by connective tissues and joint contact forces in the foot joints during walking. Joint kinematics and external forces of ten healthy subjects (all males, 24.7 ± 1.2 years) were acquired during walking. The data were entered into the five-segment musculoskeletal foot model to calculate muscle forces and joint contact forces of the foot joints using an inverse dynamics-based optimization. Joint reaction forces and active, passive and net moments of each joint were calculated from muscle and ligament forces. The maximum joint reaction forces were 8.72, 4.31, 2.65, and 3.41 body weight (BW) for the ankle, Chopart’s, Lisfranc and metatarsophalangeal joints, respectively. Active and passive moments along with net moments were also obtained. The maximum net moments were 8.6, 8.4, 5.4 and 0.8%BW∙HT, respectively. While the trend of net moment was very similar between the four joints, the magnitudes and directions of the active and passive moments varied between joints. The active and passive moments during walking could reveal the roles of muscles and ligaments in each of the foot joints, which was not obvious in the net moment. This method may help narrow down the source of joint problems if applied to clinical studies.  相似文献   

7.
Walking appears to be passively unstable in the lateral direction, requiring active feedback control for stability. The central nervous system may control stability by adjusting medio-lateral foot placement, but potentially with a metabolic cost. This cost increases with narrow steps and may affect the preferred step width. We hypothesized that external stabilization of the body would reduce the active control needed, thereby decreasing metabolic cost and preferred step width. To test these hypotheses, we provided external lateral stabilization, using springs pulling bilaterally from the waist, to human subjects walking on a force treadmill at 1.25 m/s. Ten subjects walked, with and without stabilization, at a prescribed step width of zero and also at their preferred step width. We measured metabolic cost using indirect calorimetry, and step width from force treadmill data. We found that at the prescribed zero step width, external stabilization resulted in a 33% decrease in step width variability (root-mean-square) and a 9.2% decrease in metabolic cost. In the preferred step width conditions, external stabilization caused subjects to prefer a 47% narrower step width, with a 32% decrease in step width variability and a 5.7% decrease in metabolic cost. These results suggest that (a). human walking requires active lateral stabilization, (b). body lateral motion is partially stabilized via medio-lateral foot placement, (c). active stabilization exacts a modest metabolic cost, and (d). humans avoid narrow step widths because they are less stable.  相似文献   

8.
Stiff-knee gait is a common walking problem in cerebral palsy characterized by insufficient knee flexion during swing. To identify factors that may limit knee flexion in swing, it is necessary to understand how unimpaired subjects successfully coordinate muscles and passive dynamics (gravity and velocity-related forces) to accelerate the knee into flexion during double support, a critical phase just prior to swing that establishes the conditions for achieving sufficient knee flexion during swing. It is also necessary to understand how contributions to swing initiation change with walking speed, since patients with stiff-knee gait often walk slowly. We analyzed muscle-driven dynamic simulations of eight unimpaired subjects walking at four speeds to quantify the contributions of muscles, gravity, and velocity-related forces (i.e. Coriolis and centrifugal forces) to preswing knee flexion acceleration during double support at each speed. Analysis of the simulations revealed contributions from muscles and passive dynamics varied systematically with walking speed. Preswing knee flexion acceleration was achieved primarily by hip flexor muscles on the preswing leg with assistance from biceps femoris short head. Hip flexors on the preswing leg were primarily responsible for the increase in preswing knee flexion acceleration during double support with faster walking speed. The hip extensors and abductors on the contralateral leg and velocity-related forces opposed preswing knee flexion acceleration during double support.  相似文献   

9.
Accurate measurement of ground reaction forces under discrete areas of the foot is important in the development of more advanced foot models, which can improve our understanding of foot and ankle function. To overcome current equipment limitations, a few investigators have proposed combining a pressure mat with a single force platform and using a proportionality assumption to estimate subarea shear forces and free moments. In this study, two adjacent force platforms were used to evaluate the accuracy of the proportionality assumption on a three segment foot model during normal gait. Seventeen right feet were tested using a targeted walking approach, isolating two separate joints: transverse tarsal and metatarsophalangeal. Root mean square (RMS) errors in shear forces up to 6% body weight (BW) were found using the proportionality assumption, with the highest errors (peak absolute errors up to 12% BW) occurring between the forefoot and toes in terminal stance. The hallux exerted a small braking force in opposition to the propulsive force of the forefoot, which was unaccounted for by the proportionality assumption. While the assumption may be suitable for specific applications (e.g. gait analysis models), it is important to understand that some information on foot function can be lost. The results help highlight possible limitations of the assumption. Measured ensemble average subarea shear forces during normal gait are also presented for the first time.  相似文献   

10.
We studied the selection of preferred step width in human walking by measuring mechanical and metabolic costs as a function of experimentally manipulated step width (0.00-0.45L, as a fraction of leg length L). We estimated mechanical costs from individual limb external mechanical work and metabolic costs using open circuit respirometry. The mechanical and metabolic costs both increased substantially (54 and 45%, respectively) for widths greater than the preferred value (0.15-0.45L) and with step width squared (R(2) = 0.91 and 0.83, respectively). As predicted by a three-dimensional model of walking mechanics, the increases in these costs appear to be a result of the mechanical work required for redirecting the centre of mass velocity during the transition between single stance phases (step-to-step transition costs). The metabolic cost for steps narrower than preferred (0.10-0.00L) increased by 8%, which was probably as a result of the added cost of moving the swing leg laterally in order to avoid the stance leg (lateral limb swing cost). Trade-offs between the step-to-step transition and lateral limb swing costs resulted in a minimum metabolic cost at a step width of 0.12L, which is not significantly different from foot width (0.11L) or the preferred step width (0.13L). Humans appear to prefer a step width that minimizes metabolic cost.  相似文献   

11.
Previous studies have suggested that generating vertical force on the ground to support body weight (BWt) is the major determinant of the metabolic cost of running. Because horizontal forces exerted on the ground are often an order of magnitude smaller than vertical forces, some have reasoned that they have negligible cost. Using applied horizontal forces (AHF; negative is impeding, positive is aiding) equal to -6, -3, 0, +3, +6, +9, +12, and +15% of BWt, we estimated the cost of generating horizontal forces while subjects were running at 3.3 m/s. We measured rates of oxygen consumption (VO2) for eight subjects. We then used a force-measuring treadmill to measure ground reaction forces from another eight subjects. With an AHF of -6% BWt, VO2 increased 30% compared with normal running, presumably because of the extra work involved. With an AHF of +15% BWt, the subjects exerted approximately 70% less propulsive impulse and exhibited a 33% reduction in VO2. Our data suggest that generating horizontal propulsive forces constitutes more than one-third of the total metabolic cost of normal running.  相似文献   

12.
Impaired control of mediolateral body motion during walking is an important health concern. Developing treatments to improve mediolateral control is challenging, partly because the mechanisms by which muscles modulate mediolateral ground reaction force (and thereby modulate mediolateral acceleration of the body mass center) during unimpaired walking are poorly understood. To investigate this, we examined mediolateral ground reaction forces in eight unimpaired subjects walking at four speeds and determined the contributions of muscles, gravity, and velocity-related forces to the mediolateral ground reaction force by analyzing muscle-driven simulations of these subjects. During early stance (0-6% gait cycle), peak ground reaction force on the leading foot was directed laterally and increased significantly (p<0.05) with walking speed. During early single support (14-30% gait cycle), peak ground reaction force on the stance foot was directed medially and increased significantly (p<0.01) with speed. Muscles accounted for more than 92% of the mediolateral ground reaction force over all walking speeds, whereas gravity and velocity-related forces made relatively small contributions. Muscles coordinate mediolateral acceleration via an interplay between the medial ground reaction force contributed by the abductors and the lateral ground reaction forces contributed by the knee extensors, plantarflexors, and adductors. Our findings show how muscles that contribute to forward progression and body-weight support also modulate mediolateral acceleration of the body mass center while weight is transferred from one leg to another during double support.  相似文献   

13.
It has historically been believed that the role of arm motion during walking is related to balancing. Arm motion during natural walking is distinguished in that each arm swing is with the motion of the opposing leg. Although this arm swing motion is generated naturally during bipedal walking, it is interesting to note that the arm swing motion is not necessary for stable walking. This paper attempts to explain the contribution of out-of-phase arm swing in human bipedal walking. Consequently, a human motion control methodology that generates this arm swing motion during walking is proposed. The relationship between arm swing and reaction moment about the vertical axis of the foot is explained in the context of the dynamics of a multi-body articulated system. From this understanding, it is reasoned that arm swing is the result of an effort to reduce the reaction moment about the vertical axis of the foot while the torso and legs are being controlled. This idea is applied to the generation of walking motion. The arm swing motion can be generated, not by designing and tracking joint trajectories of the arms, but by limiting the allowable reaction moment at the foot and minimizing whole-body motion while controlling the lower limbs and torso to follow the designed trajectory. Simulation results, first with the constraint on the foot vertical axis moment and then without, verify the relationship between arm swing and foot reaction moment. These results also demonstrate the use of the dynamic control method in generating arm swing motion.  相似文献   

14.
In walking, humans prefer a moderate step width that minimizes energetic cost and vary step width from step-to-step to maintain lateral balance. Arm swing also reduces energetic cost and improves lateral balance. In running, humans prefer a narrow step width that may present a challenge for maintaining lateral balance. However, arm swing in running may improve lateral balance and help reduce energetic cost. To understand the roles of step width and arm swing, we hypothesized that net metabolic power would be greater at step widths greater or less than preferred and when running without arm swing. We further hypothesized that step width variability (indicator of lateral balance) would be greater at step widths greater or less than preferred and when running without arm swing. Ten subjects ran (3m/s) at four target step widths (0%, 15%, 20%, and 25% leg length (LL)) with arm swing, at their preferred step width with arm swing, and at their preferred step width without arm swing. We measured metabolic power, step width, and step width variability. When subjects ran at target step widths less (0% LL) or greater (15%, 20%, and 25% LL) than preferred, both net metabolic power demand (by 3%, 9%, 12%, and 15%) and step width variability (by 7%, 33%, 46%, and 69%) increased. When running without arm swing, both net metabolic power demand (by 8%) and step width variability (by 9%) increased compared to running with arm swing. It appears that humans prefer to run with a narrow step width and swing their arms so as to minimize energetic cost and improve lateral balance.  相似文献   

15.
There are different opinions in the literature on whether the cost functions: the sum of muscle stresses squared and the sum of muscle stresses cubed, can reasonably predict muscle forces in humans. One potential reason for the discrepancy in the results could be that different authors use different sets of model parameters which could substantially affect forces predicted by optimization-based models. In this study, the sensitivity of the optimal solution obtained by minimizing the above cost functions for a planar three degrees-of-freedom (DOF) model of the leg with nine muscles was investigated analytically for the quadratic function and numerically for the cubic function. Analytical results revealed that, generally, the non-zero optimal force of each muscle depends in a very complex non-linear way on moments at all three joints and moment arms and physiological cross-sectional areas (PCSAs) of all muscles. Deviations of the model parameters (moment arms and PCSAs) from their nominal values within a physiologically feasible range affected not only the magnitude of the forces predicted by both criteria, but also the number of non-zero forces in the optimal solution and the combination of muscles with non-zero predicted forces. Muscle force magnitudes calculated by both criteria were similar. They could change several times as model parameters changed, whereas patterns of muscle forces were typically not as sensitive. It is concluded that different opinions in the literature about the behavior of optimization-based models can be potentially explained by differences in employed model parameters.  相似文献   

16.
Inverted pendulum models of walking predict that little muscle work is required for the exchange of body potential and kinetic energy in single-limb support. External power during walking (product of the measured ground reaction force and body center-of-mass (COM) velocity) is often analyzed to deduce net work output or mechanical energetic cost by muscles. Based on external power analyses and inverted pendulum theory, it has been suggested that a primary mechanical energetic cost may be associated with the mechanical work required to redirect the COM motion at the step-to-step transition. However, these models do not capture the multi-muscle, multi-segmental properties of walking, co-excitation of muscles to coordinate segmental energetic flow, and simultaneous production of positive and negative muscle work. In this study, a muscle-actuated forward dynamic simulation of walking was used to assess whether: (1). potential and kinetic energy of the body are exchanged with little muscle work; (2). external mechanical power can estimate the mechanical energetic cost for muscles; and (3.) the net work output and the mechanical energetic cost for muscles occurs mostly in double support. We found that the net work output by muscles cannot be estimated from external power and was the highest when the COM moved upward in early single-limb support even though kinetic and potential energy were exchanged, and muscle mechanical (and most likely metabolic) energetic cost is dominated not only by the need to redirect the COM in double support but also by the need to raise the COM in single support.  相似文献   

17.
A simple spring mechanics model can capture the dynamics of the center of mass (CoM) during human walking, which is coordinated by multiple joints. This simple spring model, however, only describes the CoM during the stance phase, and the mechanics involved in the bipedality of the human gait are limited. In this study, a bipedal spring walking model was proposed to demonstrate the dynamics of bipedal walking, including swing dynamics followed by the step-to-step transition. The model consists of two springs with different stiffnesses and rest lengths representing the stance leg and swing leg. One end of each spring has a foot mass, and the other end is attached to the body mass. To induce a forward swing that matches the gait phase, a torsional hip joint spring was introduced at each leg. To reflect the active knee flexion for foot clearance, the rest length of the swing leg was set shorter than that of the stance leg, generating a discrete elastic restoring force. The number of model parameters was reduced by introducing dependencies among stiffness parameters. The proposed model generates periodic gaits with dynamics-driven step-to-step transitions and realistic swing dynamics. While preserving the mimicry of the CoM and ground reaction force (GRF) data at various gait speeds, the proposed model emulated the kinematics of the swing leg. This result implies that the dynamics of human walking generated by the actuations of multiple body segments is describable by a simple spring mechanics.  相似文献   

18.
Foot placement is critical to balance control during walking and is primarily controlled by muscle force generation. Although gluteus medius activity has been associated with mediolateral foot placement, how other muscles contribute to foot placement is not clear. Furthermore, although dynamic walking models have suggested that anteroposterior foot placement can be passively controlled, the extent to which muscles actively contribute to anteroposterior foot placement has not been determined. The objective of this study was to identify individual muscle contributions to mediolateral and anteroposterior foot placement during walking in healthy adults. Dynamic simulations of walking were developed for six older adults and a segmental power analysis was performed to determine the individual muscle contributions to the mediolateral and anteroposterior power delivered to the foot segment. The simulations revealed the ipsilateral swing limb gluteus medius, iliopsoas, rectus femoris and hamstrings and the contralateral stance limb gluteus medius and ankle plantarflexors were primary contributors to both mediolateral and anteroposterior foot placement. Muscle contributions to foot placement were found to be highly influenced by their contributions to pelvis power, which was dominated by those muscles crossing the hip joint. Thus, impaired balance control may be improved by focusing rehabilitation interventions on optimizing the coordination of those muscles crossing the hip joint and the ankle plantarflexors.  相似文献   

19.
Clinical studies of hemiparetic walking have shown pre-swing abnormalities in the paretic leg suggesting that paretic muscle contributions to important biomechanical walking subtasks are different than those of non-disabled individuals. Three-dimensional forward dynamics simulations of two representative hemiparetic subjects with different levels of walking function classified by self-selected walking speed (i.e., limited community=0.4–0.8 m/s and community walkers=>0.8 m/s) and a speed-matched control were generated to quantify individual muscle contributions to forward propulsion, swing initiation and power generation during the pre-swing phase (i.e., double support phase proceeding toe-off). Simulation analyses identified decreased paretic soleus and gastrocnemius contributions to forward propulsion and power generation as the primary impairment in the limited community walker compared to the control subject. The non-paretic leg did not compensate for decreased forward propulsion by paretic muscles during pre-swing in the limited community walker. Paretic muscles had the net effect to absorb energy from the paretic leg during pre-swing in the community walker suggesting that deficits in swing initiation are a primary impairment. Specifically, the paretic gastrocnemius and hip flexors (i.e., iliacus, psoas and sartorius) contributed less to swing initiation and the paretic soleus and gluteus medius absorbed more power from the paretic leg in the community walker compared to the control subject. Rehabilitation strategies aimed at diminishing these deficits have much potential to improve walking function in these hemiparetic subjects and those with similar deficits.  相似文献   

20.
A computer simulation technique was applied to make clear the mechanical characteristics of primate bipedal walking. A primate body and the walking mechanism were modeled mathematically with a set of dynamic equations. Using a digital computer, the following were calculated from these equations by substituting measured displacements and morphological data of each segment of the primate: the acceleration, joint angle, center of gravity, foot force, joint moment, muscular force, transmitted force at the joint, electric activity of the muscle, generated power by the leg and energy expenditure in walking.The model was evaluated by comparing some of the calculated results with the experimental results such as foot force and electromyographic data, and improved in order to obtain the agreement between them.The level bipedal walking of man, chimpanzee and Japanese monkey and several types of synthesized walking were analyzed from the viewpoint of biomechanics.It is concluded that the bipedal walking of chimpanzee is nearer to that of man than to that of the Japanese monkey because of its propulsive mechanism, but it requires large muscular force for supporting the body weight.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号