首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
《BBA》2014,1837(12):1981-1988
Minor light-harvesting complexes (Lhcs) CP24, CP26 and CP29 occupy a position in photosystem II (PSII) of plants between the major light-harvesting complexes LHCII and the PSII core subunits. Lack of minor Lhcs in vivo causes impairment of PSII organization, and negatively affects electron transport rates and photoprotection capacity. Here we used picosecond-fluorescence spectroscopy to study excitation-energy transfer (EET) in thylakoid membranes isolated from Arabidopsis thaliana wild-type plants and knockout lines depleted of either two (koCP26/24 and koCP29/24) or all minor Lhcs (NoM). In the absence of all minor Lhcs, the functional connection of LHCII to the PSII cores appears to be seriously impaired whereas the “disconnected” LHCII is substantially quenched. For both double knock-out mutants, excitation trapping in PSII is faster than in NoM thylakoids but slower than in WT thylakoids. In NoM thylakoids, the loss of all minor Lhcs is accompanied by an over-accumulation of LHCII, suggesting a compensating response to the reduced trapping efficiency in limiting light, which leads to a photosynthetic phenotype resembling that of low-light-acclimated plants. Finally, fluorescence kinetics and biochemical results show that the missing minor complexes are not replaced by other Lhcs, implying that they are unique among the antenna subunits and crucial for the functioning and macro-organization of PSII.  相似文献   

2.
We investigated the organization of photosystem II (PSII) in agranal bundle sheath thylakoids from a C(4) plant maize. Using blue native/SDS-PAGE and single particle analysis, we show for the first time that PSII in the bundle sheath (BS) chloroplasts exists in a dimeric form and forms light-harvesting complex II (LHCII).PSII supercomplexes. We also demonstrate that a similar set of photosynthetic membrane complexes exists in mesophyll and agranal BS chloroplasts, including intact LHCI.PSI supercomplexes, PSI monomers, PSII core dimers, PSII monomers devoid of CP43, LHCII trimers, LHCII monomers, ATP synthase, and cytochrome b(6)f complex. Fluorescence functional measurements clearly indicate that BS chloroplasts contain PSII complexes that are capable of performing charge separation and are efficiently sensitized by the associated LHCII. We identified a fraction of LHCII present within BS thylakoids that is weakly energetically coupled to the PSII reaction center; however, the majority of BS LHCII is shown to be tightly connected to PSII. Overall, we demonstrate that organization of the photosynthetic apparatus in BS agranal chloroplasts of a model C(4) plant is clearly distinct from that of the stroma lamellae of the C(3) plants. In particular, supramolecular organization of the dimeric LHCII.PSII in the BS thylakoids strongly suggests that PSII in the BS agranal membranes may donate electrons to PSI. We propose that the residual PSII activity may supply electrons to poise cyclic electron flow around PSI and prevent PSI overoxidation, which is essential for the CO(2) fixation in BS cells, and hence, may optimize ATP production within this compartment.  相似文献   

3.
A genetic approach has been adopted to investigate the organization of the light-harvesting proteins in the photosystem II (PSII) complex in plants. PSII membrane fragments were prepared from wild-type Arabidopis thaliana and plants expressing antisense constructs to Lhcb4 and Lhcb5 genes, lacking CP29 and CP26, respectively (Andersson et al. (2001) Plant Cell 13, 1193-1204). Ordered PS II arrays and PS II supercomplexes were isolated from the membranes of plants lacking CP26 but could not be prepared from those lacking CP29. Membranes and supercomplexes lacking CP26 were less stable than those prepared from the wild type. Transmission electron microscopy aided by single-particle image analysis was applied to the ordered arrays and the isolated PSII complexes. The difference between the images obtained from wild type and antisense plants showed the location of CP26 to be near CP43 and one of the light-harvesting complex trimers. Therefore, the location of the CP26 within PSII was directly established for the first time, and the location of the CP29 complex was determined by elimination. Alterations in the packing of the PSII complexes in the thylakoid membrane also resulted from the absence of CP26. The minor light-harvesting complexes each have a unique location and important roles in the stabilization of the oligomeric PSII structure.  相似文献   

4.
The role of individual photosynthetic antenna complexes of Photosystem II (PSII) both in membrane organization and excitation energy transfer have been investigated. Thylakoid membranes from wild-type Arabidopsis thaliana, and three mutants lacking light-harvesting complexes CP24, CP26, or CP29, respectively, were studied by picosecond-fluorescence spectroscopy. By using different excitation/detection wavelength combinations it was possible for the first time, to our knowledge, to separate PSI and PSII fluorescence kinetics. The sub-100 ps component, previously ascribed entirely to PSI, turns out to be due partly to PSII. Moreover, the migration time of excitations from antenna to PSII reaction center (RC) was determined for the first time, to our knowledge, for thylakoid membranes. It is four times longer than for PSII-only membranes, due to additional antenna complexes, which are less well connected to the RC. The results in the absence of CP26 are very similar to those of wild-type, demonstrating that the PSII organization is not disturbed. However, the kinetics in the absence of CP29 and, especially, of CP24 show that a large fraction of the light-harvesting complexes becomes badly connected to the RCs. Interestingly, the excited-state lifetimes of the disconnected light-harvesting complexes seem to be substantially quenched.  相似文献   

5.
State transitions, or the redistribution of light-harvesting complex II (LHCII) proteins between photosystem I (PSI) and photosystem II (PSII), balance the light-harvesting capacity of the two photosystems to optimize the efficiency of photosynthesis. Studies on the migration of LHCII proteins have focused primarily on their reassociation with PSI, but the molecular details on their dissociation from PSII have not been clear. Here, we compare the polypeptide composition, supramolecular organization, and phosphorylation of PSII complexes under PSI- and PSII-favoring conditions (State 1 and State 2, respectively). Three PSII fractions, a PSII core complex, a PSII supercomplex, and a multimer of PSII supercomplex or PSII megacomplex, were obtained from a transformant of the green alga Chlamydomonas reinhardtii carrying a His-tagged CP47. Gel filtration and single particles on electron micrographs showed that the megacomplex was predominant in State 1, whereas the core complex was predominant in State 2, indicating that LHCIIs are dissociated from PSII upon state transition. Moreover, in State 2, strongly phosphorylated LHCII type I was found in the supercomplex but not in the megacomplex. Phosphorylated minor LHCIIs (CP26 and CP29) were found only in the unbound form. The PSII subunits were most phosphorylated in the core complex. Based on these observations, we propose a model for PSII remodeling during state transitions, which involves division of the megacomplex into supercomplexes, triggered by phosphorylation of LHCII type I, followed by LHCII undocking from the supercomplex, triggered by phosphorylation of minor LHCIIs and PSII core subunits.  相似文献   

6.
Photosynthetic supercomplexes from the cryptophyte Rhodomonas CS24 were isolated by a short detergent treatment of membranes from the cryptophyte Rhodomonas CS24 and studied by electron microscopy and low-temperature absorption and fluorescence spectroscopy. At least three different types of supercomplexes of photosystem I (PSI) monomers and peripheral Chl a/c(2) proteins were found. The most common complexes have Chl a/c(2) complexes at both sides of the PSI core monomer and have dimensions of about 17x24 nm. The peripheral antenna in these supercomplexes shows no obvious similarities in size and/or shape with that of the PSI-LHCI supercomplexes from the green plant Arabidopsis thaliana and the green alga Chlamydomonas reinhardtii, and may be comprised of about 6-8 monomers of Chl a/c(2) light-harvesting complexes. In addition, two different types of supercomplexes of photosystem II (PSII) dimers and peripheral Chl a/c(2) proteins were found. The detected complexes consist of a PSII core dimer and three or four monomeric Chl a/c(2) proteins on one side of the PSII core at positions that in the largest complex are similar to those of Lhcb5, a monomer of the S-trimer of LHCII, Lhcb4 and Lhcb6 in green plants.  相似文献   

7.
In photosynthetic membranes of cyanobacteria, algae, and higher plants, photosystem I (PSI) mediates light-driven transmembrane electron transfer from plastocyanin or cytochrome c6 to the ferredoxin-NADP complex. The oxidoreductase function of PSI is sensitized by a reversible photooxidation of primary electron donor P700, which launches a multistep electron transfer via a series of redox cofactors of the reaction center (RC). The excitation energy for the functioning of the primary electron donor in the RC is delivered via the chlorophyll core antenna in the complex with peripheral light-harvesting antennas. Supermolecular complexes of the PSI acquire remarkably different structural forms of the peripheral light-harvesting antenna complexes, including distinct pigment types and organizational principles. The PSI core antenna, being the main functional unit of the supercomplexes, provides an increased functional connectivity in the chlorophyll antenna network due to dense pigment packing resulting in a fast spread of the excitation among the neighbors. Functional connectivity within the network as well as the spectral overlap of antenna pigments allows equilibration of the excitation energy in the depth of the whole membrane within picoseconds and loss-free delivery of the excitation to primary donor P700 within 20-40 ps. Low-light-adapted cyanobacteria under iron-deficiency conditions extend this capacity via assembly of efficiently energy coupled rings of CP43-like complexes around the PSI trimers. In green algae and higher plants, less efficient energy coupling in the eukaryotic PSI-LHCI supercomplexes is probably a result of the structural adaptation of the Chl a/b binding LHCI peripheral antenna that not only extends the absorption cross section of the PSI core but participates in regulation of excitation flows between the two photosystems as well as in photoprotection.  相似文献   

8.
Photosystem II is a multisubunit pigment-protein complex embedded in the thylakoid membranes of chloroplasts. It utilizes light for photochemical energy conversion, and is heavily involved in the regulation of the energy flow. We investigated the structural organization of photosystem II and its associated light-harvesting antenna by electron microscopy, multivariate statistical analysis, and classification procedures on partially solubilized photosystem II membranes from spinach. Observation by electron microscopy shortly after a mild disruption of freshly prepared membranes with the detergent n-dodecyl-alpha,D-maltoside revealed the presence of several large supramolecular complexes. In addition to the previously reported supercomplexes [Boekema, E. J., van Roon, H., and Dekker, J. P. (1998) FEBS Lett. 424, 95-99], we observed complexes with the major trimeric chlorophyll a/b protein (LHCII) in a third, L-type of binding position (C2S2M0-2L1-2), and two different types of megacomplexes, both identified as dimeric associations of supercomplexes with LHCII in two types of binding sites (C4S4M2-4). We conclude that the association of photosystem II and its associated light-harvesting antenna is intrinsically heterogeneous, and that the minor CP26 and CP24 proteins play a crucial role in the supramolecular organization of the complete photosystem. We suggest that different types of organization form the structural basis for photosystem II to specifically react to changing light and stress conditions, by providing different routes of excitation energy transfer.  相似文献   

9.
In this work, the transfer of excitation energy was studied in native and cation-depletion induced, unstacked thylakoid membranes of spinach by steady-state and time-resolved fluorescence spectroscopy. Fluorescence emission spectra at 5 K show an increase in photosystem I (PSI) emission upon unstacking, which suggests an increase of its antenna size. Fluorescence excitation measurements at 77 K indicate that the increase of PSI emission upon unstacking is caused both by a direct spillover from the photosystem II (PSII) core antenna and by a functional association of light-harvesting complex II (LHCII) to PSI, which is most likely caused by the formation of LHCII-LHCI-PSI supercomplexes. Time-resolved fluorescence measurements, both at room temperature and at 77 K, reveal differences in the fluorescence decay kinetics of stacked and unstacked membranes. Energy transfer between LHCII and PSI is observed to take place within 25 ps at room temperature and within 38 ps at 77 K, consistent with the formation of LHCII-LHCI-PSI supercomplexes. At the 150–160 ps timescale, both energy transfer from LHCII to PSI as well as spillover from the core antenna of PSII to PSI is shown to occur at 77 K. At room temperature the spillover and energy transfer to PSI is less clear at the 150 ps timescale, because these processes compete with charge separation in the PSII reaction center, which also takes place at a timescale of about 150 ps.  相似文献   

10.
Photosystem II is a multisubunit pigment-protein complex embedded in the thylakoid membranes of chloroplasts. It consists of a large number of intrinsic membrane proteins involved in light-harvesting and electron-transfer processes and of a number of extrinsic proteins required to stabilize photosynthetic oxygen evolution. We studied the structure of dimeric supercomplexes of photosystem II and its associated light-harvesting antenna by electron microscopy and single-particle image analysis. Comparison of averaged projections from native complexes and complexes without extrinsic polypeptides indicates that the removal of 17 and 23 kDa extrinsic subunits induces a shift of about 1.2 nm in the position of the monomeric peripheral antenna protein CP29 toward the central part of the supercomplex. Removal of the 33 kDa extrinsic protein induces an inward shift of the strongly bound trimeric light-harvesting complex II (S-LHCII) of about 0.9 nm, and in addition destabilizes the monomer-monomer interactions in the central core dimer, leading to structural rearrangements of the core monomers. It is concluded that the extrinsic subunits keep the S-LHCII and CP29 subunits in proper positions at some distance from the central part of the photosystem II core dimer to ensure a directed transfer of excitation energy through the monomeric peripheral antenna proteins CP26 and CP29 and/or to maintain sequestered domains of inorganic cofactors required for oxygen evolution.  相似文献   

11.
The localization of the plant-specific thylakoid-soluble phosphoprotein of 9 kDa, TSP9, within the chloroplast thylakoid membrane of spinach has been established by the combined use of fractionation, immunoblotting, cross-linking, and mass spectrometry. TSP9 was found to be exclusively confined to the thylakoid membranes, where it is enriched in the stacked grana membrane domains. After mild solubilization of the membranes, TSP9 migrated together with the major light-harvesting antenna (LHCII) of photosystem II (PSII) and with PSII-LHCII supercomplexes upon separation of the protein complexes by either native gel electrophoresis or sucrose gradient centrifugation. Studies with a cleavable cross-linking agent revealed the interaction of TSP9 with both major and minor LHCII proteins as identified by mass spectrometric sequencing. Cross-linked complexes that in addition to TSP9 contain the peripheral PSII subunits CP29, CP26, and PsbS, which form the interface between LHCII and the PSII core, were found. Our observations also clearly suggest an interaction of TSP9 with photosystem I (PSI) as shown by both immunodetection and mass spectrometry. Sequencing identified the peripheral PSI subunits PsaL, PsaF, and PsaE, originating from cross-linked protein complexes of around 30 kDa that also contained TSP9. The distribution of TSP9 among the cross-linked forms was found to be sensitive to conditions such as light exposure. An association of TSP9 with LHCII as well as the peripheries of the photosystems suggests its involvement in regulation of photosynthetic light harvesting.  相似文献   

12.
The core of photosystem II (PSII) of green plants contains the reaction center (RC) proteins D1D2-cytb559 and two core antennas CP43 and CP47. We have used time-resolved visible pump/midinfrared probe spectroscopy in the region between 1600 and 1800 cm(-1) to study the energy transfer and charge separation events within PSII cores. The absorption difference spectra in the region of the keto and ester chlorophyll modes show spectral evolution with time constants of 3 ps, 27 ps, 200 ps, and 2 ns. Comparison of infrared (IR) difference spectra obtained for the isolated antennas CP43 and CP47 and the D1D2-RC with those measured for the PSII core allowed us to identify the features specific for each of the PSII core components. From the presence of the CP43 and CP47 specific features in the spectra up to time delays of 20-30 ps, we conclude that the main part of the energy transfer from the antennas to the RC occurs on this timescale. Direct excitation of the pigments in the RC evolution associated difference spectra to radical pair formation of PD1+PheoD1- on the same timescale as multi-excitation annihilation and excited state equilibration within the antennas CP43 and CP47, which occur within approximately 1-3 ps. The formation of the earlier radical pair ChlD1+PheoD1-, as identified in isolated D1D2 complexes with time-resolved mid-IR spectroscopy is not observed in the current data, probably because of its relatively low concentration. Relaxation of the state PD1+PheoD1-, caused by a drop in free energy, occurs in 200 ps in closed cores. We conclude that the kinetic model proposed earlier for the energy and electron transfer dynamics within the D1D2-RC, plus two slowly energy-transferring antennas C43 and CP47 explain the complex excited state and charge separation dynamics in the PSII core very well. We further show that the time-resolved IR-difference spectrum of PD1+PheoD1- as observed in PSII cores is virtually identical to that observed in the isolated D1D2-RC complex of PSII, demonstrating that the local structure of the primary reactants has remained intact in the isolated D1D2 complex.  相似文献   

13.
Photoautotrophic organisms efficiently regulate absorption of light energy to sustain photochemistry while promoting photoprotection. Photoprotection is achieved in part by triggering a series of dissipative processes termed non-photochemical quenching (NPQ), which depend on the re-organization of photosystem (PS) II supercomplexes in thylakoid membranes. Using atomic force microscopy, we characterized the structural attributes of grana thylakoids from Arabidopsis thaliana to correlate differences in PSII organization with the role of SOQ1, a recently discovered thylakoid protein that prevents formation of a slowly reversible NPQ state. We developed a statistical image analysis suite to discriminate disordered from crystalline particles and classify crystalline arrays according to their unit cell properties. Through detailed analysis of the local organization of PSII supercomplexes in ordered and disordered phases, we found evidence that interactions among light-harvesting antenna complexes are weakened in the absence of SOQ1, inducing protein rearrangements that favor larger separations between PSII complexes in the majority (disordered) phase and reshaping the PSII crystallization landscape. The features we observe are distinct from known protein rearrangements associated with NPQ, providing further support for a role of SOQ1 in a novel NPQ pathway. The particle clustering and unit cell methodology developed here is generalizable to multiple types of microscopy and will enable unbiased analysis and comparison of large data sets.  相似文献   

14.
H Hrtel  H Lokstein  P Drmann  B Grimm    C Benning 《Plant physiology》1997,115(3):1175-1184
The glycerolipid digalactosyl diacylglycerol (DGDG) is exclusively associated with photosynthetic membranes and thus may play a role in the proper assembly and maintenance of the photosynthetic apparatus. Here we employ a genetic approach based on the dgd1 mutant of Arabidopsis thaliana to investigate the function of DGDG in thylakoid membranes. The primary defect in the genetically well-characterized dgd1 mutant resulted in a 90% reduction of the DGDG content. The mutant showed a decreased photosystem II (PSII) to photosystem I ratio. In vivo room- and low-temperature (77 K) chlorophyll fluorescence measurements with thylakoid preparations are in agreement with a drastically altered excitation energy allocation to the reaction centers. Quantification of pigment-binding apoproteins and pigments supports an altered stoichiometry of individual pigment-protein complexes in the mutant. Most strikingly, an increase in the amount of peripheral light-harvesting complexes of PSII relative to the inner antenna complexes and the PSII reaction center/core complexes was observed. Regardless of the severe alterations in thylakoid organization, photosynthetic oxygen evolution was virtually not compromised in dgd1 mutant leaves.  相似文献   

15.
We have performed time-resolved fluorescence measurements on photosystem II (PSII) containing membranes (BBY particles) from spinach with open reaction centers. The decay kinetics can be fitted with two main decay components with an average decay time of 150 ps. Comparison with recent kinetic exciton annihilation data on the major light-harvesting complex of PSII (LHCII) suggests that excitation diffusion within the antenna contributes significantly to the overall charge separation time in PSII, which disagrees with previously proposed trap-limited models. To establish to which extent excitation diffusion contributes to the overall charge separation time, we propose a simple coarse-grained method, based on the supramolecular organization of PSII and LHCII in grana membranes, to model the energy migration and charge separation processes in PSII simultaneously in a transparent way. All simulations have in common that the charge separation is fast and nearly irreversible, corresponding to a significant drop in free energy upon primary charge separation, and that in PSII membranes energy migration imposes a larger kinetic barrier for the overall process than primary charge separation.  相似文献   

16.
A photosystem II (PSII) core complex lacking the internal antenna CP43 protein was isolated from the photosystem II of Synechocystis PCC6803, which lacks photosystem I (PSI). CP47-RC and reaction centre (RCII) complexes were also obtained in a single procedure by direct solubilization of whole thylakoid membranes. The CP47-RC subcore complex was characterized by SDS/PAGE, immunoblotting, MALDI MS, visible and fluorescence spectroscopy, and absorption detected magnetic resonance. The purity and functionality of RCII was also assayed. These preparations may be useful for mutational analysis of PSII RC and CP47-RC in studying primary reactions of oxygenic photosynthesis.  相似文献   

17.
The chloroplast thylakoid membrane of green plants is organized in stacked grana membranes and unstacked stroma membranes. We investigated the structural organization of Photosystem II (PSII) in paired grana membrane fragments by transmission electron microscopy. The membrane fragments were obtained by a short treatment of thylakoid membranes with the mild detergent n-dodecyl-alpha, d-maltoside and are thought to reflect the grana membranes in a native state. The membranes frequently show crystalline macrodomains in which PSII is organized in rows spaced by either 26.3 nm (large-spaced crystals) or 23 nm (small-spaced crystals). The small-spaced crystals are less common but better ordered. Image analysis of the crystals by an aperiodic approach revealed the precise positions of the core parts of PSII in the lattices, as well as features of the peripheral light-harvesting antenna. Together, they indicate that the so-called C(2)S(2) and C(2)S(2)M supercomplexes form the basic motifs of the small-spaced and large-spaced crystals, respectively. An analysis of a pair of membranes with a well-ordered large-spaced crystal reveals that many PSII complexes in one layer face only light-harvesting complexes (LHCII) in the other layer. The implications of this type of organization for the efficient transfer of excitation energy from LHCII to PSII and for the stacking of grana membranes are discussed.  相似文献   

18.
The photosystem II (PSII) light-harvesting antenna in higher plants contains a number of highly conserved gene products whose function is unknown. Arabidopsis thaliana plants depleted of one of these, the CP24 light-harvesting complex, have been analyzed. CP24-deficient plants showed a decrease in light-limited photosynthetic rate and growth, but the pigment and protein content of the thylakoid membranes were otherwise almost unchanged. However, there was a major change in the macroorganization of PSII within these membranes; electron microscopy and image analysis revealed the complete absence of the C(2)S(2)M(2) light-harvesting complex II (LHCII)/PSII supercomplex predominant in wild-type plants. Instead, only C(2)S(2) supercomplexes, which are deficient in the LHCIIb M-trimers, were found. Spectroscopic analysis confirmed the disruption of the wild-type macroorganization of PSII. It was found that the functions of the PSII antenna were disturbed: connectivity between PSII centers was reduced, and maximum photochemical yield was lowered; rapidly reversible nonphotochemical quenching was inhibited; and the state transitions were altered kinetically. CP24 is therefore an important factor in determining the structure and function of the PSII light-harvesting antenna, providing the linker for association of the M-trimer into the PSII complex, allowing a specific macroorganization that is necessary both for maximum quantum efficiency and for photoprotective dissipation of excess excitation energy.  相似文献   

19.
A repressible/inducible chloroplast gene expression system has been used to conditionally inhibit chloroplast protein synthesis in the unicellular alga Chlamydomonas reinhardtii. This system allows one to follow the fate of photosystem II and photosystem I and their antennae upon cessation of chloroplast translation. The main results are that the levels of the PSI core proteins decrease at a slower rate than those of PSII. Amongst the light-harvesting complexes, the decrease of CP26 proceeds at the same rate as for the PSII core proteins whereas it is significantly slower for CP29, and for the antenna complexes of PSI this rate is comprised between that of CP26 and CP29. In marked contrast, the components of trimeric LHCII, the major PSII antenna, persist for several days upon inhibition of chloroplast translation. This system offers new possibilities for investigating the biosynthesis and turnover of individual photosynthetic complexes in the thylakoid membranes. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: Keys to Produce Clean Energy.  相似文献   

20.
Fristedt R  Vener AV 《PloS one》2011,6(9):e24565
Photosynthetic oxidation of water and production of oxygen by photosystem II (PSII) in thylakoid membranes of plant chloroplasts is highly affected by changes in light intensities. To minimize damage imposed by excessive sunlight and sustain the photosynthetic activity PSII, organized in supercomplexes with its light harvesting antenna, undergoes conformational changes, disassembly and repair via not clearly understood mechanisms. We characterized the phosphoproteome of the thylakoid membranes from Arabidopsis thaliana wild type, stn7, stn8 and stn7stn8 mutant plants exposed to high light. The high light treatment of the wild type and stn8 caused specific increase in phosphorylation of Lhcb4.1 and Lhcb4.2 isoforms of the PSII linker protein CP29 at five different threonine residues. Phosphorylation of CP29 at four of these residues was not found in stn7 and stn7stn8 plants lacking the STN7 protein kinase. Blue native gel electrophoresis followed by immunological and mass spectrometric analyses of the membrane protein complexes revealed that the high light treatment of the wild type caused redistribution of CP29 from PSII supercomplexes to PSII dimers and monomers. A similar high-light-induced disassembly of the PSII supercomplexes occurred in stn8, but not in stn7 and stn7stn8. Transfer of the high-light-treated wild type plants to normal light relocated CP29 back to PSII supercomplexes. We postulate that disassembly of PSII supercomplexes in plants exposed to high light involves STN7-kinase-dependent phosphorylation of the linker protein CP29. Disruption of this adaptive mechanism can explain dramatically retarded growth of the stn7 and stn7stn8 mutants under fluctuating normal/high light conditions, as previously reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号