首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The relationship between nutrient composition, crop biomass, and glutamate dehydrogenase (GDH) isoenzyme pattern was investigated in soybean (Glycine max) and maize (Zea mays) by monitoring the nutrient induced isomerization of the enzyme from the seedling stage to the mature crop. GDH was extracted from the leaves of the plants, and the isoenzymes were fractionated by isoelectric focusing followed by native polyacrylamide gel electrophoresis. The isomerization Vmax values for soybean GDH, similar to maize GDH increased curvilinearly from 200 – 400 μmol mg−1 min−1 as the inorganic phosphate nutrient applied to the soil decreased from 50 − 0 mM. In soybean, combinations of N and K, P, or S nutrients induced the acidic and neutral isoenzymes, and gave biomass increases 25 – 50 % higher than the control plant. GDH isoenzymes were suppressed in soybean that received nutrients without N, K, or P and accordingly the biomass was about 30 % lower than the control. Treatment of maize with NPK nutrients increased the GDH Vmax values from 138.9 at the vegetative to 256.4 μmol mg−1 min−1 at the reproductive phase, and suppressed the basic isoenzymes, but induced both the acidic and neutral isoenzymes thereby inducing seed production (27.0 ± 1.4 g per plant); whereas both the acidic and basic isoenzymes were suppressed in the control maize, and seeds did not develop. Simultaneous induction of the acidic, neutral, and basic isoenzymes of GDH indicated the occurrence of senescence. Therefore in maize and soybean, the induction of the acidic and basic isoenzymes of GDH led to the enhancement of biomass. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
The effects of trehalose pretreatment on thylakoid membranes of winter wheat were investigated under heat stress. Under normal growth conditions, the winter wheat synthesized 502 μg g−1(f.m.) trehalose, which increased to 1250 μg g−1(f.m.) under heat stress and to 1658 μg g−1(f.m.) in trehalose-pretreated seedlings. Under heat stress, proteins in the thylakoid membranes and the photosynthetic capacity were protected by trehalose pretreatment. Moreover, the electrolyte leakage, contents of malondialdehyde, superoxide anion and hydrogen peroxide, and lipoxygenase activity in trehalose-pretreated seedlings were lower than in the non-pretreated plants.  相似文献   

3.
Light irradiation had remarkable effects on callus growth of Oldenlandia affinis with an optimum intensity of 35 μmol m−2 s−1. Biosynthesis of kalata B1, the main cyclic peptide in O. affinis, was induced and triggered with rising irradiation intensities. The highest concentration of kalata B1, 0.49 mg g−1 DW characterised by the maximum productivity of 3.88 μg per litre and day was analysed at 120 μmol m−2 s−1, although callus growth was repressed. The light saturation point was established to be 35 μmol m−2 s−1, where kalata B1 productivity was in a similar order (3.41 μg per day) due to the higher growth index. O. affinis suspension cultures were shown to accumulate comparable specific kalata B1 concentrations in a delayed growth associated production pattern. These were dependent on irradiation intensity (0.16 mg g−1 at 2 μmol m−2 s−1; 0.28 mg g−1 at 35 μmol m−2 s−1). The batch cultivation process resulted in a maximum productivity of 27.30 μg per litre and day with culture doubling times of 1.16 d−1. Submers operation represented a 8-fold product enhancement compared to callus cultivation.  相似文献   

4.
The effects of temperature (20, 24 and 28 °C) and irradiance (15 and 40 μmol photon m−2 s−1) on the nitrate and ammonium uptake rates of the subtropical red alga, Laurencia brongniartii, were investigated to prepare for tank cultivation. Nitrate uptake followed saturation kinetics and was faster at higher irradiances and temperatures. In contrast, ammonium uptake was linear over the experimental range and was not affected by an increase in temperature. A parameter, β, was calculated to compare substrate uptake rates of nitrate along the linear portion of the uptake curve with that of ammonium. For nitrate, β was lower at low irradiance and higher at high irradiance (β = 0.007 ± 0.003 and 0.030 ± 0.002 [μmol N L−1 (μmol N gww−1 d)−1], respectively). However, β was 0.023 ± 0.002 and 0.034 ± 0.002 [μmol N L−1 (μmol N gww−1 d−1)−1] for ammonium, suggesting a preference for ammonium over nitrate.  相似文献   

5.
Photosynthetic Response of Carrots to Varying Irradiances   总被引:7,自引:3,他引:4  
Kyei-Boahen  S.  Lada  R.  Astatkie  T.  Gordon  R.  Caldwell  C. 《Photosynthetica》2003,41(2):301-305
Response to irradiance of leaf net photosynthetic rates (P N) of four carrot cultivars: Cascade, Caro Choice (CC), Oranza, and Red Core Chantenay (RCC) were examined in a controlled environment. Gas exchange measurements were conducted at photosynthetic active radiation (PAR) from 100 to 1 000 μmol m−2 s−1 at 20 °C and 350 μmol (CO2) mol−1(air). The values of P N were fitted to a rectangular hyperbolic nonlinear regression model. P N for all cultivars increased similarly with increasing PAR but Cascade and Oranza generally had higher P N than CC. None of the cultivars reached saturation at 1 000 μmol m−2 s−1. The predicted P N at saturation (P Nmax) for Cascade, CC, Oranza, and RCC were 19.78, 16.40, 19.79, and 18.11 μmol (CO2) m−2 s−1, respectively. The compensation irradiance (I c) occurred at 54 μmol m−2 s−1 for Cascade, 36 μmol m−2 s−1 for CC, 45 μmol m−2 s−1 for Oranza, and 25 μmol m−2 s−1 for RCC. The quantum yield among the cultivars ranged between 0.057–0.033 mol(CO2) mol−1(PAR) and did not differ. Dark respiration varied from 2.66 μmol m−2 s−1 for Cascade to 0.85 μmol m−2 s−1 for RCC. As P N increased with PAR, intercellular CO2 decreased in a non-linear manner. Increasing PAR increased stomatal conductance and transpiration rate to a peak between 600 and 800 μmol m−2 s−1 followed by a steep decline resulting in sharp increases in water use efficiency. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

6.
The purpose of this study was to clarify effects of anthocyanins on photosynthesis and photoinhibition in green and red leaves of Oxalis triangularis. Gas analysis indicated that green plants had the highest apparent quantum yield for CO2 assimilation [0.051 vs. 0.031 μmol(CO2) μmol−1(photon)] and the highest maximum photosynthesis [10.07 vs. 7.24 μmol(CO2) m−2 s−1], while fluorescence measurements indicated that red plants had the highest PSII quantum yield [0.200 vs. 0.143 μmol(e) μmol−1(photon)] and ETRmax [66.27 vs. 44.34 μmol(e) m−2 s−1]. Red plants had high contents of anthocyanins [20.11 mg g−1(DM)], while green plants had low and undetectable levels of anthocyanin. Red plants also had statistically significantly (0.05>p>0.01) lower contents of xanthophyll cycle components [0.63 vs. 0.76 mg g−1(DM)] and higher activities of the reactive oxygen scavenging enzyme ascorbate peroxidase [41.2 vs. 10.0 nkat g−1(DM)]. Anthocyanins act as a sunscreen, protecting the chloroplasts from high light intensities. This shading effect causes a lower photosynthetic CO2 assimilation in red plants compared to green plants, but a higher quantum efficiency of photosystem II (PSII). Anthocyanins contribute to photoprotection, compensating for lower xanthophyll content in red plants, and red plants are less photoinhibited than green plants, as illustrated by the Fv/Fm ratio.  相似文献   

7.
The vitamin content of microalgae used in aquaculture   总被引:4,自引:0,他引:4  
The vitamin content in four Australian microalgae, a Nannochloropsis-like sp., Pavlova pinguis, Stichococcus sp. and Tetraselmis sp., were examined. These were grown under a 12:12 h light:dark regimen (100 μmol photon m−2s−1) and harvested during late-logarithmic phase. Typically, the content showed a two- to three fold range between the species. When expressed on a dry weight basis, the content of ascorbate ranged from 1.3 to 3.0 mg g−1, β-carotene from 0.37 to 1.05 mg g−1, α-tocopherol from 0.07 to 0.29 mg g−1, thiamine from 29 to 109 μg g−1, riboflavin from 25 to 50 μg g−1, total folates from 17 to 24 μg g−1, pyridoxine from 3.6 to 17 μg g−1, cobalamin from 1.70 to 1.95 μg g−1 and biotin from 1.1 to 1.9 μg g−1. Retinol was detected only in Tetraselmis sp. (2.2 μg g−1); any vitamins D2 or D3 were below the detection limit (≤0.45 μg g−1). Nannochloropsis sp. was also grown under a 24:0 h light:dark light cycle and harvested at stationary phase. The content of most vitamins in Nannochloropsis sp. cultures differed significantly, and the degree of variation was similar to that observed between the four species grown under 12:12 h light:dark regimen (100 μmol photon m−2s−1) and harvested during late-logarithmic phase. Thiamine content was also examined in six non-Australian strains commonly used in aquaculture, Chaetoceros muelleri, Thalassiosira pseudonana, Nannochloris atomus, Nannochloropsis oculata, Isochrysis sp. (T.ISO) and Pavlova lutheri. Values (average 61 μg g−1; range 40 to 82) were similar to those in the Australian strains (average 61 μg g−1; range 29 to 109) and increased during stationary phase (average 94 μg g−1; 38 to 131). Comparison of the data with the known nutritional requirements for marine fish species and prawns suggests that the microalgae should provide excess or adequate levels of the vitamins for aquaculture food chains. The data may be used to guide the content of vitamins included in micro-diets developed as replacements for live diets. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
The changes in foliar concentrations of volatile terpenes in response to water stress, fertilization and temperature were analyzed in Pinus halepensis and Quercus ilex. The most abundant terpenes found in both species were α-pinene and Δ3-carene. β-Pinene and myrcene were also abundant in both species. P. halepensis concentrations were much greater than those of Q. ilex in agreement with the lack of storage in the latter species (15205.60 ± 1140.04 vs. 0.54 ± 0.08 μg g−1 [d.m.]). The drought treatment (reduction to 1/3 of full watering) significantly increased the total terpene concentrations in both species (54% in P. halepensis and 119% in Q. ilex). The fertilization treatment (addition of either 250 kg N ha−1 or 250 kg P ha−1 or both) had no significant effects on terpene foliar concentrations. The terpene concentrations increased from 0.25 μg g−1 [d.m.] at 30°C to 0.70 μg g−1 [d.m.] at 40°C in Q. ilex (the non-storing species) and from 2,240 μg g−1 [d.m.] at 30°C to 15,621 μg g−1 [d.m.] at 40°C in P. halepensis (the storing species). Both species presented negative relationship between terpene concentrations and relative water contents (RWC). The results of this study show that higher terpene concentrations can be expected in the warmer and drier conditions predicted for the next decades in the Mediterranean region.  相似文献   

9.
To investigate damaging mechanisms of chilling and salt stress to peanut (Arachis hypogaea L.) leaves, LuHua 14 was used in the present work upon exposure to chilling temperature (4°C) accompanied by high irradiance (1,200 μmol m−2 s−1) (CH), salt stress accompanied by high irradiance (1,200 μmol m−2 s−1) (SH), and high-irradiance stress (1,200 μmol m−2 s−1) at room temperature (25°C) (NH), respectively. Additionally, plants under low irradiance (100 μmol m−2 s−1) at room temperature (25°C) were used as control plants (CK). Relative to CK and NH treatments, both the maximal photochemical efficiency of PSII (Fv/Fm) and the absorbance at 820 nm decreased greatly in peanut leaves under CH and SH stress, which indicated that severe photoinhibition occurred in peanut leaves under such conditions. Initial fluorescence (Fo), 1 − qP and nonphotochemical quenching (NPQ) in peanut leaves significantly increased under CH- and SH stress. Additionally, the activity of superoxide dismutase (SOD), one of the key enzymes of water-water cycle, decreased greatly, the accumulation of malondialdehyde (MDA) and membrane permeability increased. These results suggested that damages to peanut photosystems might be related to the accumulation of reactive oxygen species (ROS) induced by excess energy, and the water-water cycle could not dissipate energy efficiently under the stress of CH and SH, which caused the accumulation of ROS greatly. CH and SH had similar damaging effects on peanut photosystems, except that CH has more severe effects. All the results showed that CH- and SH stress has similar damaging site and mechanisms in peanut leaves.  相似文献   

10.
Embryogenic cell suspension cultures of Santalum album were transformed with Agrobacterium tumefaciens harboring pD35SHER plant expression vector having hepatitis B small surface antigen (HBsAg) with a C-terminal ER retention signal. The transformed colonies were selected on culture medium supplemented with kanamycin and subsequently the transgenic nature of these colonies was confirmed by PCR analysis. The expression of HBsAg was confirmed by RT-PCR analysis and Western blot analysis and the expression was quantified using monoclonal antibody-based ELISA. Cell suspension cultures were initiated from the colony with expression of 11.09 μg(HBsAg) g−1(f.m.). To further increase the expression of HBsAg, transgenic S. album suspensions were cultured on media with various medium additives and cells growing in medium with 30 mM trehalose showed the expression of 19.95 μg(HBsAg) g−1(f.m.).  相似文献   

11.
The branching zooxanthellate soft coral Sinularia flexibillis releases antimicrobial and toxic compounds with potential pharmaceutical importance. As photosynthesis by the symbiotic algae is vital to the host, the light-dependency of the coral, including its specific growth rate (μ day−1) and the physiological response to a range of light intensities (10–1,000 μmol quanta m−2 s−1) was studied for 12 weeks. Although a range of irradiances from 100 to 400 μmol quanta m−2 s−1 was favorable for S. flexibilis, based on chlorophyll content, a light intensity around 100 μmol quanta m−2 s−1 was found to be optimal. The contents of both zooxanthellae and chlorophyll a were highest at 100 μmol quanta m−2 s−1. The specific budding rate showed almost the same pattern as the specific growth rate. The concentration of the terpene flexibilide, produced by this species, increased at high light intensities (200–600 μmol quanta m−2 s−1).  相似文献   

12.
The initial rate ofd-glucosamine uptake by the non-halotolerant yeastSaccharomyces cerevisiae was approximately halved as the apparent half saturation constant (Km) and the apparent maximum velocity (Vmax) changed from 6.6mm to 16.4mm and from 22 μmol · g−1 · min−1 to 16 μmol · g−1 · min−1, respectively, when the salinity in the medium was increased from zerom to 0.68m NaCl. Corresponding changes in a high affinity transport system in the halotolerant yeastDebaryomyces hansenii were from 1.1mm to 4.6mm and from 3.1 μmol · g−1 · min−1 to 4.5 μmol · g−1 · min−1, implying a practically unchanged transport capacity. In 2.7m NaCl, Km and Vmax in this system were 24.5mm and 1.1 μmol · g−1 · min−1, respectively, representing a marked decrease in transport capability. Nevertheless, the degree of affinity in this extreme salinity must still be regarded as noteworthy. In addition to the high affinity transport system inD. hansenii, a low affinity system, presumably without relevance ind-glucosamine transport, was observed.  相似文献   

13.
The effect of light intensity (50–300 μmol photons m−2 s−1) and temperature (15–50°C) on chlorophyll a, carotenoid and phycobiliprotein content in Arthronema africanum biomass was studied. Maximum growth rate was measured at 300 μmol photons m−2 s−1 and 36°C after 96 h of cultivation. The chlorophyll a content increased along with the increase in light intensity and temperature and reached 2.4% of dry weight at 150 μmol photons m−2 s−1 and 36°C, but it decreased at higher temperatures. The level of carotenoids did not change significantly under temperature changes at illumination of 50 and 100 μmol photons m−2 s−1. Carotenoids were about 1% of the dry weight at higher light intensities: 150 and 300 μmol photons m−2 s−1. Arthronema africanum contained C-phycocyanin and allophycocyanin but no phycoerythrin. The total phycobiliprotein content was extremely high, more than 30% of the dry algal biomass, thus the cyanobacterium could be deemed an alternative producer of C-phycocyanin. A highest total of phycobiliproteins was reached at light intensity of 150 μmol photons m−2 s−1 and temperature of 36°C, C-phycocyanin and allophycocyanin amounting, respectively, to 23% and 12% of the dry algal biomass. Extremely low (<15°C) and high temperatures (>47°C) decreased phycobiliprotein content regardless of light intensity.  相似文献   

14.
Gordonia alkanivorans strain 1B is able to desulfurize dibenzothiophene (DBT) to 2-hydroxybiphenyl (2-HBP), the final product of the 4S pathway. However, both the cell growth and the rate of desulfurization can be largely affected by the nutrient composition of the growth medium due to cofactor requirements of many enzymes involved in the biochemical pathways. In this work, the effect of several metal ions on the growth and DBT desulfurization by G. alkanivorans was studied. From all the metal ions tested, only the absence of zinc significantly affected the cell growth and the desulfurization rate. By increasing the concentration of Zn from 1 to 10 mg L−1, 2-HBP productivity was improved by 26%. The absence of Zn2+, when sulfate was also used as the only sulfur source, did not cause any difference in the bacterial growth. Resting cells grown in the presence of Zn2+ exhibited a 2-HBP specific productivity of 2.29 μmol g−1 (DCW) h−1, 7.6-fold higher than the specific productivity obtained by resting cells grown in the absence of Zn2+ (0.30 μmol g−1 (DCW) h−1). These data suggests that zinc might have a key physiological role in the metabolism of DBT desulfurization.  相似文献   

15.
The influence of brackish phytoplankton cell classes upon the response of urea decomposition was investigated in Lake Nakaumi. The urea decomposition rate was 5 to 350 μmol urea m−3 h−1 in the light and 3 to 137 μmol urea m−3 h−1 in the dark. The urea decomposition rates in the light were obviously higher than in the dark. An extremely high rate (350 μmol urea m−3 h−1) was observed in Yonago Bay. The rate in the smaller fraction (<5 μm) exceeded that in the middle (5–25 μm) and larger fractions (>25 μm). The chlorophyll- and photosynthesis-specific rates for urea decomposition in the light were 0.5 to 3.9 μmol urea mg chl.a −1 h−1 and 0.3 to 1.3 μmol urea mg photo.C−1. The specific urea decomposing activities were higher in the smaller fraction than in the other two fractions. The present results suggest that in brackish waters urea decomposition occurred with coupling to the standing crop and photosynthetic activity of phytoplankton. Received: May 22, 1999 / Accepted: August 15, 1999  相似文献   

16.
The nodal explants of in vitro shoots of Holarrhena antidysenterica L. were cultured on Murashige and Skoog's (MS) medium augmented with 15 μM N6-benzyladenine (BA) alone (control) or supplemented with different concentrations (1, 5, 10 and 20 mg dm−3) of CdCl2, CuSO4, Pb(NO3)2 and ZnSO4. The maximum morphogenic response in terms of average shoot number (4.95 ± 0.17) was seen in control. ZnSO4 proved to be less inhibitory in comparison to CuSO4, Pb(NO3)2 and CdCl2. None of the explants cultured on CdCl2 containing medium induced multiple shoots. Maximum protein content [3.80 ± 0.04 mg g−1(f.m.)] was observed in control and slightly less [3.50 ± 0.02 mg g−1(f.m.)] in tissues exposed to 1 mg dm−3 of CuSO4 and minimum [1.00 ± 0.02 mg g−1(f.m.)] in Zn treated (20 mg dm−3) explants. SDS-PAGE analysis of the treated tissues revealed that two new polypeptides (29 and 20 kDa) in response to Cu and Zn treatment, respectively, have been synthesized.  相似文献   

17.
Malaysia is the world’s leading producer of palm oil products that contribute US$ 7.5 billion in export revenues. Like any other agro-based industries, it generates waste that could be utilized as a source of organic nutrients for microalgae culture. Present investigation delves upon Isochrysis sp. culture in POME modified medium and its utilization as a supplement to Nanochloropsis sp. in rotifer cultures. The culture conditions were optimized using a 1 L photobioreactor (Temp: 23°C, illumination: 180 ∼ 200 μmol photons m−2s−1, n = 6) and scaled up to 10 L outdoor system (Temp: 26–29°C, illumination: 50 ∼ 180 μmol photons m−2s−1, n = 3). Algal growth rate in photobioreactor (μ = 0.0363 h−1) was 55% higher compared to outdoor culture (μ = 0.0163 h−1), but biomass production was 1.3 times higher in outdoor culture (Outdoor = 91.7 mg m−2d−1; Photobioreactor = 69 mg m−2d−1). Outdoor culture produced 18% higher lipid; while total fatty acids (FA) was not significantly affected by the change in culture systems as both cultures yield almost similar concentrations of fatty acids per gram of sample (photobioreactor = 119.17 mg g−1; outdoor culture = 104.50 mg g−1); however, outdoor cultured Isochrysis sp. had 26% more polyunsaturated fatty acids (PUFAs). Rotifers cultured in Isochrysis sp./ Nanochloropsis sp. (1:1, v/v) mixture gave similar growth rate as 100% Nanochoropsis sp. culture (μ = 0.40 d−1), but had 45% higher counts of rotifers with eggs (t = 7, maximum). The Isochrysis sp. culture successfully lowered the nitrate (46%) and orthophosphate (83%) during outdoor culture.  相似文献   

18.
Summary Chili pepper (Capsicum annuum L., cv. Tampique?o 74) cell suspensions were employed to study the influence of phenylalanine and phenylpropanoids on the total production of capsaicinoids, the hot taste compounds of chili pepper fruits. The effect of capsaicinoid precursors and intermediates on the accumulation of lignin as an indicator of metabolic diversion was also investigated. Addition of 100 μM of either phenylalanine, cinnamic or caffeic acids to chili pepper cell cultures did not cause significant increases in total capsaicinoids (expressed as capsaicin content, and calculated as averages of the measured values) during the growth cycle. The highest total capsaicinoid content was recorded in cultures grown in the presence of vanillin (142.61 μg g−1 f.wt.), followed by cells treated with 100 μM vanillylamine (104.88 μg g−1 f.wt.), p-coumaric acid (72.36 μg g−1 f.wt.). and ferulic acid (34.67 μg g−1 f.wt.). Capsaicinoid content for control cells was 13.97 μg g−1 f.wt. Chili pepper cell suspensions cultured in the presence of 100 μM of either phenylalanine, or cinnamic, caffeic, or ferulic acids, or the same concentration, of vanillin and vanillylamine, did not exhibit statistically significant differences in the content of lignin as compared with control cells. However, addition of p-coumaric acid (100 μM) to the cultute medium significantly increased thelignin production (c. 10–15 times the contents of control cells).  相似文献   

19.
Trigonelline Concentration in Field-Grown Soybean in Response to Irrigation   总被引:2,自引:0,他引:2  
Trigonelline (TRG) is a conjugate of nicotinic acid, and is postulated to function as a compatible solute in response to salinity- and water deficit-stresses. TRG concentrations and several agronomic characteristics were measured under irrigated field and non-irrigated field conditions within 18 soybean (Glycine max) genotypes using leaves taken from different growth stages (vegetative, flowering and pod development). Under irrigation, relative water content (RWC) ranged from 90.0 to 99.6 %. Under non-irrigation, RWC ranged from 86.3 to 97.5 %. TRG concentration ranged from 364 to 555 μg g−1(d.m.) under irrigation, and from 404 to 570 μg g−1(d.m.) under non-irrigation. TRG concentrations increased in the majority of genotypes (15 of 18) under non-irrigation even though RWC did not significantly differ in many genotypes between treatments. TRG decreased as plants progressed to pod development and seed filling. Mean seed yield under non-irrigated conditions declined 55 % relative to the irrigated controls. TRG concentrations among all genotypes were significantly correlated with seed yield. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
Dimethylsulfoniopropionate (DMSP) is an important component of the global sulfur cycle and may be involved, via its cleavage product dimethylsulfide, in climate regulation. Although it is common in many algae, reports of DMSP in animals, particularly tropical invertebrates, are limited. This study examined the distribution of DMSP in a diverse group of coral reef invertebrates. DMSP was present in all 22 species of cnidarians and ranged from 9 to 723 μmol g−1 of dry mass (DM) with a mean (± 1SD) of 110 ± 180 μmol g−1 DM. It was not detected in a flatworm and an ascidian or in two of five sponges. Concentrations in sponges ranged from undetectable to 16 μmol g−1 DM with a mean of 4 ± 7 μmol g−1 DM. Within the cnidarians, DMSP concentrations did not differ among orders. Among cnidarian species, DMSP concentrations were correlated with symbiotic zooxanthellae densities. Within cnidarian species, DMSP concentrations of individuals were positively correlated with zooxanthellae densities in three of the four species examined. We speculate that DMSP is dietarily derived in sponges and derived from zooxanthellae in the cnidarians. The functions of DMSP in coral reef invertebrates are not known.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号