首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 111 毫秒
1.
The effects of preplanted marigold on tomato root galling and multiplication of Meloidogyne incognita, M. javanica, M. arenaria, and M. hapla were studied. Marigold cultivars of Tagetes patula, T. erecta, T. signata, and a Tagetes hybrid all reduced galling and numbers of second-stage juveniles in subsequent tomato compared to the tomato-tomato control. All four Meloidogyne spp. reproduced on T. signata ''Tangerine Gem''. Several cultivars of T. patula and T. erecta suppressed galling and reproduction of Meloidogyne spp. on tomato to levels lower than or comparable to a fallow control. Phytotoxic effects of marigold on tomato were not observed. Several of the tested marigold cultivars are ready for full-scale field evaluation against Meloidogyne spp.  相似文献   

2.
Host suitability of olive cultivars Arbequina and Picual to several plant-parasitic nematodes was studied under controlled conditions. Arbequina and Picual were not suitable hosts for the root-lesion nematodes Pratylenchus fallax, P. thornei, and Zygotylenchus guevarai. However, the ring nematode Mesocriconema xenoplax and the spiral nematodes Helicotylenchus digonicus and H. pseudorobustus reproduced on both olive cultivars. The potential of Meloidogyne arenaria race 2, M. incognita race 1, and M. javanica, as well as P. vulnus and P. penetrans to damage olive cultivars, was also assessed. Picual planting stocks infected by root-knot nematodes showed a distinct yellowing affecting the uppermost leaves, followed by a partial defoliation. Symptoms were more severe on M. arenaria and M. javanica-infected plants than on M. incognita-infected plants. Inoculation of plants with 15,000 eggs + second-stage juveniles/pot of these Meloidogyne spp. suppressed the main height of shoot and number of nodes of Arbequina, but not Picual. Infection by each of the two lesion nematodes (5,000 nematodes/pot) or by each of the three Meloidogyne spp. suppressed (P < 0.05) the main stem diameter of both cultivars. On Arbequina, the reproduction rate of Meloidogyne spp. was higher (P < 0.05) than that of Pratylenchus spp.; on Picual, Pratylenchus spp. reproduction was higher (P < 0.05) than that of Meloidogyne spp.  相似文献   

3.
To determine the presence and level of root-knot nematode (Meloidogyne spp.) infestation in Southern California bell pepper (Capsicum annuum) fields, soil and root samples were collected in April and May 2012 and analyzed for the presence of root-knot nematodes. The earlier samples were virtually free of root-knot nematodes, but the later samples all contained, sometimes very high numbers, of root-knot nematodes. Nematodes were all identified as M. incognita. A nematode population from one of these fields was multiplied in a greenhouse and used as inoculum for two repeated pot experiments with three susceptible and two resistant bell pepper varieties. Fruit yields of the resistant peppers were not affected by the nematodes, whereas yields of two of the three susceptible pepper cultivars decreased as a result of nematode inoculation. Nematode-induced root galling and nematode multiplication was low but different between the two resistant cultivars. Root galling and nematode reproduction was much higher on the three susceptible cultivars. One of these susceptible cultivars exhibited tolerance, as yields were not affected by the nematodes, but nematode multiplication was high. It is concluded that M. incognita is common in Southern California bell pepper production, and that resistant cultivars may provide a useful tool in a nonchemical management strategy.  相似文献   

4.
Brassicaceous cover crops can be used for biofumigation after soil incorporation of the mowed crop. This strategy can be used to manage root-knot nematodes (Meloidogyne spp.), but the fact that many of these crops are host to root-knot nematodes can result in an undesired nematode population increase during the cultivation of the cover crop. To avoid this, cover crop cultivars that are poor or nonhosts should be selected. In this study, the host status of 31 plants in the family Brassicaceae for the three root-knot nematode species M. incognita, M. javanica, and M. hapla were evaluated, and compared with a susceptible tomato host in repeated greenhouse pot trials. The results showed that M. incognita and M. javanica responded in a similar fashion to the different cover cultivars. Indian mustard (Brassica juncea) and turnip (B. rapa) were generally good hosts, whereas most oil radish cultivars (Raphanus. sativus ssp. oleiferus) were poor hosts. However, some oil radish cultivars were among the best hosts for M. hapla. The arugula (Eruca sativa) cultivar Nemat was a poor host for all three nematode species tested. This study provides important information for chosing a cover crop with the purpose of managing root-knot nematodes.  相似文献   

5.
Meloidogyne incognita race 1, M. javanica, M. arenaria race 1, M. hapla, and an undescribed Meloidogyne sp. were analyzed by comparing isozyme phenotypes of esterase, malate dehydrogenase, phosphoglucomutase, isocitrate dehydrogenase, and α-glycerophosphate dehydrogenase. Isozyme phenotypes were obtained from single mature females by isoelectric focusing electrophoresis. Of these five isozymes, only esterase and phosphoglucomutase could be used to separate all five Meloidogyne spp.; however, the single esterase electromorphs were similar for M. incognita and M. hapla. Yet when both nematodes were run on the same gel, differences in their esterase phenotypes were detectable. Isozyme phenotypes from the other three isozymes revealed a great deal of similarity among M. incognita, M. javanica, M. arenaria, and the undescribed Meloidogyne sp.  相似文献   

6.
The host-parasite relationships of asparagus and Meloidogyne spp. were examined under greenhouse and microplot conditions. Meloidogyne species and races differed greatly in their ability to reproduce on asparagus seedlings. Meloidogyne hapla generally failed to reproduce, and M. javanica, M. arenaria race 1, and M. incognita race 3 reproduced poorly, with a reproduction factor (Rf = final population/initial population) usually < 1.0. Only M. arenaria race 2 and M. incognita races 1 and 4 reproduced consistently on all asparagus cultivars tested (Rf typically 1-11). No effect of M. incognita race 4 on host growth was detected. Meloidogyne arenaria race 2 and M. incognita race 1 had slight negative effects (5-10%) on plant and root growth.  相似文献   

7.
In a greenhouse pot experiment on the pathogenicity and interactions of Meloidogyne incognita, M. hapla and Pratylenchus brachyurus on four cultivars o f tobacco the cultivars ''Hicks'' and ''NC 2326'' were susceptible to each nematode and "NC 95'' and ''NC 2512'' resistant only to M. incognita.Mean heights of susceptible plants were depressed but fresh weight of tops did not differ significantly. Meloidogyne spp. increased fresh weight of susceptible (but not the resistant) roots.Reproduction of M. incognita was decreased in the presence of P. brachyurus in one case. M. hapla reproduction was less with either of the other nematodes in five out of eight cases. In 12 combinations involving P. brachyurus, reproduction of this species was depressed in seven, not affected in four and increased in one.Mechanisms involved in associative interactions were not identified but appeared to be indirect and to involve individual host-nematode responses.  相似文献   

8.
Meloidogyne incognita and Meloidogyne arenaria are important parasitic nematodes of vegetable and ornamental crops. Microplot and greenhouse experiments were conducted to test commercial formulations of the biocontrol agent Pasteuria penetrans for control of M. incognita on tomato and cucumber and M. arenaria on snapdragon. Three methods of application for P. penetrans were assessed including seed, transplant, and post-plant treatments. Efficacy in controlling galling and reproduction of the two root-knot nematode species was evaluated. Seed treatment application was assessed only for M. incognita on cucumber. Pasteuria treatment rates of a granular transplant formulation ranged from 1.5 × 105 endospores/cm3 to 3 × 105 endospores/cm3 of transplant mix applied at seeding. Additional applications of 1.5 × 105 endospores/cm3 of soil were applied as a liquid formulation to soil post-transplant for both greenhouse and microplot trials. In greenhouse cucumber trials, all Pasteuria treatments were equivalent to steamed soil for reducing M. incognita populations in roots and soil, and reducing nematode reproduction and galling. In cucumber microplot trials there were no differences among treatments for M. incognita populations in roots or soil, eggs/g root, or root condition ratings. Nematode reproduction on cucumber was low with Telone II and with the seed treatment plus post-plant application of Pasteuria, which had the lowest nematode reproduction. However, galling for all Pasteuria treatments was higher than galling with Telone II. Root-knot nematode control with Pasteuria in greenhouse and microplot trials varied on tomato and snapdragon. Positive results were achieved for control of M. incognita with the seed treatment application on cucumber.  相似文献   

9.
The host suitability of five zucchini and three cucumber genotypes to Meloidogyne incognita (MiPM26) and M. javanica (Mj05) was determined in pot experiments in a greenhouse. The number of egg masses (EM) did not differ among the genotypes of zucchini or cucumber, but the eggs/plant and reproduction factor (Rf) did slightly. M. incognita MiPM26 showed lower EM, eggs/plant, and Rf than M. javanica Mj05. Examination of the zucchini galls for nematode postinfection development revealed unsuitable conditions for M. incognita MiPM26 as only 22% of the females produced EM compared to 95% of the M. javanica females. As far as cucumber was concerned, 86% of the M. incognita and 99% of the M. javanica females produced EM, respectively. In a second type of experiments, several populations of M. arenaria, M. incognita, and M. javanica were tested on zucchini cv. Amalthee and cucumber cv. Dasher II to assess the parasitic variation among species and populations of Meloidogyne. A greater parasitic variation was observed in zucchini than cucumber. Zucchini responded as a poor host for M. incognita MiPM26, MiAL09, and MiAL48, but as a good host for MiAL10 and MiAL15. Intraspecific variation was not observed among the M. javanica or M. arenaria populations. Cucumber was a good host for all the tested populations. Overall, both cucurbits were suitable hosts for Meloidogyne but zucchini was a poorer host than the cucumber.  相似文献   

10.
Research was initiated to physically characterize the mitochondrial genomes of several Meloidogyne spp. and host-races, to address questions regarding their systematics and dispersal, and to assess the possibility of developing molecular diagnostics for these nematodes. Techniques were developed for purification and rapid detection of mitochondrial DNA from root-knot nematodes. Mitochondrial DNAs among Meloidogyne spp. were demonstrated to exhibit extensive divergence. The potential for using the rapidly diverging mitochondrial genomes as a diagnostic assay for M. incognita, M. hapla, M. arenaria, and M. javanica is discussed.  相似文献   

11.
Fluensulfone is a new nematicide in the flouroalkenyl chemical group. A field experiment was conducted in 2012 and 2013 to evaluate the efficacy of various application methods of fluensulfone for control of Meloidogyne spp. in cucumber (Cucumis sativus). Treatments of fluensulfone (3.0 kg a.i./ha) were applied either as preplant incorporation (PPI) or via different drip irrigation methods: drip without pulse irrigation (Drip NP), pulse irrigation 1 hr after treatment (Drip +1P), and treatment at the same time as pulse irrigation (Drip =P). The experiment had eight replications per treatment and also included a PPI treatment of oxamyl (22.5 kg a.i./ha) and a nontreated control. Compared to the control, neither the oxamyl nor the fluensulfone PPI treatments reduced root galling by Meloidogyne spp. in cucumber. Among the drip treatments, Drip NP and Drip +1P reduced root galling compared to the control. Cucumber yield was greater in all fluensulfone treatments than in the control. In a growth-chamber experiment, the systemic activity and phytotoxicity of fluensulfone were also evaluated on tomato (Solanum lycopersicum), eggplant (Solanum melongena), cucumber, and squash (Curcurbita pepo). At the seedling stage, foliage of each crop was sprayed with fluensulfone at 3, 6, and 12 g a.i./liter, oxamyl at 4.8 g a.i./liter, or water (nontreated control). Each plant was inoculated with Meloidogyne incognita juveniles 2 d after treatment. There were six replications per treatment and the experiment was conducted twice. Foliar applications of fluensulfone reduced plant vigor and dry weight of eggplant and tomato, but not cucumber or squash; application of oxamyl had no effect on the vigor or weight of any of the crops. Typically, only the highest rate of fluensulfone was phytotoxic to eggplant and tomato. Tomato was the only crop tested in which there was a reduction in the number of nematodes or galls when fluensulfone or oxamyl was applied to the foliage compared to the nontreated control. This study demonstrates that control of Meloidogyne spp. may be obtained by drip and foliar applications of fluensulfone; however, the systemic activity of fluensulfone is crop specific and there is a risk of phytotoxicity with foliar applications.  相似文献   

12.
The rates of soybean root penetration by freshly hatched second-stage juveniles (J2) of Meloidogyne arenaria, M. hapla, M. incognita, M. javanica, and Heterodera glycines races 1 and 5 were examined over a period of 1 to 240 hours. Heterodera glycines entered roots more quickly than Meloidogyne spp. Penetration by most nematodes was accomplished within 48 hours. The increases in penetration after 48 hours were insufficient to warrant further assessments. Penetration of J2 into roots of soybean seedfings in a styrofoam container was as good or better than in a clay pot. Thus, rapid and accurate root-penetration assessments can be made at 48 hours after inoculation.  相似文献   

13.
Isolates of Pasteuria penetrans were evaluated for ecological characteristics that are important in determining their potential as biological control agents. Isolate P-20 survived without loss of its ability to attach to its host nematode in dry, moist, and wet soil and in soil wetted and dried repeatedly for 6 weeks. Some spores moved 6.4 cm (the maximum distance tested) downward in soil within 3 days with percolating water. The isolates varied greatly in their attachment to different nematode species and genera. Of five isolates tested in spore-infested soil, three (P-104, P-122, B-3) attached to two or more nematode species, whereas B-8 attached only to Meloidogyne hapla and B-I did not attach to any of the nematodes tested. In water suspensions, spores of isolate P-20 attached readily to M. arenaria but only a few spores attached to other Meloidogyne spp. Isolate P-104 attached to all Meloidogyne spp. tested but not to Pratylenchus scribneri. Isolate B-4 attached to all species of Meloidogyne and Pratylenchus tested, but the rate of attachment was relatively low. Isolate P-Z00 attached in high numbers to M. arenaria when spores were extracted from females of this nematode; when extracted from M. javanica females, fewer spores attached to M. arenaria than to M. javanica or M. incognita.  相似文献   

14.
Treatment of second-stage juveniles (J2) of Meloidogyne incognita race 1 and M. javanica with soybean agglutinin, Concanavalin A, wheat germ agglutinin, Lotus tetragonolobus agglutinin, or Limax flavus agglutinin or the corresponding competitive sugars for each of these lectins did not alter normal root tissue response of soybean cultivars Centennial and Pickett 71 to infection by M. incognita race 1 or M. javanica. Giant cells were frequently induced in Centennial and Pickett 71 roots 5 and 20 days after inoculation of roots with untreated J2 of a population of M. incognita race 3. Treatment of J2 of M. incognita race 3 with the lectins or carbohydrates listed above caused Centennial, but not Pickett 71, root tissue to respond in a hypersensitive manner to infection by M. incognita race 3. Penetration of soybean roots by J2 of Meloidogyne spp. was strongly inhibited in the presence of 0.1 M sialic acid. Treatment of J2 with sialic acid was not lethal to nematodes, and the inhibitory activity of sialic acid was apparently not caused by low pH. These results suggest that carbohydrates may influence plant-nematode interactions.  相似文献   

15.
Tomato (Solanum lycopersicum L.) is among the most valuable agricultural products, but Meloidogyne spp. (root-knot nematode) infestations result in serious crop losses. In tomato, resistance to root-knot nematodes is controlled by the gene Mi-1, but heat stress interferes with Mi-1-associated resistance. Inconsistent results in published field and greenhouse experiments led us to test the effect of short-term midday heat stress on tomato susceptibility to Meloidogyne incognita race 1. Under controlled day/night temperatures of 25°C/21°C, ‘Amelia’, which was verified as possessing the Mi-1 gene, was deemed resistant (4.1 ± 0.4 galls/plant) and Rutgers, which does not possess the Mi-1 gene, was susceptible (132 ± 9.9 galls/plant) to M. incognita infection. Exposure to a single 3 hr heat spike of 35°C was sufficient to increase the susceptibility of ‘Amelia’ but did not affect Rutgers. Despite this change in resistance, Mi-1 gene expression was not affected by heat treatment, or nematode infection. The heat-induced breakdown of Mi-1 resistance in ‘Amelia’ did recover with time regardless of additional heat exposures and M. incognita infection. These findings would aid in the development of management strategies to protect the tomato crop at times of heightened M. incognita susceptibility.  相似文献   

16.
17.
Free and esterified sterols of eggs of the root-knot nematodes Meloidogyne incognita races 2 and 3 and M. arenaria race 1 were isolated and identified by gas-liquid chromatography-mass spectrometry. The major sterols of eggs of each race were 24-ethylcholesterol (33.4-38.8% of total sterol), 24-ethylcholestanol (18.3-25.3%), 24-methylcholesterol (8.6-11.7%), 24-methylcholestanol (7.7-12.5%), and cholesterol (4.6-11.6%). Consequently, the major metabolic transformation performed by Meloidogyne females or eggs upon host sterols appeared to be saturation of the sterol nucleus. The free and esterified sterols of the same race did not differ appreciably, except for a slight enrichment of the steryl esters in cholesterol. Although the sterol composition of Meloidogyne eggs differed from that of other life stages of other genera of plant-parasitic nematodes, the three Meloidogyne races could not be distinguished from each other by their egg sterols. Ecdysteroids, compounds with hormonal function in insects, were not detected by radioimmunoassay in the Meloidogyne eggs either as free ecdysteroids or as polar conjugates.  相似文献   

18.
In autoclaved greenhouse soil without Fusarium oxysporum f. sp. vasinfectum, Meloidogyne incognita did not cause leaf or vascular discoloration of 59-day-old cotton plants. Plants had root galls with as few as 50 Meloidogyne larvae per plant. Root galling was directly proportional to the initial nematode population level. Fusarium wilt symptoms occurred without nematodes with 77,000 fungus propagules or more per gram of soil. As few as 50 Meloidogyne larvae accompanying 650 fungus propagules caused Fusarium wilt. With few exceptions, leaf symptoms appeared sooner as numbers of either or both organisms increased. In soils infested with both organisms, the extent of fungal invasion and colonization was well correlated with the extent of nematode galling and other indications of the Fusarium wilt syndrome.  相似文献   

19.
Between 1974 and 1978, 2,842 identifications of plant-parasitic nematodes were made from more than 1,700 soil and plant samples collected in eight provinces of South Viet Nam. Species in nine genera—Helicotylenchus, Criconemoides, Meloidogyne, Pratylenchus, Tylenchorhynchus, Hoplolaimus, Hirschmanniella, Xiphinema, and Rotylenchulus—comprised 96.1% of the identifications; the remaining 3.9% were species of 11 genera. Fourteen genera were associated with rice which was grown on about 2,500,000 ha in 1970. Of these, Ditylenchus, Hirschmanniella, and Meloidogyne were most important. Ditylenchus angustus caused severe damage to about 50,000 ha of flooded rice in the Mekong Delta in 1976. Hirschmanniella spp. were found in all samples examined from flooded rice fields. Meloidogyne spp. were common in rice seedbeds, upland rice, and rice not kept flooded continuously. Meloidogyne and Pratylenchus spp. were found in roots of 22 of the 32 crop plants sampled. Little or no attempt was made in South Viet Nam to control nematodes.  相似文献   

20.
Use of resistant Phaseolus vulgaris germplasm has a potential role in limiting damaging effects of Meloidogyne spp. on bean production. Effects of two genetic resistance systems in common bean germptasm on penetration and development of Meloidogyne spp. were studied under growth room conditions at 22°C to 25°C. Nemasnap (gene system 1) and G1805 (gene system 2) were inoculated with second-stage juveniles (J2) of M. incognita race 2 and M. arenaria race 1, respectively; Black Valentine was used as the susceptible control. Up to 7 days after inoculation, there were no differences in numbers of M. incognita J2 penetrating roots of Black Valentine and Nemasnap; subsequently, more nematodes were present in Black Valentine roots (P < 0.05). More nematodes reached advanced stages of development in Black Valentine than in Nemasnap roots (P < 0.05). Total numbers of M. arenaria were greater in Black Valentine than in G 1805 roots from 14 days after inoculation (P < 0.05). Advanced stages of development occurred earlier and in greater numbers in Black Valentine plants than in G1805 plants. In these studies, resistance to M. incognita race 2 and M. arenaria race 1 in bean germplasm, which contain gene system 1 and gene system 2, respectively, was expressed by delayed nematode development rather than by differential penetration compared with susceptible plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号