首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The pathogen Pseudomonas syringae requires a type‐III protein secretion system and the effector proteins it injects into plant cells for pathogenesis. The primary role for P. syringae type‐III effectors is the suppression of plant immunity. The P. syringae pv. tomato DC3000 HopK1 type‐III effector was known to suppress the hypersensitive response (HR), a programmed cell death response associated with effector‐triggered immunity. Here we show that DC3000 hopK1 mutants are reduced in their ability to grow in Arabidopsis, and produce reduced disease symptoms. Arabidopsis transgenically expressing HopK1 are reduced in PAMP‐triggered immune responses compared with wild‐type plants. An N‐terminal region of HopK1 shares similarity with the corresponding region in the well‐studied type‐III effector AvrRps4; however, their C‐terminal regions are dissimilar, indicating that they have different effector activities. HopK1 is processed in planta at the same processing site found in AvrRps4. The processed forms of HopK1 and AvrRps4 are chloroplast localized, indicating that the shared N‐terminal regions of these type‐III effectors represent a chloroplast transit peptide. The HopK1 contribution to virulence and the ability of HopK1 and AvrRps4 to suppress immunity required their respective transit peptides, but the AvrRps4‐induced HR did not. Our results suggest that a primary virulence target of these type‐III effectors resides in chloroplasts, and that the recognition of AvrRps4 by the plant immune system occurs elsewhere. Moreover, our results reveal that distinct type‐III effectors use a cleavable transit peptide to localize to chloroplasts, and that targets within this organelle are important for immunity.  相似文献   

2.
Several effectors from phytopathogens usually target various cell organelles to interfere with plant defenses, and they generally contain sequences that direct their translocation into organelles, such as chloroplasts. In this study, we characterized a different mechanism for effectors to attack chloroplasts in wheat (Triticum aestivum). Two effectors from Puccinia striiformis f. sp. tritici (Pst), Pst_4, and Pst_5, inhibit Bax-mediated cell death and plant immune responses, such as callose deposition and reactive oxygen species (ROS) accumulation. Gene silencing of the two effectors induced significant resistance to Pst, demonstrating that both effectors function as virulence factors of Pst. Although these two effectors have low sequence similarities and lack chloroplast transit peptides, they both interact with TaISP (wheat cytochrome b6–f complex iron–sulfur subunit, a chloroplast protein encoded by nuclear gene) in the cytoplasm. Silencing of TaISP impaired wheat resistance to avirulent Pst and resulted in less accumulation of ROS. Heterogeneous expression of TaISP enhanced chloroplast-derived ROS accumulation in Nicotiana benthamiana. Co-localization in N. benthamiana and western blot assay of TaISP content in wheat chloroplasts show that both effectors suppressed TaISP from entering chloroplasts. We conclude that these biotrophic fungal effectors suppress plant defenses by disrupting the sorting of chloroplast protein, thereby limiting host ROS accumulation and promoting fungal pathogenicity.

Despite the lack of chloroplast transit peptide, rust effectors affect chloroplast-mediated defenses by suppressing import of host Fe–S protein to chloroplast to promote pathogenicity of stripe rust.  相似文献   

3.
Fungi of the Pucciniales order cause rust diseases which, altogether, affect thousands of plant species worldwide and pose a major threat to several crops. How rust effectors—virulence proteins delivered into infected tissues to modulate host functions—contribute to pathogen virulence remains poorly understood. Melampsora larici‐populina is a devastating and widespread rust pathogen of poplar, and its genome encodes 1184 identified small secreted proteins that could potentially act as effectors. Here, following specific criteria, we selected 16 candidate effector proteins and characterized their virulence activities and subcellular localizations in the leaf cells of Arabidopsis thaliana. Infection assays using bacterial (Pseudomonas syringae) and oomycete (Hyaloperonospora arabidopsidis) pathogens revealed subsets of candidate effectors that enhanced or decreased pathogen leaf colonization. Confocal imaging of green fluorescent protein‐tagged candidate effectors constitutively expressed in stable transgenic plants revealed that some protein fusions specifically accumulate in nuclei, chloroplasts, plasmodesmata and punctate cytosolic structures. Altogether, our analysis suggests that rust fungal candidate effectors target distinct cellular components in host cells to promote parasitic growth.  相似文献   

4.
Enteropathogenic Escherichia coli (EPEC) strains are diarrhoeal pathogens that use a type III secretion system to translocate effector proteins into host cells in order to colonize and multiply in the human gut. Map, EspI and NleH1 are conserved EPEC effectors that possess a C‐terminal class I PSD‐95/Disc Large/ZO‐1 (PDZ)‐binding motif. Using a PDZ array screen we identified Na+/H+ exchanger regulatory factor 2 (NHERF2), a scaffold protein involved in tethering and recycling ion channels in polarized epithelia that contains two PDZ domains, as a common target of Map, EspI and NleH1. Using recombinant proteins and co‐immunoprecipitation we confirmed that NHERF2 binds each of the effectors. We generated a HeLa cell line stably expressing HA‐tagged NHERF2 and found that Map, EspI and NleH1 colocalize and interact with intracellular NHERF2 via their C‐terminal PDZ‐binding motif. Overexpression of NHERF2 enhanced the formation and persistence of Map‐induced filopodia, accelerated the trafficking of EspI to the Golgi and diminished the anti‐apoptotic activity of NleH1. The binding of multiple T3SS effectors to a single scaffold protein is unique. Our data suggest that NHERF2 may act as a plasma membrane sorting site, providing a novel regulatory mechanism to control the intracellular spatial and temporal effector protein activity.  相似文献   

5.
Pseudomonas syringae utilizes the type III secretion system to translocate effector proteins into plant cells, where they can contribute to the pathogen's ability to infect and cause disease. Recognition of these effectors by resistance proteins induces defense responses that typically include a programmed cell death reaction called the hypersensitive response. The YopJ/HopZ family of type III effector proteins is a common family of effector proteins found in animal- and plant-pathogenic bacteria. The HopZ family in P. syringae includes HopZ1a(PsyA2), HopZ1b(PgyUnB647), HopZ1c(PmaE54326), HopZ2(Ppi895A) and HopZ3(PsyB728a). HopZ1a is predicted to be most similar to the ancestral hopZ allele and causes a hypersensitive response in multiple plant species, including Arabidopsis thaliana. Therefore, it has been proposed that host defense responses have driven the diversification of this effector family. In this study, we further characterized the hypersensitive response induced by HopZ1a and demonstrated that it is not dependent on known resistance genes. Further, we identified a novel virulence function for HopZ2 that requires the catalytic cysteine demonstrated to be required for protease activity. Sequence analysis of the HopZ family revealed the presence of a predicted myristoylation sequence in all members except HopZ3. We demonstrated that the myristoylation site is required for membrane localization of this effector family and contributes to the virulence and avirulence activities of HopZ2 and HopZ1a, respectively. This paper provides insight into the selective pressures driving virulence protein evolution by describing a detailed functional characterization of the diverse HopZ family of type III effectors with the model plant Arabidopsis.  相似文献   

6.
Over the past decade various approaches have been used to increase the expression level of recombinant proteins in plants. One successful approach has been to target proteins to specific subcellular sites/compartments of plant cells, such as the chloroplast. In the study reported here, hyperthermostable endoglucanase Cel5A was targeted into the chloroplasts of tobacco plants via the N-terminal transit peptide of nuclear-encoded plastid proteins. The expression levels of Cel5A transgenic lines were then determined using three distinct transit peptides, namely, the light-harvesting chlorophyll a/b-binding protein (CAB), Rubisco small subunit (RS), and Rubisco activase (RA). RS:Cel5A transgenic lines produced highly stable active enzymes, and the protein accumulation of these transgenic lines was up to 5.2% of the total soluble protein in the crude leaf extract, remaining stable throughout the life cycle of the tobacco plant. Transmission election microscopy analysis showed that efficient targeting of Cel5A protein was under the control of the transit peptide.  相似文献   

7.
Recent studies have identified that proteinaceous effectors secreted by Parastagonospora nodorum are required to cause disease on wheat. These effectors interact in a gene‐for‐gene manner with host‐dominant susceptibilty loci, resulting in disease. However, whilst the requirement of these effectors for infection is clear, their mechanisms of action remain poorly understood. A yeast‐two‐hybrid library approach was used to search for wheat proteins that interacted with the necrotrophic effector SnTox3. Using this strategy we indentified an interaction between SnTox3 and the wheat pathogenicity‐related protein TaPR‐1‐1, and confirmed it by in‐planta co‐immunprecipitation. PR‐1 proteins represent a large family (23 in wheat) of proteins that are upregulated early in the defence response; however, their function remains ellusive. Interestingly, the P. nodorum effector SnToxA has recently been shown to interact specifically with TaPR‐1‐5. Our analysis of the SnTox3–TaPR‐1 interaction demonstrated that SnTox3 can interact with a broader range of TaPR‐1 proteins. Based on these data we utilised homology modeling to predict, and validate, regions on TaPR‐1 proteins that are likely to be involved in the SnTox3 interaction. Precipitating from this work, we identified that a PR‐1‐derived defence signalling peptide from the C‐terminus of TaPR‐1‐1, known as CAPE1, enhanced the infection of wheat by P. nodorum in an SnTox3‐dependent manner, but played no role in ToxA‐mediated disease. Collectively, our data suggest that P. nodorum has evolved unique effectors that target a common host‐protein involved in host defence, albeit with different mechanisms and potentially outcomes.  相似文献   

8.
Rohmer L  Guttman DS  Dangl JL 《Genetics》2004,167(3):1341-1360
Many gram-negative pathogenic bacteria directly translocate effector proteins into eukaryotic host cells via type III delivery systems. Type III effector proteins are determinants of virulence on susceptible plant hosts; they are also the proteins that trigger specific disease resistance in resistant plant hosts. Evolution of type III effectors is dominated by competing forces: the likely requirement for conservation of virulence function, the avoidance of host defenses, and possible adaptation to new hosts. To understand the evolutionary history of type III effectors in Pseudomonas syringae, we searched for homologs to 44 known or candidate P. syringae type III effectors and two effector chaperones. We examined 24 gene families for distribution among bacterial species, amino acid sequence diversity, and features indicative of horizontal transfer. We assessed the role of diversifying and purifying selection in the evolution of these gene families. While some P. syringae type III effectors were acquired recently, others have evolved predominantly by descent. The majority of codons in most of these genes were subjected to purifying selection, suggesting selective pressure to maintain presumed virulence function. However, members of 7 families had domains subject to diversifying selection.  相似文献   

9.
胥华伟  侯典云 《植物学报》2018,53(2):264-275
植物细胞中叶绿体的功能主要依赖于叶绿体蛋白, 大部分叶绿体蛋白由核基因组编码, 在细胞质中合成并经过正确的分选后, 通过叶绿体外膜上的Toc复合体和/或内膜上的Tic复合体转运到叶绿体的不同部位。该文主要综述可能参与叶绿体蛋白分选的胞质因子以及Toc和Tic组分如何参与叶绿体蛋白转运的研究进展。  相似文献   

10.
Bacterial pathogens employ the type III secretion system to secrete and translocate effector proteins into their hosts. The primary function of these effector proteins is believed to be the suppression of host defence responses or innate immunity. However, some effector proteins may be recognized by the host and consequently trigger a targeted immune response. The YopJ/HopZ/AvrRxv family of bacterial effector proteins is a widely distributed and evolutionarily diverse family, found in both animal and plant pathogens, as well as plant symbionts. How can an effector family effectively promote the virulence of pathogens on hosts from two separate kingdoms? Our understanding of the evolutionary relationships among the YopJ superfamily members provides an excellent opportunity to address this question and to investigate the functions and virulence strategies of a diverse type III effector family in animal and plant hosts. In this work, we briefly review the literature on YopJ, the archetypal member from Yersinia pestis, and discuss members of the superfamily in species of Pseudomonas, Xanthomonas, Ralstonia and Rhizobium. We review the molecular and cellular functions, if known, of the YopJ homologues in plants, and highlight the diversity of responses in different plant species, with a particular focus on the Pseudomonas syringae HopZ family. The YopJ superfamily provides an excellent foundation for the study of effector diversification in the context of wide‐ranging, co‐evolutionary interactions.  相似文献   

11.
Only few fungal effectors have been described to be delivered into the host cell during obligate biotrophic interactions. RTP1p, from the rust fungi Uromyces fabae and U. striatus, was the first fungal protein for which localization within the host cytoplasm could be demonstrated directly. We investigated the occurrence of RTP1 homologues in rust fungi and examined the structural and biochemical characteristics of the corresponding gene products. The analysis of 28 homologues showed that members of the RTP family are most likely to occur ubiquitously in rust fungi and to be specific to the order Pucciniales. Sequence analyses indicated that the structure of the RTPp effectors is bipartite, consisting of a variable N‐terminus and a conserved and structured C‐terminus. The characterization of Uf‐RTP1p mutants showed that four conserved cysteine residues sustain structural stability. Furthermore, the C‐terminal domain exhibits similarities to that of cysteine protease inhibitors, and it was shown that Uf‐RTP1p and Us‐RTP1p are able to inhibit proteolytic activity in Pichia pastoris culture supernatants. We conclude that the RTP1p homologues constitute a rust fungi‐specific family of modular effector proteins comprising an unstructured N‐terminal domain and a structured C‐terminal domain, which exhibit protease inhibitory activity possibly associated with effector function during biotrophic interactions.  相似文献   

12.
Puccinia triticina causes leaf rust, a disease that causes annual yield losses in wheat. It is an obligate parasite that invades the host leaf and forms intracellular structures called haustoria, which obtain nutrients and suppress host immunity using secreted proteins called effectors. Since effector proteins act at the frontier between plant and pathogen and help determine the outcome of the interaction, it is critical to understand their functions. Here, we used a direct proteomics approach to identify effector candidates from P. triticina Race 1 haustoria isolated with a specific monoclonal antibody. Haustoria were >95% pure and free of host contaminants. Using high resolution MS we have identified 1192 haustoria proteins. These were quantified using normalized spectral counts and spanned a dynamic range of three orders of magnitude, with unknown proteins and metabolic enzymes as the most highly represented. The dataset contained 140 candidate effector proteins, based on the presence of a signal peptide and the absence of a known function for the protein. Some of these candidates were significantly enriched with cysteine, with up to 13 residues per protein and up to 6.8% cysteine in composition.  相似文献   

13.
14.
15.
Pathogens deploy effector proteins that interact with host proteins to manipulate the host physiology to the pathogen's own benefit. However, effectors can also be recognized by host immune proteins, leading to the activation of defence responses. Effectors are thus essential components in determining the outcome of plant–pathogen interactions. Despite major efforts to decipher effector functions, our current knowledge on effector biology is scattered and often limited. In this study, we conducted two systematic large-scale yeast two-hybrid screenings to detect interactions between Arabidopsis thaliana proteins and effectors from two vascular bacterial pathogens: Ralstonia pseudosolanacearum and Xanthomonas campestris. We then constructed an interactomic network focused on Arabidopsis and effector proteins from a wide variety of bacterial, oomycete, fungal, and invertebrate pathogens. This network contains our experimental data and protein–protein interactions from 2,035 peer-reviewed publications (48,200 ArabidopsisArabidopsis and 1,300 Arabidopsis–effector protein interactions). Our results show that effectors from different species interact with both common and specific Arabidopsis interactors, suggesting dual roles as modulators of generic and adaptive host processes. Network analyses revealed that effector interactors, particularly “effector hubs” and bacterial core effector interactors, occupy important positions for network organization, as shown by their larger number of protein interactions and centrality. These interactomic data were incorporated in EffectorK, a new graph-oriented knowledge database that allows users to navigate the network, search for homology, or find possible paths between host and/or effector proteins. EffectorK is available at www.effectork.org and allows users to submit their own interactomic data.  相似文献   

16.
Over the last 40 years, new sunflower downy mildew isolates (Plasmopara halstedii) have overcome major gene resistances in sunflower, requiring the identification of additional and possibly more durable broad‐spectrum resistances. Here, 354 RXLR effectors defined in silico from our new genomic data were classified in a network of 40 connected components sharing conserved protein domains. Among 205 RXLR effector genes encoding conserved proteins in 17 P. halstedii pathotypes of varying virulence, we selected 30 effectors that were expressed during plant infection as potentially essential genes to target broad‐spectrum resistance in sunflower. The transient expression of the 30 core effectors in sunflower and in Nicotiana benthamiana leaves revealed a wide diversity of targeted subcellular compartments, including organelles not so far shown to be targeted by oomycete effectors such as chloroplasts and processing bodies. More than half of the 30 core effectors were able to suppress pattern‐triggered immunity in N. benthamiana, and five of these induced hypersensitive responses (HR) in sunflower broad‐spectrum resistant lines. HR triggered by PhRXLRC01 co‐segregated with Pl22 resistance in F3 populations and both traits localized in 1.7 Mb on chromosome 13 of the sunflower genome. Pl22 resistance was physically mapped on the sunflower genome recently sequenced, unlike all the other downy mildew resistances published so far. PhRXLRC01 and Pl22 are proposed as an avirulence/resistance gene couple not previously described in sunflower. Core effector recognition is a successful strategy to accelerate broad‐spectrum resistance gene identification in complex crop genomes such as sunflower.  相似文献   

17.
The type III secretion system (TTSS) is an essential requirement for the virulence of many Gram-negative bacteria infecting plants, animals and man. Pathogens use the TTSS to deliver effector proteins from the bacterial cytoplasm to the eukaryotic host cell, where the effectors subvert host defences. Plant pathogens have to translocate their effector proteins through the plant cell wall barrier. The best candidates for directing effector protein traffic are bacterial appendages attached to the membrane-bound components of the TTSS. We have investigated the protein secretion route in relation to the TTSS appendage, termed the Hrp pilus, of the plant pathogen Pseudomonas syringae pv. tomato. By pulse expression of proteins combined with immunoelectron microscopy, we show that the Hrp pilus elongates by the addition of HrpA pilin subunits at the distal end, and that the effector protein HrpZ is secreted only from the pilus tip. Our results indicate that both HrpA and HrpZ travel through the Hrp pilus, which functions as a conduit for the long-distance translocation of effector proteins.  相似文献   

18.
While yeast has been extensively used as a model system for analysing protein–protein and genetic interactions, in the context of bacterial pathogenesis, the use of yeast‐based tools has largely been limited to identifying interactions between pathogen effectors and host targets. In their recent work, Ensminger and colleagues (Urbanus et al, 2016 ) use the combinatorial power of yeast genetics to systematically screen all known Legionella pneumophila effector proteins for effector–effector interactions. They provide new insights into how bacterial effectors balance host cell perturbation and describe mechanisms used by “meta‐effectors” to directly modulate target effector activity.  相似文献   

19.
Type III secretion systems are used by many Gram‐negative pathogens to directly deliver effector proteins into the cytoplasm of host cells. To accomplish this, bacteria secrete translocator proteins that form a pore in the host‐cell membrane through which the effector proteins are then introduced into the host cell. Evidence from multiple systems indicates that the pore‐forming translocator proteins are exported before effectors, but how this secretion hierarchy is established is unclear. Here we used the Pseudomonas aeruginosa translocator protein PopD as a model to identify its export signals. The N‐terminal secretion signal and chaperone, PcrH, are required for export under all conditions. Two novel signals in PopD, one proximal to the chaperone binding site and one at the very C‐terminus of the protein, are required for export of PopD before effector proteins. These novel export signals establish the translocator–effector secretion hierarchy, which in turn, is critical for the delivery of effectors into host cells.  相似文献   

20.
Many Gram‐negative bacteria use a type III secretion system (T3SS) to establish associations with their hosts. The T3SS is a conduit for direct injection of type‐III effector proteins into host cells, where they manipulate the host for the benefit of the infecting bacterium. For plant‐associated pathogens, the variations in number and amino acid sequences of type‐III effectors, as well as their functional redundancy, make studying type‐III effectors challenging. To mitigate this challenge, we developed a stable delivery system for individual or defined sets of type‐III effectors into plant cells. We used recombineering and Tn5‐mediated transposition to clone and stably integrate, respectively, the complete hrp/hrc region from Pseudomonas syringae pv. syringae 61 into the genome of the soil bacterium Pseudomonas fluorescens Pf0‐1. We describe our development of Effector‐to‐Host Analyzer (EtHAn), and demonstrate its utility for studying effectors for their in planta functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号