首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Growth, osmotic adjustment, antioxidant enzyme defense and the principle medicinal component bacoside A were studied in the in vitro raised shoot cultures of Bacopa monnieri, a known medicinal plant, under different concentrations of NaCl [0.0 (control), 50, 100, 150 or 200 mM]. A sharp increase in Na+ content was observed at 50 mM NaCl level and it was about 6.4-fold higher when compared with control. While Na+ content increased in the shoots with increasing levels of NaCl in the medium, both K+ and Ca2+ concentrations decreased. Significant reduction was observed in shoot number per culture; shoot length, fresh weight (FW), dry weight (DW) and tissue water content (TWC) when shoots were exposed to increasing NaCl concentrations (50–200 mM) as compared with the control. Decrease in TWC was not significant at higher NaCl level (150 and 200 mM). At 200 mM NaCl, growth of shoots was adversely affected and microshoots died under prolonged stress. Minimum damage to the membrane as assessed by malondialdehyde (MDA) content was noticed in the controls in contrast to sharp increase of it in NaCl-stressed shoots. Higher amounts of free proline, glycinebetaine and total soluble sugars (TSS) accumulated in NaCl-stressed shoots indicating that it is a glycinebetaine accumulator. About 2.11-fold higher H2O2 content was observed at 50 mM NaCl as compared with control and it reached up to 7.1-folds more at 200 mM NaCl. Antioxidant enzyme activities (superoxide dismutase, catalase, ascorbate peroxidase and guaiacol peroxidase) also increased with a rise in NaCl level. Increase in bacoside A, a triterpene saponin content was observed only up to 100 mM NaCl level. Higher salt concentrations inhibited the accumulation of bacoside A. It appears from the data that accumulation of osmolytes, ions and elevated activities of antioxidant enzymes play an important role in osmotic adjustment in shoot cultures of Bacopa under salt stress.  相似文献   

2.
The halotolerant cyanobacterium Anabaena sp was grown under NaCl concentration of 0, 170 and 515 mM and physiological and proteomic analysis was performed. At 515 mM NaCl the cyanobacterium showed reduced photosynthetic activities and significant increase in soluble sugar content, proline and SOD activity. On the other hand Anabaena sp grown at 170 mM NaCl showed optimal growth, photosynthetic activities and comparatively low soluble sugar content, proline accumulation and SOD activity. The intracellular Na+ content of the cells increased both at 170 and 515 mM NaCl. In contrast, the K+ content of the cyanobacterium Anabaena sp remained stable in response to growth at identical concentration of NaCl. While cells grown at 170 mM NaCl showed highest intracellular K+/Na+ ratio, salinity level of 515 mM NaCl resulted in reduced ratio of K+/Na+. Proteomic analysis revealed 50 salt-responsive proteins in the cyanobacterium Anabaena sp under salt treatment compared with control. Ten protein spots were subjected to MALDI-TOF–MS/MS analysis and the identified proteins are involved in photosynthesis, protein folding, cell organization and energy metabolism. Differential expression of proteins related to photosynthesis, energy metabolism was observed in Anabaena sp grown at 170 mM NaCl. At 170 mM NaCl increased expression of photosynthesis related proteins and effective osmotic adjustment through increased antioxidant enzymes and modulation of intracellular ions contributed to better salinity tolerance and optimal growth. On the contrary, increased intracellular Na+ content coupled with down regulation of photosynthetic and energy related proteins resulted in reduced growth at 515 mM NaCl. Therefore reduced growth at 515 mM NaCl could be due to accumulation of Na+ ions and requirement to maintain higher organic osmolytes and antioxidants which is energy intensive. The results thus show that the basis of salt tolerance is different when the halotolerant cyanobacterium Anabaena sp is grown under low and high salinity levels.  相似文献   

3.
Suaeda fruticosa Forssk is a leaf succulent obligate halophyte that produces numerous seeds under saline conditions. Seeds are a good source of high quality edible oil and leaves are capable of removing substantial amount of salt from the saline soil besides many other economic usages. Little is known about the biochemical basis of salt tolerance in this species. We studied some biochemical responses of S. fruticosa to different exogenous treatments under non-saline (0 mM), moderate (300 mM) or high (600 mM) NaCl levels. Eight-week-old seedlings were sprayed twice a week with distilled water, hydrogen peroxide (H2O2, 100 μM), glycine betaine (GB, 10 mM), or ascorbic acid (AsA, 20 mM) for 30 days. At moderate (300 mM) NaCl, leaf Na+, Ca2+ and osmolality increased, along with unchanged ROS and antioxidant enzyme activities, possibly causing a better plant growth. Plants grew slowly at 600 mM NaCl to avoid leaf Na+ buildup relative to those at 300 mM NaCl. Exogenous application of distilled water and H2O2 improved ROS scavenging mechanisms, although growth was unaffected. ASA and GB alleviated salt-induced growth inhibition at 600 mM NaCl through enhancing the antioxidant defense system and osmotic and ion homeostasis, respectively.  相似文献   

4.
The aim of this work was to investigate the role of the antioxidant enzymes in salt tolerance comparing the salt-sensitive (Pérola) and a salt-tolerant (Pitiúba) cultivar of cowpea [Vigna unguiculata (L.) Walp.]. Salt stress (100 mM NaCl for 8 d) reduced the leaf growth rate more in the sensitive cultivar. The salt-induced decrease in the relative water content, Na+ accumulation and increase in leaf electrolyte leakage was similar in both cultivars. Salt stress induced a higher increase in the activities of superoxide dismutase (SOD), ascorbate peroxidase (APX) and phenol peroxidase (POX) in the tolerant cultivar than in sensitive one.  相似文献   

5.
Salinity is a major abiotic stress that limits plant productivity. Plants respond to salinity by switching on a coordinated set of physiological and molecular responses that can result in acclimation. Medicago truncatula is an important model legume species, thus understanding salt stress responses and acclimation in this species is of both fundamental and applied interest. The aim of this work was to test whether acclimation could enhance NaCl tolerance in calli of M. truncatula. A new protocol is described incorporating multi-step up acclimation over 0–350 mM exogenous NaCl. By the end of the experiment, calli were tolerant to 150 mM and competent for embryogenesis at 100 mM NaCl. Positive and negative linear relationships between Na+ and K+ uptake and exogenous NaCl concentration intercepted at 160 mM suggesting a Na+/K+ homeostasis. Proline level peaked at 100/150 mM whilst highest osmolarity and lowest water content occurred at 250/350 mM NaCl. The concentration of water soluble sugars was positively related to 0–250 mM NaCl whilst callus growth and embryogenesis occurred regardless of endoreduplication. Expression of genes linked to growth (WEE1), in vitro embryogenesis (SERK), salt tolerance (SOS1), proline synthesis (P5CS) and ploidy level (CCS52 and WEE1) peaked at 100/150 mM NaCl. Hence, these genes and various physiological traits except sugar levels, served as useful markers of NaCl tolerance. To our knowledge, this is the first report of a multi-step acclimation conferring tolerance to 150 mM NaCl in leaf-derived calli of M. truncatula.  相似文献   

6.
The aim of this work was to evaluate physiological and biochemical responses of faveleira under salinity. Plants were grown in nutrient solution containing 0, 50, 100 or 150 mM NaCl. After 8 days of stress, plants were harvested and separated into roots, xylopodium, stem + petiole (SP), and basal, median and apical leaves. Salinity reduced the dry weight of all plant parts, although the indicators of water status were not changed. Salt stress increased the content of Na+ in the different plant parts, especially in xylopodium, in which it increased approximately eightfold while the content of K+ decreased by approximately 40 % under 150 mM NaCl. As a consequence, the K+/Na+ ratio decreased in all plant organs. In stressed plants, the content of soluble sugars was increased in the roots, SP and leaf strata and the content of soluble proteins increased in all organs. The content of total free amino acids increased in the roots, SP and apical leaves, while the proline content increased in all organs except in xylopodium. It is suggested that the xylopodium may be involved in a mechanism of exclusion and/or compartmentalization of Na+ in faveleira under salinity to avoid ionic toxicity in the leaves.  相似文献   

7.
8.
Ginkgo suspension cells were used to investigate the mechanism that governs the shift between primary and secondary metabolism under NaCl elicitation. The production of three flavonol glycosides, chlorophyll fluorescence, ion content, the antioxidant system, and the cellular ultrastructure in the presence of NaCl doses from 5 to 175 mM were examined. At low salt doses (5–50 mM), cell growth and flavonol glycosides accumulation were stimulated without damaging cell structure or inducing oxidative stress by maintaining high K+ and chlorophyll content. At moderate salt doses (75–125 mM), the cells could withstand the salt stress without an impact on survival by changing internal cellular structure, maintaining high levels of K+ and Ca2+ and increasing anti-oxidative enzyme activities rather than flavonol glycosides to counteract the inhibition of the photosystem II, the accumulation of Na+ and hydrogen peroxide (H2O2) in the cells. This allowed cells to divert their metabolism from growth to defense-related pathways and tolerate NaCl stress. At higher salinity (150–175 mM), the cellular structure was damaged, and the high Na+ and low K+ content led to osmotic stress, and therefore, the stimulation of peroxidase (POD) and catalase (CAT) was not enough to cope with high H2O2 accumulation. The high production of flavonol glycosides may be a response of elicitation stimulation to serious damage at 175 mM NaCl. In conclusion, the use of 175 mM NaCl may be desirable for the induction of flavonol glycoside production in Ginkgo suspension cells.  相似文献   

9.
In this study, physiological and biochemical responses of Centaurea tuzgoluensis, a Turkish endemic halophyte, to salinity were studied. Therefore, the changes in shoot growth, leaf relative water content (RWC), ion concentrations, lipid peroxidation, hydroxyl (OH.) radical scavenging activity, proline (Pro) content, and antioxidant system [superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) and glutathione reductase (GR)] were investigated. The 60 days (d) old C. tuzgoluensis seedlings were subjected to 0, 150 and 300 mM NaCl for 7 d and 14 d. The relative shoot growth was generally did not change in the 150 mM NaCl, but reduced with 300 mM NaCl stress at 7 d and 14 d. RWC was higher in 150 mM NaCl-treated leaves than that of 300 mM NaCl. Salinity decreased K+/Na+ ratio, but increased Na+, Cl?, Ca+2 and Na+/Cl? ratio in the leaves. On the other hand, it did not change or increase the K+ content at 150 and 300 mM NaCl, respectively. MDA content in the 150 and 300 mM NaCl-treated leaves remained close to control at 7 d. This was related to enhanced activities of SOD, CAT, APX and GR enzymes, and their isoenzymes especially Fe-SOD in the leaves. On the other hand, the higher sensitivity to 300 mM NaCl at 14 d was associated with inadequate increase in antioxidant enzymes and the decreased OH radical scavenging activity. All these results suggest that C. tuzgoluensis has different antioxidant metabolisms between short- (7 d) and long-term (14 d) salt treatments and salinity tolerance of C. tuzgoluensis might be closely related to increased capacity of antioxidative system to scavenge reactive oxygen species (ROS) and accumulation of osmoprotectant proline under salinity conditions.  相似文献   

10.

Background and aims

Salt is known to accumulate in the root-zone of Na+ excluding glycophytes under saline conditions. We examined the effect of soil salinity on Na+ and Cl? depletion or accumulation in the root-zone of the halophyte (Atriplex nummularia Lindl).

Methods

A pot experiment was conducted in soil to examine Na+ and Cl? concentrations adjacent to roots at four initial NaCl treatments (20, 50, 200 or 400 mM NaCl in the soil solution). Plant water use was manipulated by leaving plants with all leaves intact, removing approximately 50 % of leaves, or removing all leaves. Daily evapotranspiration was replaced by watering undrained pots to weight with deionised water. After 35-38 days, samples were taken of the bulk soil and of soil loosely- and closely-adhering to the roots.

Results

In plants with leaves intact grown with 200 and 400 mM NaCl, average Na+ and Cl? concentrations in the closely adhering soil were about twice the concentrations of the bulk soil. Ion accumulation increased with final leaf area and with cumulative transpiration over the duration of the trial. By contrast, in plants grown with the lowest salinity treatment (20 mM NaCl), Na+ and Cl? concentrations decreased in the closely adhering soil with increasing leaf area and increasing cumulative water use.

Conclusions

Our data show that Na+ and Cl? are depleted from the root-zone of A. nummularia at low salinity but accumulate in the root-zone at moderate to high salinity, and that the ions are drawn towards the plant in the transpiration stream.  相似文献   

11.
Salt stress causes extensive losses to agricultural crops, including wheat, throughout the world and has been the focus of wide research. Though, information is scarce on the potential of ancient wheat relatives in tackling this major limiting factor. Thus, six hulled tetraploid wheat genotypes (HW) were compared to a free-threshing durum wheat genotype (FTW) under different NaCl concentrations, ranging from 0 to 150 mM, at early growth stages in a sand culture experiment. Salt stress induced significant declines in the leaf chlorophyll (Chl) a, Chl b, total Chl, and carotentoid contents; the extent of the declines was greater in FTW compared to HW. Mean leaf proline (3.6-fold) and Na+ (1.58-fold) concentrations and Na+/K+ (2.48-fold) drastically increased with 150 mM of NaCl; the magnitude of the increases was greater in HW compared to FTW. While the carotenoids concentration decreased with progressive salinity both in HW and FTW, the activities of antioxidant enzymes, i.e., catalase, ascorbate peroxidase, and peroxidase were reduced in FTW, but remained unchanged in HW. The above responses to 150 mM NaCl were associated with a significant decrease in shoot dry mass of FTW and lack of significant changes in that of HW. Findings of the present study could help pave the way for further studies on physiological and molecular mechanisms of salt tolerance in these durum wheat relatives.  相似文献   

12.
In this study, we set out to investigate the effect of sodium chloride (NaCl) on carotenoid and flavonoid production by the black nightshade (Solanum nigrum L.). The study was carried out under green chamber conditions using seedlings subjected to 0, 50, 100 and 150 mM NaCl for 3 weeks. The negative effect of NaCl on dry biomass production of roots and leaves were accompanied by a significant restriction in K+, Ca2+ and Mg2+ ion uptake and by an increase in Na+ ion concentrations, the effects of which were most pronounced at the highest NaCl level. Salt stress also induced oxidative stress, according to the amplified levels of thiobarbituric acid reactive substances and relative ion leakage ratio. Expression of some related carotenoid (phytoene synthase 2 and β-lycopene cyclase) and flavonoids genes (phenylalanine ammonialyase, chalcone synthase and flavonol synthase) were induced by NaCl, followed enhanced production of β-carotene, lutein, and quercetin 3-β-d-glucoside. At the highest NaCl level (150 mM NaCl), quercetin 3-β-d-glucoside synthesis came at the expense of reduced β-carotene and lutein, while salt stress treatment affected leaf antioxidant activities to a great extent relative to the control. Our data suggest that the potential antioxidant properties of carotenoids and flavonoids and their related key genes may be efficiently involved in the restriction of salt-induced oxidative damages.  相似文献   

13.

Background and aims

Salinity is an increasing problem for agricultural production worldwide. Understanding how Na+ enters plants is important if reducing Na+ influx, a key component of the regulation of Na+ accumulation in plants and improving salt tolerance of crop plants, is to be achieved. Our previous work indicated that two distinct low-affinity Na+ uptake pathways exist in the halophyte Suaeda maritima. Here, we report the external NaCl concentration at which uptake switches from pathway 1 to pathway 2 and the kinetics of the interaction between external K+ concentration and Na+ uptake and accumulation in S. maritima in order to determine the roles of K+ transporters or channels in low-affinity Na+ uptake.

Methods

Na+ influx, Na+ and K+ accumulations in S. maritima exposed to various concentrations of NaCl (0–200 mM) were analyzed in the absence and presence of the inhibitors TEA and Ba+ (5 mM TEA or 3 mM Ba2+) or KCl (0, 10 or 50 mM).

Results

Our earlier proposal was confirmed and extended that there are two distinct low-affinity Na+ uptake pathways in S. maritima: pathway 1 might be mediated by a HKT-type transporter under low salinity conditions and pathway 2 by an AKT1-type channel or a KUP/HAK/KT type transporter under high salinity conditions. The external NaCl concentration at which two distinct low-affinity Na+ uptake switches from pathway 1 to pathway 2, the ‘turning point’, is between 90 and 95 mM. Over a short period (12 h) of Na+ and K+ treatments, a low concentration of K+ (10 mM) facilitated Na+ uptake by S. maritima under high salinity (100–200 mM NaCl), whether or not the plants had been subjected to a longer (3 d) period of K+ starvation. The kinetics suggests that low concentration of K+ (10 mM) might activate AKT1-type channels or KUP/HAK/KT-type transporters under high salinity (100–200 mM NaCl).

Conclusions

The turning-point of external NaCl concentrations for the two low-affinity Na+ uptake pathways in Suaeda maritima is between 90 and 95 mM. A low concentration of K+ (10 mM) might activate AKT1 or KUP/HAK/KT and facilitate Na+ uptake under high salinity (100–200 mM NaCl). The kinetics of K+ on Na+ uptake and accumulation in S maritima are also consistent with there being two low-affinity Na+ uptake pathways.  相似文献   

14.
Bruguiera cylindrica is a major mangrove species in the tropical mangrove ecosystems and it grows in a wide range of salinities without any special features for the excretion of excess salt. Therefore, the adaptation of this mangrove to salinity could be at the physiological and biochemical level. The 3-month-old healthy plantlets of B. cylindrica, raised from propagules were treated with 0 mM, 400 mM, 500 mM and 600 mM NaCl for 20 days under hydroponic culture conditions provided with full strength Hoagland medium. The modulation of various physiochemical changes in B. cylindrica, such as chlorophyll a fluorescence, total chlorophyll content, dry weight, fresh weight and water content, Na+ accumulation, oxidation and antioxidation (enzymatic and non-enzymatic) features were studied. Total chlorophyll content showed very minute decrease at 500 mM and 600 mM NaCl treatment for 20 days and the water content percentage was decreased both in leaf and root tissues with increasing concentration. A significant increase of Na+ content of plants from 84.505 mM/plant dry weight in the absence of NaCl to 543.38 mM/plant dry weight in plants treated with 600 mM NaCl was recorded. The malondialdehyde and the metabolites content associated with stress tolerance (amino acid, total phenols and proline) showed an increasing pattern with increasing NaCl concentration as compared to the control in both leaf and root tissues but the increase recorded in plantlets subjected to 500 mM was much less, indicating the tolerance potential of this species towards 500 mM NaCl. The significant decrease of sugar content was found only in 600 mM NaCl on 20 days of treatment, showing that the process of sugar synthesis was negatively affected but the same process remains less affected at 500 mM NaCl. A slight reduction in ascorbate and glutathione content and very less increase in carotenoid content were observed at 500 mM and 600 mM NaCl stress. Antioxidant enzymes (APX, GPX, SOD and CAT) showed an enhanced activity in all the treatments and the increased activity was more significant in 600 mM treated plants. The result establishes that B. cylindrica tolerates high NaCl concentration, to the extent of 500 mM NaCl without any major inhibition on photosynthesis and metabolite accumulation. Understanding the modulation of various physiological and biochemical changes of B. cylindrica at high levels of NaCl will help us to know the physiochemical basis of tolerance strategy of this species towards high NaCl.  相似文献   

15.
Hydroponically grown 12-day-old rice (Oryza sativa L. cv. BRRI dhan47) seedlings were exposed to 150 mM NaCl alone and combined with 0.5 mM MnSO4. Salt stress resulted in disruption of ion homeostasis by Na+ influx and K+ efflux. Higher accumulation of Na+ and water imbalance under salinity caused osmotic stress, chlorosis, and growth inhibition. Salt-induced ionic toxicity and osmotic stress consequently resulted in oxidative stress by disrupting the antioxidant defense and glyoxalase systems through overproduction of reactive oxygen species (ROS) and methylglyoxal (MG), respectively. The salt-induced damage increased with the increasing duration of stress. However, exogenous application of manganese (Mn) helped the plants to partially recover from the inhibited growth and chlorosis by improving ionic and osmotic homeostasis through decreasing Na+ influx and increasing water status, respectively. Exogenous application of Mn increased ROS detoxification by increasing the content of the phenolic compounds, flavonoids, and ascorbate (AsA), and increasing the activities of monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), superoxide dismutase (SOD), and catalase (CAT) in the salt-treated seedlings. Supplemental Mn also reinforced MG detoxification by increasing the activities of glyoxalase I (Gly I) and glyoxalase II (Gly II) in the salt-affected seedlings. Thus, exogenous application of Mn conferred salt-stress tolerance through the coordinated action of ion homeostasis and the antioxidant defense and glyoxalase systems in the salt-affected seedlings.  相似文献   

16.
Effects of iso-osmotic concentrations of NaCl and mannitol were studied in Mammilaria gracilis (Cactaceae) in both calli and tumors grown in vitro. In both tissues, relative growth rates were reduced under osmotic stress, which were accompanied by a decrease in both tissue water and K+ content. However, growth was inhibited to a lesser extent after exposure to NaCl, when accumulation of Na+ ions was observed. In calli, only salinity increased proline content, whereas with tumors proline accumulated after both osmotic stresses. Osmotic stresses also induced oxidative damage in both cactus tissues, although higher oxidative injury was caused by mannitol in calli and by salt in tumors. Low iso-osmotic concentrations of NaCl (75 mM) and mannitol (150 mM) increased peroxidase, ascorbate peroxidase, and esterase activities, whereas elevated catalase activity was recorded only after mannitol treatment in both tissues. High osmotic stress generally decreased enzymatic activities. However, in calli, esterase activity increased in response to high salinity, whereas ascorbate peroxidase activity was enhanced after high mannitol stress. In conclusion, both in vitro-grown cactus tissues were found to be sensitive to osmotic stress caused by either mannitol or NaCl, but accumulation of Na+ ions in response to salt somewhat contributed to osmotic adjustment. However, more prominent oxidative damage induced by NaCl compared to mannitol in tumor could be related to ion toxicity. The mechanisms that mediate responses to salt- and mannitol-induced osmotic stresses differed and were dependent on tissue type.  相似文献   

17.
To determine the effects of vermicompost leachate (VCL) on resistance to salt stress in plants, young tomato seedlings (Solanum lycopersicum, cv. Ailsa Craig) were exposed to salinity (150 mM NaCl addition to nutrient solution) for 7 days after or during 6 mL L??1 VCL application. Salt stress significantly decreased leaf fresh and dry weights, reduced leaf water content, significantly increased root and leaf Na+ concentrations, and decreased K+ concentrations. Salt stress decreased stomatal conductance (gs), net photosynthesis (A), instantaneous transpiration (E), maximal efficiency of PSII photochemistry in the dark-adapted state (Fv/Fm), photochemical quenching (qP), and actual PSII photochemical efficiency (ΦPSII). VCL applied during salt stress increased leaf fresh weight and gs, but did not reduce leaf osmotic potential, despite increased proline content in salt-treated plants. VCL reduced Na+ concentrations in leaves (by 21.4%), but increased them in roots (by 16.9%). VCL pre-treatment followed by salt stress was more efficient than VCL concomitant to salt stress, since VCL pre-treatment provided the greatest osmotic adjustment recorded, with maintenance of net photosynthesis and K+/Na+ ratios following salt stress. VCL pre-treatment also led to the highest proline content in leaves (50 µmol g??1 FW) and the highest sugar content in roots (9.2 µmol g??1 FW). Fluorescence-related parameters confirmed that VCL pre-treatment of salt-stressed plants showed higher PSII stability and efficiency compared to plants under concomitant VCL and salt stress. Therefore, VCL represents an efficient protective agent for improvement of salt-stress resistance in tomato.  相似文献   

18.
The aim of this work was to investigate the growth, mineral nutrition and essential oil composition of marjoram aerial part. Seedlings were cultivated for 20 days on nutrient solution, and then transferred to hydroponic solution with different NaCl concentrations (0, 50, 100, 150 mM). Plants were harvested after 17 days of treatment. Mineral nutrition and essential oil composition of shoots were determined. Results showed that growth, water content and development of the different organs of marjoram plant were affected just at the highest NaCl concentration (150 mM). Furthermore, salt did not seem to affect leaf area and root length but reduced the number of leaves. An increase in the total leaf surface and its thickness was observed at different NaCl concentrations. At 50 mM NaCl, sodium was primarily accumulated in roots but at 150 mM, it was strongly accumulated in leaves. However, Cl? accumulation was lower at higher NaCl concentrations. Essential oil yield of marjoram shoots was 0.12% in the control and 0.10% at 50 mM but an important decrease was observed at 100 mM (0.05%). Thirty-three components were identified belonging to different chemical classes. In the control, the essential oil was found to be rich in trans-sabinene hydrate (47.67%), terpinen-4-ol (20.82%) and cis-sabinene hydrate (7.23%). The proportions of these main compounds were differently affected by salt.  相似文献   

19.
Thermopsis turcica is distributed naturally in saline soils. Interestingly, how T. turcica can live in harsh salt conditions is unknown. To study its defense responses under salinity, T. turcica was grown in a medium containing 100 and 200 mM NaCl for 7 and 14 days. Physiological parameters, ion contents, reactive oxygen species accumulation, activities of antioxidant enzymes/isozymes, NADPH oxidase enzyme/isozyme, lipid peroxidation (TBARS) and osmolyte contents were investigated. Stress caused a rapid decline in relative growth rate, relative water content and chlorophyll fluorescence (F v/F m) under both NaCl treatments. These traits were more suppressed at 200 mM NaCl. The decline in osmotic potential (Ψ Π) with salinity increased the gradient for water flux into the cell and assisted in turgor maintenance. The increased membrane permeability under stress caused the entrance of excess Na+ and K+ into the cell. Stress decreased superoxide dismutase, catalase and peroxidase after 14 days of growth in 200 mM NaCl, whereas glutathione reductase (GR) increased throughout the experiment. While ascorbate peroxidase (APX) increased by 44 % at 7 days, it decreased after 14 days exposure to 200 mM NaCl. 200 mM NaCl caused the highest increase in TBARS at 14 days, indicating a decrease in OH· scavenging activity. Increasing concentrations of salinity caused an increase in glycine betaine (GB) and choline (Cho), though an increase in proline was only observed at 200 mM NaCl for 14 days. Briefly, H2O2 was more efficiently eliminated in 100 mM-treated plants by the ascorbate–glutathione cycle in which APX acts a strong catalyst together with GR. Also, Cho and GB help to maintain osmotic adjustment and cytoplasmic function.  相似文献   

20.
Salt tolerance was studied in the callus cultures of Suaeda nudiflora Moq. a dicotyledonous succulent halophyte. Growth was significantly inhibited at 50, 100, 150 and 200 mM NaCl. Inorganic ions and proline accumulated in response to salinity. Ion accumulation pattern reflected the utilization of Na+ as an osmoticum. Na+/K+ ratio rose steadily as a function of external NaCl concentration. Salt stress enhanced the activity of peroxidase, whereas it decreased activities of superoxide dismutase and catalase. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号