首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 278 毫秒
1.
Rain forests on Borneo support exceptional concentrations of endemic insect biodiversity, but many of these forest-dependent species are threatened by land-use change. Totally protected areas (TPAs) of forest are key for conserving biodiversity, and we examined the effectiveness of the current TPA network for conserving range-restricted butterflies in Sabah (Malaysian Borneo). We found that mean diurnal temperature range and precipitation of the wettest quarter of the year were the most important predictors of butterfly distributions (= 77 range-restricted species), and that species richness increased with elevation and aboveground forest carbon. On average across all species, TPAs were effective at conserving ~43% of species’ ranges, but encompassed only ~40% of areas with high species richness (i.e., containing at least 50% of our study species). The TPA network also included only 33%–40% of areas identified as high priority for conserving range-restricted species, as determined by a systematic conservation prioritization analysis. Hence, the current TPA network is reasonably effective at conserving range-restricted butterflies, although considerable areas of high species richness (6,565 km2) and high conservation priority (11,152–12,531 km2) are not currently protected. Sabah's remaining forests, and the range-restricted species they support, are under continued threat from agricultural expansion and urban development, and our study highlights important areas of rain forest that require enhanced protection.  相似文献   

2.
The Anatolian Biogeographical Region is unique in the Palearctic realm, with high plant and butterfly species richness and populations of globally threatened birds, mammals and herptiles (amphibians and reptiles). It is a place of diverse land-use practices, dating back to the earliest farming practices in the world. Among 10,930 species of vascular plants, birds, butterflies, mammals and herptiles distributed in Turkey, we identified 1130 living predominantly in steppic environments and being classified either as threatened, near-threatened or data deficient at the national level, if not globally. A total of 28 effective protected areas were present in the region, covering 1.5 % of the 391,597 km2 land area. Only 16.2 % of the threatened and near-threatened species (n = 809) were distributed within the protected area network, ranging from 94.1 % for birds to as low as 12.9 % for vascular plants. The total area of steppe and steppe forest vegetation has been reduced by at least 44 % of its former extent due to diverse habitat destructive activities. The most significant threats arise from unsustainable agricultural activities including overgrazing, conversion to croplands and afforestation. To maintain steppe diversity, we propose a “to-do list”, including mainstreaming biodiversity, effective implementation of Turkey’s Rangeland Act, conducting effective environmental impact assessments, establishing an effective site network for steppe biodiversity conservation and filling gaps in scientific knowledge.  相似文献   

3.
As well as being one of the most densely populated areas on Earth, Hong Kong also has the highest percentage of protected areas (38% of the 1098 km2 land area) of any administrative region in the Asia Pacific. Overlay of field records from a biodiversity survey of eight taxa (amphibians, reptiles, mammals, breeding birds, ants, butterflies, dragonflies and rare vascular plants) in 1 km grid squares with protected areas indicated that over half of the 623 species of conservation concern (globally, regionally, or locally restricted species) were under-represented. Ants, butterflies and reptiles were most poorly represented. The hotspots of different taxa also received differing levels of protection. Hong Kong's protected areas are biased towards high-altitude habitats, so the under-represented species are mostly associated with the lowland habitats (freshwater wetlands, abandoned agriculture and feng shui woods). Since the restricted species are scattered and the hotspots of different taxa do not overlap, a large protected area network will be required to represent all species. This indicates the challenge that will be encountered in the conservation of many other parts of Asia that support burgeoning human populations, and where landscapes are increasingly human-dominated.  相似文献   

4.
Previous studies from Central Europe and North America showed that species richness is higher in urban than in rural landscapes. Do protected areas, which can be found in both city and countryside, reflect this species richness pattern? The impact of urban land-use might reduce conservation success and necessitate special management strategies. We compared species richness and species spatial turnover of selected animal and plant taxa (carabids, butterflies, snails, birds, lichens, mosses, vascular plants) in 30 protected areas in the city of Halle and 56 protected areas in the adjacent rural district of Saalkreis (Central Germany). Species were mapped by experienced biologists within a systematic species inventory. We corrected species numbers for the effects of landscape structure (e.g. size, shape and distance of habitats) which might influence species diversity beyond urbanisation effects. Butterflies, birds and lichens had significantly higher species numbers in the rural protected areas. Species spatial turnover was higher among urban areas than among rural areas or pairs of urban and rural areas for most taxa. Diversity in all taxa depended on the size of a protected area. We discussed these patterns in the context of the general urban-rural species diversity patterns. Our results indicate an increasing isolation of species assemblages with urbanisation and highlight that space for protected areas is even more limited in urban than rural areas. An effective conservation of urban species diversity should include both typical urban and semi-natural habitats to cover the full range of species living in cities.  相似文献   

5.
Burgess, N., de Klerk, H., Fjeldsá, J., Crowe, T. & Rahbek, R. 2000. A preliminary assessment of congruence between biodiversity patterns in Afrotropical forest birds and forest mammals. Ostrich 71 (1 & 2): 286–291.

Databases compiled for forest birds and forest mammals in the Afrotropics were tested for congruence of overall patterns and hotspots of species richness and endemism. We also looked at how well a near-minimum set of priority areas for one taxon catered for the second taxon. Overall species richness and richness hotspots of forest birds were significantly correlated with those of forest mammals, as was the case for overall endemism. Endemism hotspots for forest birds and mammals were not significantly correlated. The near-minimum set for forest birds represented 136 (76.5%) forest mammal species. The near-minimum set for forest mammals represented 350 (93.62%) forest bird species. However, to represent all forest mammals three times each, 51 grids were needed in addition to the 78 chosen as a near-minimum set for forest birds, and to represent all forest birds three times each, 43 more grids were needed in addition to the 80 selected for forest mammals. There is some congruence between the patterns of richness, endemism and near-minimum sets for forest birds and mammals in the Afrotropics, but the one taxon does not provide the ideal conservation solution for the other. Further refinement of the databases used in this paper would allow for more rigorous testing of congruence between these two groups.  相似文献   

6.
The relationship between local and regional diversity was tested by regressing local community richness against regional species diversity for three taxa, birds, butterflies and mammals, in subtropical forest. The quadratic model best fits the relationship between local and regional diversity for birds. Local bird species richness is theoretically independent of the size of the regional pool of species and may represent saturated communities. A linear model best describes the relationship for mammals and butterflies. For mammals, the slope is shallow (0.264) and regional richness overestimates local species richness, suggesting communities are undersaturated. Extinction filtering may explain this pattern. Past climatic changes have filtered out many mammalian species, these changes have been too recent for autochthanous speciation, and the relatively low vagility of mammals has prevented extensive recolonisation. Differences in the nature of the diversity relationship between taxa are as much due to independent evolutionary histories as to differences in vagility and colonising potential. A pervasive role is suggested for regional biogeographic processes in the development of faunal assemblage structure. Large-scale processes are not considered in current conservation plans. We encourage the shift of conservation emphasis from local ecological processes and species interactions, to whole communities and consideration of regional processes.  相似文献   

7.
Mountains provide an opportunity to examine changes in biodiversity across environmental gradients and areas of transition (ecotones). Mountain ecotones separate vegetation belts. Here, we aimed to examine whether transition areas for birds and butterflies spatially correspond with ecotones between three previously described altitudinal vegetation belts on Mt. Hermon, northern Israel. These include the Mediterranean Maquis, xero-montane open forest and Tragacanthic mountain steppe vegetation belts. We sampled the abundance of bird and butterfly species in 34 sampling locations along an elevational gradient between 500 and 2200 m. We applied wombling, a boundary-detection technique, which detects rapid changes in a continuous variable, in order to locate the transition areas for bird and butterfly communities and compare the location of these areas with the location of vegetation belts as described in earlier studies of Mt. Hermon. We found some correspondence between the areas of transition of both bird and butterfly communities and the ecotones between vegetation belts. For birds and butterflies, important transitions occurred at the lower vegetation ecotone between Mediterranean maquis and the xero-montane open forest vegetation belts, and between the xero-montane open forest and the mountain steppe Tragacanthic belts. While patterns of species turnover with elevation were similar for birds and butterflies, the change in species richness and diversity with elevation differed substantially between the two taxa. Birds and butterflies responded quite similarly to the elevational gradient and to the shift between vegetation belts in terms of species turnover rates. While the mechanisms generating these patterns may differ, the resulting areas of peak turnover in species show correspondence among three different taxa (plants, birds and butterflies).  相似文献   

8.
The unbroken primary rain forest currently covering the interior ofFrench Guiana still offers a unique opportunity to establish a network of largeprotected areas. Bird species richness was surveyed within 20 study areasspreadover the country to assess the relative abundance and frequency of occurrenceofforest interior and natural gap taxa (391 species, excluding raptors andnon-resident birds). Richness, rarity, restricted range, hot spot andconservation value algorithms were used to rank sites in decreasing orders ofimportance and draw sets of survey sites likely to maximize bird diversity. Inmost sets from different methodological approaches, the southern regionconsistently emerged as a priority area for conservation, with the centralmountain range contributing some specialized taxa and the northern regionincorporating additional species, mostly from marginal habitats and moretypicalof the nearby coastal zone. Estimates of areas likely to preserve an almostcomplete sample of the regional biodiversity amounted to about 1–2millionhectares, either in one large area (national park) or divided into 2–3reserves overlapping regional hot spots. However, representation of all speciesand habitats in a protected area system is not an assurance of long-termviability when minimum viable population sizes and demographic patterns arelittle known, and when the risks and impacts of persistent human disturbancessuch as mining, logging and hunting are growing.  相似文献   

9.
Conservation planning is crucial for megadiverse countries where biodiversity is coupled with incomplete reserve systems and limited resources to invest in conservation. Using Peru as an example of a megadiverse country, we asked whether the national system of protected areas satisfies biodiversity conservation needs. Further, to complement the existing reserve system, we identified and prioritized potential conservation areas using a combination of species distribution modeling, conservation planning and connectivity analysis. Based on a set of 2,869 species, including mammals, birds, amphibians, reptiles, butterflies, and plants, we used species distribution models to represent species'' geographic ranges to reduce the effect of biased sampling and partial knowledge about species'' distributions. A site-selection algorithm then searched for efficient and complementary proposals, based on the above distributions, for a more representative system of protection. Finally, we incorporated connectivity among areas in an innovative post-hoc analysis to prioritize those areas maximizing connectivity within the system. Our results highlight severe conservation gaps in the Coastal and Andean regions, and we propose several areas, which are not currently covered by the existing network of protected areas. Our approach helps to find areas that contribute to creating a more representative, connected and efficient network.  相似文献   

10.
Baltzer, M., Matthews, R., Howard, P., Kigenyi F. & Viskanic, P. 2000. Birds as biodiversity indicators in the planning of Forest Nature Reserves in Uganda. Ostrich 71 (1 & 2): 291.

In Uganda a policy decision has been taken to set aside 20% of the nation's 1.4 million hectare forest estate as Forest Nature Reserves, for the protection of biodiversity. The estate comprises 713 Forest Reserves, ranging in size from just a few hectares to well over 100 000 hectares, scattered all over the country. In order to select appropriate areas for designation as Nature Reserves, the Forest Department (with assistance from the European Community and Global Environmental Facility) has evaluated all the larger reserves for biodiversity, focusing on birds and four other biological indicator groups (woody plants, mammals, butterflies and moths). Building on earlier work, teams of departmental staff carried out detailed systematic biodiversity surveys of 65 major forests between May 1992 and March 1995. The work on birds involved 1 442 person-days of field observation and 1.2 million metre net-hours of mist-netting effort. Altogether 5 744 species-site records were made, involving 604 of Uganda's 1011 species: this brings the total number of species known from Uganda's forest reserves to 841 (83% of the country's birds). Several species not previously known from Uganda were recorded, especially in the north and east of the country where birds of the northern (Sudan/Guinea) savannas and Somali-Masai regions reach the extreme limits of their ranges. The bird data have been analysed alongside comparable data for the other four indicator taxa. Fortunately, areas of high species richness and levels of endemism for the five groups tend to coincide. Priority conservation sites have been identified and a national network of Forest Nature Reserves has been designed as part of a representative and efficient protected areas system for Uganda.  相似文献   

11.
Abstract Identification of biodiversity hotspots is essential to conservation strategies aimed at minimizing the possibility of losing half of the world's species in the next 50 years. The aims of the present study were: (i) to locate and designate zones of endemism in the temperate forest of South America; and (ii) to compare the distribution of these areas with the distribution of existing protected areas in this habitat type. Endemism areas were determined by using parsimonious analysis of endemism, which identified zones of endemism on the basis of sets of endemic species that were restricted to two or more study areas. We used distribution information for five unrelated taxa (ferns, trees, reptiles, birds and mammals) to provide more reliable results and patterns than would work with only a single taxon or related taxa. The northern part of this region has high endemism for all of the taxa considered in this study. We demonstrate that although the temperate forest of South America has more than 30% of its area under some type of protection, correlation between protected areas and the areas of endemism is remarkably low. In fact, less than 10% of protected areas are situated in areas that have the greatest value for conservation (i.e. high endemism). Under the current strategy, biodiversity within South America's temperate forest is in danger despite the large amount of protected area for this forest type.  相似文献   

12.
In the tropics vast areas of natural forests are being converted into plantations. The magnitude of the resulting loss in arthropod biodiversity and associated ecosystem services represents a significant topic of research. In this study we contrasted the abundance, species richness and faunal turnover of butterflies, resident butterflies (i.e., whose host plants were ascertained to occur in the habitats studied) and termites between small (average 4.3 ha) 20+ year old exotic plantations (teak and Terminalia), native plantations (Cedro espino), and an old growth forest in Panama. We used Pollard walks and manual search to quantify the abundance or occurrence of butterflies and termites, respectively. In 2014 we observed 4610 butterflies representing 266 species and 108 termite encounters (out of 160 quadrats) representing 15 species. Butterflies were more abundant and diverse in plantations than in the forest, whereas this pattern was opposite for resident butterflies and termites. There was marked faunal turnover between plantations and forest. We conclude that (a) the magnitude of faunal changes between forest and plantations is less drastic for termites than for butterflies; (b) resident butterfly species are more impacted by the conversion of forest to plantations than all butterflies, including transient species; and (c) species richness does not necessarily decrease in the series forest > native > exotic plantations. Whereas there are advantages of studying more tractable taxa such as butterflies, the responses of such taxa can be highly unrepresentative of other invertebrate groups responsible for different ecological services.  相似文献   

13.
Conservation planning assessments based on species atlas data are known to select planning units containing ecotones because these areas are relatively species‐rich. However, this richness is often dependent on the presence of adjoining core habitat, so populations within these ecotones might not be viable. This suggests that atlas data may also fail to distinguish between planning units that are highly transformed by agriculture or urbanization with those from neighbouring untransformed units. These highly transformed units could also be identified as priority sites, based solely on the presence of species that require adjoining habitat patches to persist. This potential problem was investigated using bird and mammal atlas data from Swaziland and a landcover map and found that: (i) there was no correlation between planning unit species richness and proportion of natural landcover for both taxa; (ii) the priority areas that were identified for both birds and mammals were no less transformed than if the units had been chosen at random and (iii) an approach that aimed to meet conservation targets and minimize transformation levels failed to identify more viable priority areas. This third result probably arose because 4.8% of the bird species and 22% of the mammal species were recorded in only one planning unit, reducing the opportunity to choose between units when aiming to represent each species. Therefore, it is suggested that using species lists to design protected area networks at a fine spatial scale may not conserve species effectively unless population viability data are explicitly included in the analysis.  相似文献   

14.
It is crucial for biodiversity conservation that protected areas are large and effective enough to support viable populations of their original species. We used a point count distance sampling method to estimate population sizes of a range of bird species in three Atlantic forest protected areas of size 5600, 22,500, and 46,050 ha. Population sizes were generally related to reserve area, although in the mid-sized reserve, there were many rare species reflecting a high degree of habitat heterogeneity. The proportions of forest species having estimated populations >500 ranged from 55% of 210 species in the largest reserve to just 25% of 140 species in the smallest reserve. All forest species in the largest reserves had expected populations >100, but in the small reserve, 28% (38 species) had populations <100 individuals. Atlantic forest endemics were no more or less likely to have small populations than widespread species. There are 79 reserves (>1000 ha) in the Atlantic forest lowlands. However, all but three reserves in the north of the region (Espírito Santo and states north) are smaller than 10,000 ha, and we predict serious levels of local extinction from these reserves. Habitat heterogeneity within reserves may promote species richness within them, but it may also be important in determining species loss over time by suppressing populations of individual species. We suggest that most reserves in the region are so small that homogeneity in the habitat/altitude within them is beneficial for maintenance of their (comparatively small) original species compliment. A lack of protection in the north, continued detrimental human activity inside reserves, and our poor knowledge of how well the reserve system protects individual taxa, are crucial considerations in biodiversity management in the region.  相似文献   

15.
Evidence for significant losses of species richness or biodiversity, even within protected natural areas, is mounting. Managers are increasingly being asked to monitor biodiversity, yet estimating biodiversity is often prohibitively expensive. As a cost-effective option, we estimated the spatial and temporal distribution of species richness for four taxonomic groups (birds, mammals, herpetofauna (reptiles and amphibians), and plants) within Sequoia and Kings Canyon National Parks using only existing biological studies undertaken within the Parks and the Parks'' long-term wildlife observation database. We used a rarefaction approach to model species richness for the four taxonomic groups and analyzed those groups by habitat type, elevation zone, and time period. We then mapped the spatial distributions of species richness values for the four taxonomic groups, as well as total species richness, for the Parks. We also estimated changes in species richness for birds, mammals, and herpetofauna since 1980. The modeled patterns of species richness either peaked at mid elevations (mammals, plants, and total species richness) or declined consistently with increasing elevation (herpetofauna and birds). Plants reached maximum species richness values at much higher elevations than did vertebrate taxa, and non-flying mammals reached maximum species richness values at higher elevations than did birds. Alpine plant communities, including sagebrush, had higher species richness values than did subalpine plant communities located below them in elevation. These results are supported by other papers published in the scientific literature. Perhaps reflecting climate change: birds and herpetofauna displayed declines in species richness since 1980 at low and middle elevations and mammals displayed declines in species richness since 1980 at all elevations.  相似文献   

16.
We compare species richness of birds, fruit-feeding butterflies and ground-foraging ants along a coffee intensification gradient represented by a reduction in the number of species of shade trees and percentage of shade cover in coffee plantations. We sampled the three taxa in the same plots within the same period of time. Two sites were selected in the Soconusco region of the state of Chiapas, Mexico. Within each site four habitat types were selected and within each habitat type four points were randomly selected. The habitat types were forest, rustic coffee, diverse shade coffee, and intensive coffee (low density of shade). We found different responses of the three taxa along the intensification gradient. While ants and butterflies generally decrease in species richness with the decrease of shade cover, birds declined in one site but increased in the other. Ant species richness appears to be more resistant to habitat modification, while butterfly species richness appears to be more sensitive. Bird species richness was correlated with distance from forest fragments but not with habitat type, suggesting that scale and landscape structure may be important for more mobile taxa. For each of these taxa, the rustic plantation was the one that maintained species richness most similar to the forest. We found no correlation between the three taxa, suggesting that none of these taxa are good candidates as surrogates for each other. We discuss the implications of these results for the conservation of biodiversity in coffee plantations, in particular, the importance of distinguishing between different levels of shade, and the possibility that different taxa might be responding to habitat changes at different spatial scales.  相似文献   

17.
The lowland areas of the Himalayan region are subjected to immense anthropogenic pressure because of least representation in the protected area network. Kitam Bird Sanctuary is the only representative protected area that occurs below 1000 m in Sikkim state of India (a part of globally significant biodiversity hotspot of Himalayas) and serves as the refuge for various species of flora and fauna. Here we studied butterfly diversity and community composition in Kitam Bird Sanctuary (a small protected area of 6 km2 geographical area) following point count method spread across predetermined transects. Altogether 1674 butterflies belonging to 111 species and six families were recorded after completion of 240 point counts. Among these, 18 species are federally protected under the Wildlife (Protection) Act (1972) of India. Most of the butterflies were forest specialist in terms of habitat preference, whereas based on host plant specificity, the butterfly community was mostly dominated by generalist feeder (Oligophagous II and Polyphagous). Butterfly community parameters showed a strong correlation with habitat variables. While Kitam Bird Sanctuary is primarily designated for conservation of lowland birds, the high diversity of butterflies both in terms of taxonomic richness and trait composition suggests that the sanctuary harbors an ideal habitat for butterflies of the tropical region and invites conservation attention.  相似文献   

18.
We studied the tree communities in primary forest and three different land use systems (forest gardens, ca. 5-year-old secondary forests, cacao plantations) at 900–1200 m elevation in the environs of Lore Lindu National Park, Central Sulawesi. The primary forests had ca. 150 tree species 10 cm diameter at breast height (dbh) per hectare, which is unusually high for forests at this elevation in southeast Asia. Basal area in the primary forest was 140 m2 ha–1, one of the highest values ever recorded in tropical forests worldwide. Tree species richness declined gradually from primary forest to forest gardens, secondary forests, and cacao plantations. This decline was paralleled by shifts in tree family composition, with Lauraceae, Meliaceae, and Euphorbiaceae being predominant in primary forests, Euphorbiaceae, Rubiaceae and Myristicaeae dominating in the forest gardens and Euphorbiaceae, Urticaceae, and Ulmaceae in the secondary forests. Cacao plantations were composed almost exclusively of cacao trees and two species of legume shade trees. Forest gardens further differed from primary forests by a much lower density of understorey trees, while secondary forests had fewer species of commercial interest. Comparative studies of birds and butterflies demonstrated parallel declines of species richness, showing the importance of trees in structuring tropical forest habitats and in providing resources.  相似文献   

19.
《Ecological Indicators》2008,8(5):664-671
A critical issue in conservation biology is the establishment of a strong relationship between species richness and a surrogate index. Such a relationship could provide the basis for the establishment of cost effective and easy to monitor methods for measuring biodiversity, providing an alternative for the prioritization of sites for conservation. We found that richness of species of conservation interest could reliably be predicted from the richness of higher order taxa, such as genus and family, in amphibians, reptiles, birds and mammals. Furthermore, the networks of reserve sites selected based upon the richness of genera or families were as effective in including species diversity, as the ones selected based upon species richness.  相似文献   

20.
The archipelago-like coastal forest of East Africa is one of the highest priority ecosystems for biodiversity conservation worldwide. Here we investigate patterns of species richness and biogeographic distribution among birds, mammals and reptiles of these forests, using distribution data obtained from recently published reviews and information collated by the WWF Eastern Africa Coastal Forest Ecoregion Programme. Birds and mammals species were divided into forest specialists and generalists, and forest specialist reptiles into ‘coastal’ and ‘forest’ endemics. The species richness of birds and generalist mammals increased with area, and is probably a result of area-dependent extinction. Only in birds, however, species richness increased with decreasing isolation, suggesting possible isolation-dependent colonization. Forest diversity, associated to altitudinal range, is important for specialist birds and mammals, whose species richness increased with wider altitudinal range. The number of relict coastal endemic and forest endemic reptiles was higher in forests with wider altitudinal ranges and on relatively higher altitude, respectively. Such forests have probably provided a suitable (and perhaps stable) environment for these species through time, thus increasing their persistence. Parsimony analysis of distributions (PAD) and cluster analyses showed geographical distance and general ecological similarity among forests as a determinant factor in bird distribution patterns, with compositional similarity decreasing with increasing inter-forest distance. Compositional similarity patterns of mammals among the forests did not show a strong geographical correspondence or a significant correlation with inter-forest distance, and those of reptiles were not resolved, with very low similarity levels among forest faunas. Our results suggest that the relative importance (and causal relationship) of forest attributes affecting the distribution of the East African coastal forest vertebrate fauna varies depending on life history traits such as dispersal ability and forest specialization. The groupings in PAD are partly congruent with some of the previous classifications of areas of endemism for this region, supporting the ‘naturalness’ of these regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号