首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 100 毫秒
1.
矿质养分输入对森林生物固氮的影响   总被引:1,自引:0,他引:1  
郑棉海  陈浩  朱晓敏  毛庆功  莫江明 《生态学报》2015,35(24):7941-7954
生物固氮是森林生态系统重要的氮素来源,并且在全球氮循环中占有重要的地位。近代以来,因人类活动加剧而导致氮沉降的增加以及其它矿质养分元素(如磷、钼、铁等)输入的改变已成为影响森林生态系统生物固氮的重要因素之一,并引起了学术界的普遍关注。综述了国内外关于森林生物固氮对矿质养分输入的响应及机理。主要内容包括:(1)森林生物固氮的概念及主要的测定方法;(2)矿质养分输入对森林生物固氮的影响。整体上讲,氮素输入抑制了森林生物固氮,磷和其他营养元素输入则表现为促进作用。氮和磷、磷和微量元素同时添加均提高了森林的固氮量;(3)矿质养分改变森林生物固氮的机理。包括生物作用机制(如改变地表层固氮菌的数量或群落丰度、改变结瘤植物的根瘤生物量和附生植物的丰度或盖度)和环境作用机制(如引起土壤酸化、改变碳源物质的含量);(4)探讨了矿质养分输入对森林生物固氮影响研究中所存在的问题,并对未来该领域的研究提出建议。  相似文献   

2.
New techniques have identified a wide range of organisms with the capacity to carry out biological nitrogen fixation (BNF)—greatly expanding our appreciation of the diversity and ubiquity of N fixers—but our understanding of the rates and controls of BNF at ecosystem and global scales has not advanced at the same pace. Nevertheless, determining rates and controls of BNF is crucial to placing anthropogenic changes to the N cycle in context, and to understanding, predicting and managing many aspects of global environmental change. Here, we estimate terrestrial BNF for a pre-industrial world by combining information on N fluxes with 15N relative abundance data for terrestrial ecosystems. Our estimate is that pre-industrial N fixation was 58 (range of 40–100) Tg N fixed yr−1; adding conservative assumptions for geological N reduces our best estimate to 44 Tg N yr−1. This approach yields substantially lower estimates than most recent calculations; it suggests that the magnitude of human alternation of the N cycle is substantially larger than has been assumed.  相似文献   

3.
A fundamental shift has taken place in agricultural research and world food production. In the past, the principal driving force was to increase the yield potential of food crops and to maximize productivity. Today, the drive for productivity is increasingly combined with a desire for sustainability. For farming systems to remain productive, and to be sustainable in the long-term, it will be necessary to replenish the reserves of nutrients which are removed or lost from the soil. In the case of nitrogen (N), inputs into agricultural systems may be in the form of N-fertilizer, or be derived from atmospheric N2 via biological N2 fixation (BNF).Although BNF has long been a component of many farming systems throughout the world, its importance as a primary source of N for agriculture has diminished in recent decades as increasing amounts of fertilizer-N are used for the production of food and cash crops. However, international emphasis on environmentally sustainable development with the use of renewable resources is likely to focus attention on the potential role of BNF in supplying N for agriculture. This paper documents inputs of N via symbiotic N2 fixation measured in experimental plots and in farmers' fields in tropical and temperate regions. It considers contributions of fixed N from legumes (crop, pasture, green manures and trees), Casuarina, and Azolla, and compares the relative utilization of N derived from these sources with fertilizer N.  相似文献   

4.
Humid tropical forests are often characterized by large nitrogen (N) pools, and are known to have large potential N losses. Although rarely measured, tropical forests likely maintain considerable biological N fixation (BNF) to balance N losses. We estimated inputs of N via BNF by free-living microbes for two tropical forests in Puerto Rico, and assessed the response to increased N availability using an on-going N fertilization experiment. Nitrogenase activity was measured across forest strata, including the soil, forest floor, mosses, canopy epiphylls, and lichens using acetylene (C2H2) reduction assays. BNF varied significantly among ecosystem compartments in both forests. Mosses had the highest rates of nitrogenase activity per gram of sample, with 11 ± 6 nmol C2H2 reduced/g dry weight/h (mean ± SE) in a lower elevation forest, and 6 ± 1 nmol C2H2/g/h in an upper elevation forest. We calculated potential N fluxes via BNF to each forest compartment using surveys of standing stocks. Soils and mosses provided the largest potential inputs of N via BNF to these ecosystems. Summing all components, total background BNF inputs were 120 ± 29 μg N/m2/h in the lower elevation forest, and 95 ± 15 μg N/m2/h in the upper elevation forest, with added N significantly suppressing BNF in soils and forest floor. Moisture content was significantly positively correlated with BNF rates for soils and the forest floor. We conclude that BNF is an active biological process across forest strata for these tropical forests, and is likely to be sensitive to increases in N deposition in tropical regions.  相似文献   

5.
Five species of titi monkey (Callicebus brunneus, Callicebus caligatus Callicebus cinerascens, Callicebus donacophilus, andCallicebus moloch) were recorded in surveys of primate populations at 26 sites throughout the Brazilian state of Rondônia. The distribution of the two species,C. cinerascens andC. donacophilus (recorded in the state for the first time), appeared to be related to that of non-forest ecosystems, the former in thecerrado woodlands, and the latter in gallery forests of the Guaporé grasslands. The results of the surveys also indicate thatC. brunneus has a more restricted distribution in southern Rondônia than was previously thought, whereasC. moloch is more widespread. However, the ecological factors that determine species distribution in the south of the state remain unclear on the basis of the available data. All species were observed in small social groups of no more than five individuals, which are typical of the genus, generally in the middle and lower forest strate.  相似文献   

6.
Biological nitrogen (N) fixation is the primary source of “new” N to unmanaged ecosystems, and recent analyses suggest that terrestrial N inputs via free-living N fixation may be more important than previously assumed. This may be particularly true in some tropical rain forests, where free-living fixation could outpace symbiotic N fixation to represent the dominant source of new N inputs. However, our understanding of the controls over free-living N fixation in tropical rain forests remains poor, which directly constrains our ability to predict how N cycling will respond to changing environmental conditions. Although both phosphorus (P) and molybdenum (Mo) availability have been shown to limit free-living N fixation rates in the tropics, few studies have simultaneously explored P versus Mo limitation or the potential importance of P × Mo interactions. Here, an archived set of foliar, litter, and soil samples from a Costa Rican tropical rain forest provided an opportunity to simultaneously assess the relative strength of P versus Mo relationships with free-living N fixation rates. We also conducted a short-term, full-factorial (P × Mo) litter incubation experiment to directly assess nutrient limitation, allowing us to explore P and Mo controls over free-living N fixation rates using both observational and experimental approaches. We previously showed that N fixation rates were positively correlated with P concentrations in all substrates and, using the archived samples, we now show that Mo concentrations correlated with N fixation only in canopy leaves (where total Mo concentrations were extremely low). Likewise, fertilization with P alone (and not Mo) stimulated leaf litter N fixation rates. Thus, our results suggest that P availability dominantly controls free-living N fixation at this site, and when taken with data from other studies, our results suggest that attempts to identify “the nutrient” that limits N fixation in “the tropics” may be misguided. Rather, nutrient controls over free-living N fixation appear to be more nuanced—and the true nature of nutrient limitation to N fixation likely varies over a variety of scales across the vast tropical rain forest biome.  相似文献   

7.
Human activities have more than doubled the inputs of nitrogen (N) into terrestrial systems globally. The sources and distribution of anthropogenic N, including N fertilization and N fixed during fossil fuel combustion, are rapidly shifting from the temperate zone to a more global distribution. The consequences of anthropogenic N deposition for ecosystem processes and N losses have been studied primarily in N-limited ecosystems in the temperate zone; there is reason to expect that tropical ecosystems, where plant growth is most often limited by some other resource, will respond differently to increasing deposition. In this paper, we assess the likely direct and indirect effects of increasing anthropogenic N inputs on tropical ecosytem processes. We conclude that anthropogenic inputs of N into tropical forests are unlikely to increase productivity and may even decrease it due to indirect effects on acidity and the availability of phosphorus and cations. We also suggest that the direct effects of anthropogenic N deposition on N cycling processes will lead to increased fluxes at the soilwater and soil-air interfaces, with little or no lag in response time. Finally, we discuss the uncertainties inherent in this analysis, and outline future research that is needed to address those uncertainties.  相似文献   

8.
Global 0.5- by 0.5-degree resolution estimates are presented on the fate of nitrogen (N) stemming from point and nonpoint sources, including plant uptake, denitrification, leaching from the rooting zone, rapid flow through shallow groundwater, and slow flow through deep groundwater to riverine systems. Historical N inputs are used to describe the N flows in groundwater. For nonpoint N sources (agricultural and natural ecosystems), calculations are based on local hydrology, climate, geology, soils, climate and land use combined with data for 1995 on crop production, N inputs from N fertilizers and animal manure, and estimates for ammonia emissions, biological N fixation, and N deposition. For point sources, our estimates are based on population densities and human N emissions, sanitation, and treatment. The results provide a first insight into the magnitude of the N losses from soil-plant systems and point sources in various parts of the world, and the fate of N during transport in atmosphere, groundwater, and surface water. The contribution to the river N load by anthropogenic N pollution is dominant in many river basins in Europe, Asia, and North Africa. Our model results explain much of the variation in measured N export from different world river basins.  相似文献   

9.
Research in warm-climate biomes has shown that invasion by symbiotic dinitrogen (N2)-fixing plants can transform ecosystems in ways analogous to the transformations observed as a consequence of anthropogenic, atmospheric nitrogen (N) deposition: declines in biodiversity, soil acidification, and alterations to carbon and nutrient cycling, including increased N losses through nitrate leaching and emissions of the powerful greenhouse gas nitrous oxide (N2O). Here, we used literature review and case study approaches to assess the evidence for similar transformations in cold-climate ecosystems of the boreal, subarctic and upper montane-temperate life zones. Our assessment focuses on the plant genera Lupinus and Alnus, which have become invasive largely as a consequence of deliberate introductions and/or reduced land management. These cold biomes are commonly located in remote areas with low anthropogenic N inputs, and the environmental impacts of N2-fixer invasion appear to be as severe as those from anthropogenic N deposition in highly N polluted areas. Hence, inputs of N from N2 fixation can affect ecosystems as dramatically or even more strongly than N inputs from atmospheric deposition, and biomes in cold climates represent no exception with regard to the risk of being invaded by N2-fixing species. In particular, the cold biomes studied here show both a strong potential to be transformed by N2-fixing plants and a rapid subsequent saturation in the ecosystem’s capacity to retain N. Therefore, analogous to increases in N deposition, N2-fixing plant invasions must be deemed significant threats to biodiversity and to environmental quality.  相似文献   

10.

Nitrogen (N) limitation to net primary production is widespread and influences the responsiveness of ecosystems to many components of global environmental change. Logic and both simple simulation (Vitousek and Fieldin in Biogeochemistry 46: 179–202, 1999) and analytical models (Menge in Ecosystems 14:519–532, 2011) demonstrate that the co-occurrence of losses of N in forms that organisms within an ecosystem cannot control and barriers to biological N fixation (BNF) that keep this process from responding to N deficiency are necessary for the development and persistence of N limitation. Models have focused on the continuous process of leaching losses of dissolved organic N in biologically unavailable forms, but here we use a simple simulation model to show that discontinuous losses of ammonium and nitrate, normally forms of N whose losses organisms can control, can be uncontrollable by organisms and can contribute to N limitation under realistic conditions. These discontinuous losses can be caused by temporal variation in precipitation or by ecosystem-level disturbance like harvest, fire, and windthrow. Temporal variation in precipitation is likely to increase and to become increasingly important in causing N losses as anthropogenic climate change proceeds. We also demonstrate that under the conditions simulated here, differentially intense grazing on N- and P-rich symbiotic N fixers is the most important barrier to the responsiveness of BNF to N deficiency.

  相似文献   

11.
Difficulty in quantifying rates of biological N fixation (BNF), especially over long time scales, remains a major impediment to defining N budgets in many ecosystems. To estimate N additions from BNF, we applied a tree-scale N mass balance approach to a well-characterized chronosequence of woody legume (Prosopis glandulosa) encroachment into subtropical grasslands. We defined spatially discrete single Prosopis clusters (aged 28–99 years), and for each calculated BNF as the residual of: soil N (0–30 cm), above- and below-ground biomass N, wet and dry atmospheric N deposition, N trace gas and N2 loss, leaching loss, and baseline grassland soil N at time of establishment. Contemporary BNF for upland savanna woodland was estimated at 10.9 ± 1.8 kg N ha?1 y?1, equal to a total of 249 ± 60 kg N ha?1 over about 130 years of encroachment at the site. Though these BNF values are lower than previous estimates for P. glandulosa, this likely reflects lower plant density as well as low water availability at this site. Uncertainty in soil and biomass parameters affected BNF estimates by 6–11%, with additional sensitivity of up to 18% to uncertainty in other scaling parameters. Differential N deposition (higher rates of dry N deposition to Prosopis canopies versus open grasslands) did not explain N accrual beneath trees; iterations that represented this scenario reduced estimated BNF estimates by a maximum of 1.5 kg N ha?1 y?1. We conclude that in this relatively well-constrained system, small-scale mass balance provides a reasonable method of estimating BNF and could provide an opportunity to cross-calibrate alternative estimation approaches.  相似文献   

12.
The Lecythidaceae or Brazil Nut family are ubiquitous in non-flooded lowland forests of the Amazon, where they are indicative of well-preserved or little-disturbed habitats. A recent checklist of the Brazilian flora reported 10 genera and 119 species for that country, of which 104 are found in the Amazon region. However, the botanical knowledge in many regions of the country remains far from complete. This study aimed to analyze the diversity of Lecythidaceae in the upper Madeira River region in Rondônia, an area where botanical data is scarce. Lecythidaceae collections deposited in the CEN, INPA and RON herbaria were examined, and four field expeditions in the study area were carried out. For that region, we recorded 37 species of Lecythidaceae belonging to 7 genera: Eschweilera (21 species), Couratari (6), Cariniana (3), Gustavia (3), Allantoma (2), Bertholletia (1) and Lecythis (1). Among these species, five are listed as threatened in the IUCN Red List. The total number of species found in the upper Madeira River of Rondônia alone is higher than the 28 species reported to date for the entire state of Rondônia in the Brazilian Flora Checklist (Smith et al., 2015), and adds 13 new records of Lecythidaceae for the state. Considering that this study is restricted to the northern part of the state, our results suggest that the number of Lecythidaceae species in Rondônia is severely underestimated. Our findings highlight the need for more intensive floristic studies in the Amazon region, which should target areas that are botanically unexplored but have high biodiversity potential. Such studies will provide valuable information to support both taxonomic studies and species conservation assessments.  相似文献   

13.
While the amount of reactive nitrogen circulating at the global level has increased markedly in the last century, the effects of this increase are largely seen at the regional level due to interacting ecological and socio-economic factors. In contrast with most other regions of the world, Latin America and the Caribbean (LA-Ca) stand out due to the fact that the major input of reactive nitrogen (Nr) still occurs naturally via biological nitrogen fixation (BNF) in natural ecosystems as opposed to anthropogenic inputs of synthetic fertilizer, fossil fuel combustion and cropping with leguminous species. Largely due to economic reasons, the consumption of fertilizer N in the LA-Ca region is still low in comparison with the average consumption of the world. However, the fertilizer N consumption is increasing at a much faster rate than that in developed regions of the world, like USA and Canada. The Nr production through BNF in cultivated plants that fix nitrogen (C-BNF) is 5 times lower than that occurring naturally in Latin America, but is still equivalent to 16% of the world C-BNF. The cultivation of nitrogen-fixing crop species in the LA-Ca region is also increasing, almost entirely due to the expansion of soybean fields in the central and northern regions of Brazil and the Pampa region of Argentina. Other anthropogenic activities in the region that contribute to an increase in the circulation of reactive nitrogen include the impact of biomass burning and urbanization. In the last decade, an average of 47,000 km2 per year of forests was burned in the LA-Ca region. The environmental impact of urban centers in the LA-Ca region has become very important, since an intense urbanization process is occurring in this region, at an intensity that far exceeds urban development in the northern hemisphere. The consequences of increased urbanization include increased emissions of NO x to the atmosphere due to the fossil fuel combustion, and the lack of sewage treatment facilities in most cities of the LA-Ca result in a large volume of untreated sewage discharged into surface waters, creating serious environmental problems. The combination of rapid urbanization and agricultural intensification in this region suggest that concern is warranted for the potential for increase in the circulation of reactive nitrogen in the very near future. At the same time, the opportunity still exists to mitigate some of the consequences of human impact on the nitrogen cycle in a region that still maintains a large fraction of its natural ecosystems intact.  相似文献   

14.
The southwestern portion of the Brazilian Amazon arguably represents the largest agricultural frontier in the world, and within this region the states of Rondônia and Mato Grosso have about 24% and 32% of their respective areas under agricultural management, which is almost half of the total area deforested in the Brazilian Amazon biome. Consequently, it is assumed that deforestation in this region has caused substantial loss of soil organic carbon (SOC). In this study, the changes in SOC stocks due to the land use change and management in the southwestern Amazon were estimated for two time periods from 1970–1985 and 1985–2002. An uncertainty analysis was also conducted using a Monte Carlo approach. The results showed that mineral soils converted to agricultural management lost a total of 5.37 and 3.74 Tg C yr?1 between 1970–1985 and 1985–2002, respectively, along the Brazilian Agricultural Frontier in the states of Mato Grosso and Rondônia. Uncertainties in these estimates were ±37.3% and ±38.6% during the first and second time periods, respectively. The largest sources of uncertainty were associated with reference carbon (C) stocks, expert knowledge surveys about grassland condition, and the management factors for nominal and degraded grasslands. These results showed that land use change and management created a net loss of C from soils, however, the change in SOC stocks decreased substantially from the first to the second time period due to the increase in land under no‐tillage.  相似文献   

15.
Two species of frugivorous atelids, Ateles chamek and Lagothrix cana, occur in southwestern Brazilian Amazonia. Populations were surveyed at 36 sites in the state of Rondônia. Ateles chamek is widespread, but the distribution of L. cana is limited by a combination of riverine barriers and ecological factors, possibly including competition with A. chamek. Groups of L. cana were generally larger and more abundant than those of A. chamek, even in syntopy. The transitional forest that predominates in the extreme south of Rondônia (Hylea‐cerrado) is not a barrier to either species, with both species being tolerant of habitat disturbance when hunting pressure is low. Am. J. Primatol. 56:57–64, 2002. © 2002 Wiley‐Liss, Inc.  相似文献   

16.
Tritrophic interactions (plant—herbivore—natural enemy) are basic components of nearly all ecosystems, and are often heavily shaped by bottom-up forces. Numerous factors influence plants’ growth, defense, reproduction, and survival. One critical factor in plant life histories and subsequent trophic levels is nitrogen (N). Because of its importance to plant productivity, N is one of the most frequently used anthropogenic fertilizers in agricultural production and can exert a variety of bottom-up effects and potentially significantly alter tritrophic interactions through various mechanisms. In this paper, the potential effects of N on tritrophic interactions are reviewed. First, in plant-herbivore interactions, N availability can alter quality of the plant (from the herbivore’s nutritional perspective) as food by various means. Second, nitrogen effects can extend directly to natural enemies through herbivores by changes in herbivore quality vis-à-vis the natural enemy, and may even provide herbivores with a defense against natural enemies. Nitrogen also may affect the plant’s indirect defenses, namely the efficacy of natural enemies that kill herbivores attacking the plant. The effects may be expressed via (1) quantitatively and/or qualitatively changing herbivore-induced plant volatiles or other plant features that are crucial for foraging and attack success of natural enemies, (2) modifying plant architecture that might affect natural enemy function, and (3) altering the quality of plant-associated food and shelter for natural enemies. These effects, and their interactive top–down and bottom-up influences, have received limited attention to date, but are of growing significance with the need for expanding global food production (with accompanying use of fertilizer amendments), the widening risks of fertilizer pollution, and the continued increase in atmospheric CO2.  相似文献   

17.
We used satellite‐derived estimates of global fire emissions and a chemical transport model to estimate atmospheric nitrogen (N) fluxes from savanna and deforestation fires in tropical ecosystems. N emissions and reactive N deposition led to a net transport of N equatorward, from savannas and areas undergoing deforestation to tropical forests. Deposition of fire‐emitted N in savannas was only 26% of emissions – indicating a net export from this biome. On average, net N loss from fires (the sum of emissions and deposition) was equivalent to approximately 22% of biological N fixation (BNF) in savannas (4.0 kg N ha?1 yr?1) and 38% of BNF in ecosystems at the deforestation frontier (9.3 kg N ha?1 yr?1). Net N gains from fires occurred in interior tropical forests at a rate equivalent to 3% of their BNF (0.8 kg N ha?1 yr?1). This percentage was highest for African tropical forests in the Congo Basin (15%; 3.4 kg N ha?1 yr?1) owing to equatorward transport from frequently burning savannas north and south of the basin. These results provide evidence for cross‐biome atmospheric fluxes of N that may help to sustain productivity in some tropical forest ecosystems on millennial timescales. Anthropogenic fires associated with slash and burn agriculture and deforestation in the southern part of the Amazon Basin and across Southeast Asia have substantially increased N deposition in these regions in recent decades and may contribute to increased rates of carbon accumulation in secondary forests and other N‐limited ecosystems.  相似文献   

18.
Coltricia globispora sp. nov. is described as new based on specimens collected in the Parque Natural Municipal de Porto Velho, in the state of Rondônia, Brazilian Amazonia. It is characterized by small pores (7–8 per mm), monomitic hyphal system, and globose, smooth and guttulate basidiospores (5.5–6.6 (?7) μm). Phellinus griseoporus has been found for the first time in Brazil, and Cyclomyces iodinus, P. merrillii, P. membranaceus and P. umbrinellus in the Brazilian Amazonia. Coltricia cinnamomea, P. calcitratus and Phylloporia chrysites are new occurrences to the state Rondônia, while C. hamata and Phylloporia spathulata to the state of Pará. The knowledge about Hymenochaetaceae in the Brazilian Amazonia is briefly discussed, and a key to the neotropical species of Coltricia is provided.  相似文献   

19.
Biological nitrogen (N) fixation (BNF), an important source of N in terrestrial ecosystems, plays a critical role in terrestrial nutrient cycling and net primary productivity. Currently, large uncertainty exists regarding how nutrient availability regulates terrestrial BNF and the drivers responsible for this process. We conducted a global meta‐analysis of terrestrial BNF in response to N, phosphorus (P), and micronutrient (Micro) addition across different biomes (i.e, tropical/subtropical forest, savanna, temperate forest, grassland, boreal forest, and tundra) and explored whether the BNF responses were affected by fertilization regimes (nutrient‐addition rates, duration, and total load) and environmental factors (mean annual temperature [MAT], mean annual precipitation [MAP], and N deposition). The results showed that N addition inhibited terrestrial BNF (by 19.0% (95% confidence interval [CI]: 17.7%?20.3%); hereafter), Micro addition stimulated terrestrial BNF (30.4% [25.7%?35.3%]), and P addition had an inconsistent effect on terrestrial BNF, i.e., inhibiting free‐living N fixation (7.5% [4.4%?10.6%]) and stimulating symbiotic N fixation (85.5% [25.8%?158.7%]). Furthermore, the response ratios (i.e., effect sizes) of BNF to nutrient addition were smaller in low‐latitude (<30°) biomes (8.5%?36.9%) than in mid‐/high‐latitude (≥30°) biomes (32.9%?61.3%), and the sensitivity (defined as the absolute value of response ratios) of BNF to nutrients in mid‐/high‐latitude biomes decreased with decreasing latitude (p ≤ 0.009; linear/logarithmic regression models). Fertilization regimes did not affect this phenomenon (p > 0.05), but environmental factors did affect it (p < 0.001) because MAT, MAP, and N deposition accounted for 5%?14%, 10%?32%, and 7%?18% of the variance in the BNF response ratios in cold (MAT < 15°C), low‐rainfall (MAP < 2,500 mm), and low‐N‐deposition (<7 kg ha?1 year?1) biomes, respectively. Overall, our meta‐analysis depicts a global pattern of nutrient impacts on terrestrial BNF and indicates that certain types of global change (i.e., warming, elevated precipitation and N deposition) may reduce the sensitivity of BNF in response to nutrient enrichment in mid‐/high‐latitude biomes.  相似文献   

20.
Junji Ishizuka 《Plant and Soil》1992,141(1-2):197-209
In the world each year 17.2×107 tons of N are biologically fixed. Biological nitrogen fixation (BNF) contributes to plant production in arable lands and in natural ecosystems. Research to improve BNF is progressing through the breeding of efficient N-fixing organisms and host plants, selection of the best combinations of host plant and microsymbiont, and by the improvement of inoculation techniques and field management. Biotechnology is useful for the creation of promising N2-fixing organisms. However, to increase plant production through enhanced BNF the constraints in establishing effective N2-fixing systems in the field should be understood and eliminated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号