首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
The pH dependence of the binding of weakly acidic uncouplers of oxidative phosphorylation to rat-liver mitochondria and liposomes is mainly determined by the pKa of the uncoupler molecule. The absorption and fluorescene excitation spectra of the anionic form of weakly acidic uncouplers of oxidative phosphorylation are red-shifted upon interaction with liposomal or mitochondrial membranes. The affinity for the liposomes, as deduced from the red shift, is independent of the degree of saturation of the fatty acid chains of different lecithins. The intensity of the spectra at one pH value is strongly dependent upon the surface charge of the liposomes. With positively charged liposomes the results obtained can be almost quantitatively explained with the Gouy-Chapman theory, but with negatively charged ones deviations are observed. At a particular pH, the divalent ion Ca-2+ stongly influences the intensity of the spectra in the presence of negatively charged liposomes, but has no effect with neutral liposomes. With mitochondrial membranes an effect of Ca-2+ similar to that with negatively charged liposomes is observed. Depletion of the phospholipids of the mitochondria and subsequent restoration of the mitochrondrial membrane with lecithin, strongly diminishes this effect, but restoration with negatively charged phospholipids does not influence it. From these observations it is concluded that the anionic form of the uncoupler molecule when bound to mitochondria is located within the partly negatively charged phospholiped moiety of the membrane, with its anionic group pointing to the aqueous solution.  相似文献   

2.
The binding of different uncouplers of oxidative phosphorylation to rat-liver mitochondria was measured. At pH 7.2 and about 0.7 mg mitochondrial protein/ml the percentage bound of the uncoupler added was 84% for 2,3,4,5,6-pentachlorophenol (PCP), 40% for carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP), 35% for 4,5,6,7-tetrachloro-2-trifluoromethylbenzimidazole (TTFB), 4% for α′,α′-bis (hexafluoroacetonyl)acetone (1799), and less than 4% for 2,4-dinitrophenol. These percentages are constant up to amounts of uncoupler added several times the one needed for maximal uncoupling. The values found for FCCP and TTFB are in contradiction to the proposed stoichiometric interaction of uncouplers with the coupling sites of the mitochondrial membrane.From titration experiments of the rate of O2 uptake by rat-liver mitochondria in State 4 as a function of the uncoupler concentration in the presence of albumin or of different types of liposomes the conclusion is drawn that the negative surface charge of the mitochondrial phospholipids may be an important parameter in determining the binding of anionic uncouplers to rat-liver mitochondria.  相似文献   

3.
Light-dependent Ca2+ influx into intact spinach chloroplasts, measured with the metallochromic indicator arsenazo III, is stimulated by uncouplers (FCCP, CCCP, nigericin) and inhibited by ruthenium red. The data presented demonstrate that light-dependent Ca2+ influx into chloroplasts is electrogenic and mediated by a uniport-type carrier. The characteristics of the carrier system are similar to those of the Ca2+ uniport of mitochondria.  相似文献   

4.
Calcium activation of oxygen evolution from French-press preparations of Phormidium luridum is largely reversible upon removal of added Ca2+. Activation occurs via a first-order binding with a dissociation constant of 2.8 mM. An 8-fold increase in oxygen evolution rate observed upon Ca2+ addition is accounted for by a 4-fold increase in the number of active photosynthetic units, and a doubling of turnover rate. While both Ca2+ and Mg2+ stimulate turnover, unit activation is Ca2+ specific. Under optimal conditions, 30% of the units functioning in the intact cell can be recovered in the Ca2+-activated preparation.

The Ca2+ requirement of P. luridum preparations is not relieved by proton-carrying uncouplers, or by rate-saturating concentrations of the Hill acceptor, ferricyanide. Taken together with the reported stimulation by Ca2+ of oxygen evolution in the presence of DCMU (Piccioni, R.G. and Mauzerall, D.C. (1976) Biochim. Biophys. Acta 423, 605–609) these observations strongly suggest a site of Ca2+ action within Photosystem II.

The pronounced specificity of the Ca2+ requirement appears in preparations of other cyanobacteria (Anabaena flos-aquae and Anacystis nidulans) but not in the eucaryote Chlorella vulgaris. While milder cell-disruption methods bring about some Ca2+ dependence in P. luridum, French-press treatment is required for maximal expression of Ca2+-specific effects. French-press breakage causes a release of endogenous Ca2+ from cells, supporting the view that added Ca2+ restores oxygen evolution by satisfying a physiological requirement for the cation.  相似文献   


5.
Intramitochondrial Sr2+, similar to Ca2+, inhibits oxidative phosphorylation in intact rat-liver mitochondria. Both Ca2+ and Sr2+ also inhibit the hydrolytic activity of the ATPase in submitochondrial particles. Half-maximal inhibition of ATPase activity was attained at a concentration of 2.5 mM Ca2+ or 5.0 mM Sr2+ when the concentration of Mg2+ in the medium was 1.0 mM. The inhibition of ATPase activity by both cations was strongly decreased by increasing the Mg2+ concentration in the reaction medium. In addition, kinetical data and the determination of the concentration of MgATP, the substrate of the ATPase, in the presence of different concentrations of Ca2+ or Sr2+ strongly indicate that these cations inhibit ATP hydrolysis by competing with Mg2+ for the formation of MgATP. On the basis of a good agreement between these results with submitochondrial particles and the results of titrations of oxidative phosphorylation with carboxyatractyloside or oligomycin in mitochondria loaded with Sr2+ it can be concluded that intramitochondrial Ca2+ or Sr2+ inhibits oxidative phosphorylation in intact mitochondria by decreasing the availability of adenine nucleotides to both the ADP/ATP carrier and the ATP synthase.  相似文献   

6.
The charged and uncharged forms of carbonylcyanide phenylhydrazone uncouplers bind to phosphatidylcholine monolayers in a dose-dependent fashion, inducing changes in the interfacial potential of these model membranes. The interfacial potential change produced by the charged uncoupler is composed of a double-layer potential and an internal electrostatic potential (boundary and/or dipole). Changes in double-layer potential induced by the uncouplers in mitochondrial membranes can explain both the inhibition of oxygen consumption (QO2) caused by the uncouplers and the competition shown by succinate when mitochondria are respiring in the presence of rotenone. From these results and from dose-response curves of QO2 versus uncoupler concentrations, we conclude that 1 microM is an upper limit for free uncoupler concentration in the medium to avoid unwanted side effects during cell physiology studies that require total mitochondrial uncoupling.  相似文献   

7.
《BBA》1972,275(3):485-490
Formation of a membrane potential in two types of liposomes, one inlayed with cytochrome c + cytochrome oxidase, and another, with oligomycin-sensitive ATPase, has been demonstrated. To detect a membrane potential, phenyl dicarbaundecaborane (PCB), a penetrating anion probe, was used.

The first type of liposome was reconstituted from a solution of purified cytochrome oxidase, mitochondrial phospholipids and cytochrome c, the latter being enclosed inside liposomes. Cytochrome c bound to the outer surface of the liposome membrane was removed by washing with NaCl. Such liposomes catalyzed oxidation of ascorbate by oxygen in the presence of phenazine methosulfate or N,N,N′,N′-tetramethyl-p-phenylenediamine. The oxidation was found to support the PCB uptake by liposomes. The PCB response was prevented and reversed by cyanide, protonophorous uncouplers and external cytochrome c.

Liposomes of the second type were prepared from a solution of mitochondrial phospholipids, coupling factors F1and Fc, and the hydrophobic proteins of the oligomycin-sensitive ATPase. These liposomes catalyzed ATP hydrolysis coupled with the PCB uptake. The latter effect was prevented and reversed by oligomycin and uncouplers.

The conclusion is made that membrane potential can be independently formed by enzymic reactions of two different kinds: (1) redox (e.g. cytochrome c oxidase) and (2) hydrolytic (ATPase).  相似文献   


8.
Uncoupling activity with rat liver mitochondria and protonophoric activity across the lecithin liposomal membranes were measured for a series of non-classical uncouplers related to the most potent uncoupler known until now, SF6847 (2,6-di-t-butyl-4-(2',2'-dicyanovinyl)phenol). The correlation between uncoupling and protonophoric activities for a number of uncouplers, both non-classical and classical (simply substituted phenols), was examined quantitatively. Correlation was excellent when such factors as the stability of anionic species in the membrane phase and the difference in the pH conditions of the extramembranous aqueous phase were taken into account. Carbonylcyanide m-chlorophenylhydrazone (CCCP) and carbonylcyanide p-trifluoromethoxyphenylhydrazone (FCCP), which are structurally different, were correlated in a way that resembled the correlation of phenolic compounds, so we think that the mode of action of weakly acidic uncouplers was the same regardless of the structural type. Our findings were evidence for the shuttle-type mechanism of uncoupling action.  相似文献   

9.
Uncoupling activity with flight-muscle mitochondria from house flies was measured for a series of weakly acidic uncouplers (substituted phenols) and compared with the protonophoric potency across lecithin liposomal membranes. The activity was linearly related to the protonophoric potency when such factors as the stability of anionic species in the membrane phase and the difference in the pH conditions of the extramembranous aqueous phase were taken into account. Relationships of the flight-muscle activity with activities measured previously with rat-liver mitochondria and spinach chloroplasts were linear. Our findings were further evidence for the shuttle-type mechanism of the uncoupling action of weakly acidic uncouplers.  相似文献   

10.
S. Rapoport  W. Dubiel  M. Müller 《FEBS letters》1983,160(1-2):134-136
The ATP-dependent proteolysis of rat liver mitochondria prepared in electrolyte-poor sucrose media requires the presence of Ca2+. Lanthanum, an inhibitor of Ca2+ uptake, inhibits the proteolysis. In contrast, proteolysis of mitochondria prepared in a salt medium does not require Ca2+, nor is it inhibited by lanthanum. It is concluded that Caa+ exerts its effect in an indirect manner, by causing swelling and thereby increasing the accessibility of the membrane proteins of the inner mitochondrial membrane.  相似文献   

11.
2-Nitro-4-azidocarbonylcyanide phenylhydrazone (N3CCP), a potent water-soluble uncoupler at pH 6–8, was used to determine the nature of binding of the uncoupler to the mitochondrial membrane. Equilibrium binding studies with N3CCP showed that isolated pigeon heart mitochondria contain 1.6 ± 0.3 high-affinity binding sites per cytochrome a. Several different types of chemical uncouplers were also found to bind to the same high-affinity site as evidenced by their observed competition with N3CCP. The potassium ionophore valinomycin and the respiratory inhibitor antimycin A did not affect uncoupler binding to the high-affinity sites nor did active respiration of the mitochondria. The number of high-affinity binding sites was essentially unchanged by extraction of 80% of the mitochondrial phospholipids. The ability of the uncouplers to bind to the high-affinity binding sites is proportional to the uncoupler activities. These data support the idea that the high-affinity binding sites of mitochondria are protein(s) which are involved in the coupling reactions of oxidative phosphorylation and that uncoupler bound at these sites is responsible for the uncoupling activity.  相似文献   

12.
Yang ST  Shin SY  Lee CW  Kim YC  Hahm KS  Kim JI 《FEBS letters》2003,540(1-3):229-233
In antimicrobial peptides, the cationic property due to basic amino acids has been widely recognized as an important factor to promote electrostatic interaction with negatively charged phospholipids. However, little is known about the differences between two basic residues, Arg and Lys, in membrane binding affinity. Tritrpticin is an Arg- or Trp-rich antimicrobial peptide with a broad spectrum of antibacterial and antifungal activity. To investigate the structural and functional differences between Arg and Lys residues, here we designed and synthesized Arg-containing peptides, tritrpticin and SYM11, and their counterpart Lys-substituted peptides, TRK and SYM11KK, respectively. Although there were no remarkable conformational differences between Arg-containing and Lys-substituted peptides, TRK and SYM11KK exhibited almost two-fold enhanced antibacterial activity but significantly reduced hemolytic activity as compared to tritrpticin and SYM11, respectively. Furthermore, Arg-containing peptides showed strong binding affinity to both zwitterionic and anionic liposomes, whereas Lys-substituted peptides interacted weakly with zwitterionic liposomes but strongly with anionic liposomes. These results suggest that the primary amine of Lys interacts less electrostatically with zwitterionic phospholipids than the guanidinium group of Arg. Our results obtained in this study may be helpful in the design of drugs that target negatively charged phospholipids.  相似文献   

13.
At low uncoupler concentrations the binding of carbonyl-cyanide-m-chlorophenyl-hydrazone to mitochondria was found to depend sensitively on the metabolic state of mitochondria. The binding data are consistent with the assumption that at low concentrations and pH 7.4 the uncoupler is bound mainly in anionic form to the inner mitochondrial membrane and that upon energization the inner membrane undergoes conformation change, exposes buried ionizable groups and hence acquires a negative net membrane charge. Deenergization of the inner membrane by a small amount of uncoupler removes the negative net membrane charge and consequently increases the apparent binding constants. Based upon the present results on uncoupler binding and previous observations on the physiological properties of alkylating uncouplers, a possible molecular mechanism involving electron carriers and coupling factors is suggested for coupling electron transport to phosphorylation.  相似文献   

14.
Cultured cardiac myocytes from neonatal rats show spontaneous and rhythmic contractions. The intracellular concentration of free Ca2 +  also changes rhythmically, associated with the rhythmic contraction of myocytes (Ca2 +  oscillation). This study aims to elucidate whether spontaneous rhythmic contraction affects the dynamics of intracellular Ca2 +  oscillation in cultured cardiac myocytes. In cultures at four days in vitro (4 DIV), spontaneous Ca2 +  oscillation was synchronized among myocytes. Treatment of cultures with an uncoupler of E - C coupling resulted in a cessation of the spontaneous contraction of cardiac myocytes, but did not abolish the Ca2 +  oscillation. The intercellular synchronization of intracellular Ca2 +  oscillation persisted, and both the intervals and the fluctuation of the oscillation tended to increase after the termination of rhythmic contraction. The present study demonstrated that mechanical factors associated with rhythmic contraction did not affect the intercellular synchronization of intracellular Ca2 +  oscillation, but possibly contributed to the stability of the oscillatory rhythm.  相似文献   

15.
Summary Bilayer membranes were formed from decane, cholesterol, and three lipids isolated fromStaphylococcus aureus: positively charged lysyl phosphatidylglycerol (LysPG), negatively charged phosphatidylglycerol (PG), and neutral diglucosyldiglyceride (DiGluDiGly). The uncouplers of oxidative phosphorylation, 2,4-dinitrophenol (DNP) and 3-t-butyl,5-chloro,2-chloro,4-nitrosalicylanilide (S 13), increased the electrical conductance of all three differently charged bilayers. S 13 was found to be the most effective reagent of the known uncouplers in increasing conductance of the bilayers. The conductance induced by uncouplers was investigated as a function of pH and uncoupler concentration. The pH of maximum conductance for each uncoupling agent was dependent on both the uncoupler and the lipid; it was lower for each uncoupler in LysPG and higher in PG compared to DiGluDiGly bilayers. At a pH below the optimum for LysPG, the conductance of the positively charged membrane was 500 times and of the neutral one 10 times higher than that of the negatively charged bilayer at equal uncoupler concentration and pH. Above the pH optimum for DiGluDiGly, the conductance was approximately equal for the positive and neutral membranes, but was lower in PG bilayers. Conductance depended linearly on uncoupler concentration. The bilayer conductance induced by S 13 was entirely due to increased proton permeability in all three lipids. The findings are consistent with the role of uncouplers as carriers for protons across the hydrocarbon interior of lipid membranes. The differences in conductance of differently charged lipid bilayers at equal uncoupler concentration, as well as the change of pH optimum of conductance with lipid charge, can be explained in terms of an electrostatic energy contribution of the fixed lipid charges to the distribution of the uncoupler anion between the aqueous and the membrane phases.  相似文献   

16.
Kinetics of cytosolic recombinant human glyoxalase II and bovine liver mitochondrial glyoxalase II were studied in the presence of liposomes made of different phospholipids (PLs). Neutral PLs such as egg phosphatidylcholine or dipalmitoylphosphatidylcholine did not affect the enzymatic activity of either enzymatic form. Liposomes made of dioleoyl phosphatidic acid or cardiolipin or phosphatidylserine also did not affect the enzymatic activity of mitochondrial glyoxalase II. Conversely, these negatively charged PLs exerted noncompetitive inhibition on cytosolic glyoxalase II only, dioleoyl phosphatidic acid and bovine brain phosphatidylserine exerting the highest and lowest inhibition, respectively. Binding studies, carried out by using a resonant mirror biosensor, revealed that liposomes made of negatively charged PLs interact specifically with both enzymatic forms of glyoxalase II, whereas interactions were not detected with neutral PLs. Once bound on glyoxalase II, negatively charged liposomes could not be removed by 3 M NaCl, suggesting that interactions between glyoxalase II and negatively charged PLs, besides ionic, may be also hydrophobic. These data suggest a possible role of negatively charged phospholipids in the regulation of level of lactoylglutathione in the cell. The data are also discussed in terms of a possible regulation of reduced glutathione supply to mitochondria.  相似文献   

17.
The phospholipid composition, fatty acid pattern and cholesterol content are studied in mitochondria of red lateral muscle of carp acclimated to high and low environmental temperatures.The results of the experiments are: mitochondria from cold-acclimated carp contain higher proportions of ethanolamine phosphatides than mitochondria from warm-acclimated fish, the opposite is true for the choline phosphatides. Thus, at constant pH, the membrane phospholipids are slightly more negatively charged at low acclimation temperature. The total plasmalogen content is reduced in the cold; this reduction is caused by a decrease in the proportion of the choline plasmalogens. The ethanolamine phosphoglycerides contain approx. 20% of the alk-1-enyl acyl type, irrespective of the acclimation temperature. There is no temperature-dependent difference in the low proportion of cholesterol.The fatty acids of total mitochondrial phospholipids are characterized by large amounts of the n-3 and n-6 families. The ratio of unsaturated to saturated fatty acids and the unsaturation index are remarkably higher than those reported for comparable mammalian phospholipids. Cold acclimation of carp does not significantly increase the unsaturation of total phospholipids. A fatty acid analysis of the main isolated phospholipids, however, shows that cold acclimation considerably increases unsaturation of the neutral phosphatidylcholine, whereas it dramatically decreases unsaturation of the negatively charged cardiolipin. It is suggested that the observed fatty acid substitution in phosphatidylcholine indicates a temperature-induced fluidity adaptation within the mitochondrial lipid bilayer, whereas the inverse acclimation pattern of cardiolipin provides a suitable lipid to accommodate the temperature-dependent modifications in the dynamic surface shape of integral membrane proteins.  相似文献   

18.
Various physicochemical and biochemical properties of the most potent uncoupler of oxidative phosphorylation known to date 3,5-di-tert-butyl-4-hydroxybenzylidenemalononitrile (SF 6847), such as pH dependence of the uncoupling activity and binding to mitochondria, spectral properties in the presence of different types of liposomes, biopolymers and mitochondria, and effects on model membrane systems have been investigated. From the results, it is concluded that the uncoupler most likely is localized in the phospholipid part of the membrane.  相似文献   

19.
A comparison of Cd2+ and Ca2+ effects on in vitro rat liver mitochondria function and a further study of their interaction were conducted. Similarity and distinction in action of rotenone, oligomycin, N-ethylmaleimide, dithiothreitol, catalase, dibucaine, ruthenium red, cyclosporin A (CsA), and ADP on Cd2+ and/or Ca2+-induced mitochondrial dysfunction were revealed. We found that rotenone exerted a strong protective action both against Ca2+ and Cd2+-produced mitochondrial membrane permeabilization (MMP). In contrast to Ca2+, catalase and dibucaine did not influence on main Cd2+ effects. In NH4NO3 medium N-ethylmaleimide (NEM) at low concentrations increased markedly Cd2+-produced swelling of non-energized mitochondria, whereas it exhibited a partial reversal effect following energization. In sucrose medium low [NEM] did not change Cd2+-produced mitochondrial swelling. High [NEM] promoted synergistic increase of the Cd2+-produced swelling in NH4NO3 medium; all above effects were reversed (and prevented) by dithiothreitol, DTT. We shown also that when exogenous Ca2+ and Pi were simultaneously present in NH4NO3 medium, DTT reversed only partially Cd2+-produced swelling of succinate plus rotenone-energized mitochondria, while DTT recovery action was complete when either Ca2+ or Pi were separately administered to the Cd2+-treated mitochondria. Besides, DTT added following a low Cd2+ pulse in KCl medium containing exogenous Ca2+ induced a substantial enhancing of sustained Cd2+ stimulation of mitochondrial basal respiration and the stimulation was CsA-sensitive, while the activation promoted by low [Cd2+] alone was totally eliminated by DTT supplement. We observed the similar respiratory activation earlier when high concentrations of Cd2+ in the absence of added Ca2+ were used but it was completely CsA-insensitive. A possible involvement of respiratory chain components, namely complex I (P-site) and complex III (S-site) in Cd2+and/or Ca2+-produced MMP was discussed.  相似文献   

20.
M. Hong  T.W. Moody   《Peptides》1991,12(6):1315-1319
The ability of vasopressin to elevate cytosolic Ca2+ in small cell lung cancer (SCLC) cells was investigated. Ten nanomolar vasopressin elevated the cytosolic Ca2+ in 6 of 8 SCLC cell lines that were loaded with Fura-2 AM. Using SCLC cell line NCI-H345, the effect of vasopressin was dose dependent, being maximal at 100 nM, where the cytosolic Ca2+ was elevated from 150 to 210 nM. Because addition of 1 mM EGTA had no effect on the vasopressin response, vasopressin released Ca2+ from intracellular pools. Also, oxytocin weakly elevated the cytosolic Ca2+. The response to vasopressin was strongly blocked by [(β-mercapto-β,β-cyclopentamethylene propionic acid)1,O-MeTyr2,Arg8]vasopressin and weakly blocked by [(β-mercapto-β,β-cyclopentamethylene propionic acid)1,O-MeTyr2,Orn8]vasotocin. These data suggest that V1 vasopressin receptors are present on SCLC cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号