首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Incubation of fat cell ghosts with activated cholera toxin, nucleoside triphosphate, cytosol, and NAD results in increased adenylate cyclase activity and the transfer of ADP-ribose to membrane proteins. The major ADP-ribose protein comigrates on sodium dodecyl sulfate-polyacrylamide gels with the putative GTP-binding protein of pigeon erythrocyte membranes (Mr 42 000), which is also ADP-ribosylated by cholera toxin. The treatment with cholera toxin enhances the stimulation of the fat cell membrane adenylate cyclase by GTP, but the stimulation by guanyl-5'-yl imidodiphosphate is unaltered. Subsequent stimulation of fat cell adenylate cyclase by 10 micrometers epinephrine is not particularly affected. These changes were qualititatively the same for membranes isolated from fat cells of hypothyroid rats. Although the cyclase of these membranes has a reduced response to epinephrine, guanyl-5'-yl imidodiphosphate or GTP, as compared to euthyroid rat fat cell membranes, the defect is not rectified by toxin treatment and cannot be explained by a deficiency in the cholera toxin target.  相似文献   

2.
1. An ADP-ribosyltransferase activity which appears to be capable of activating adenylyl cyclase was identified in a plasma membrane fraction from rabbit corpora lutea and partially characterized by comparing the properties of the luteal transferase with those of cholera toxin. 2. Incubation of luteal membranes in the presence of GTP and varying concentrations of NAD resulted in concentration-dependent increases in adenylyl cyclase activity. 3. Stimulation of adenylyl cyclase by NAD and cholera toxin plus NAD was observed in the presence of GTP but not in the presence of guanosine-5'-O-(2-thiodiphosphate) or guanyl-5'-yl imidodiphosphate. 4. NAD or cholera toxin plus NAD reduced the Kact values for luteinizing hormone to activate adenylyl cyclase 3- to 3.5-fold. 5. NAD or cholera toxin plus NAD increased the extent to which cholate extracts from luteal membranes were able to reconstitute adenylyl cyclase activity in S49 cyc- mouse lymphoma membranes. 6. It was necessary to add ADP-ribose and arginine to the incubation mixture in order to demonstrate cholera toxin-specific ADP-ribosylation of a protein corresponding to the alpha subunit of the stimulatory guanine nucleotide-binding regulatory component (alpha Gs). 7. Treatment of luteal membranes with NAD prior to incubation in the presence of [32P]NAD plus cholera toxin resulted in reduced labeling of alpha Gs. 8. Endogenous ADP-ribosylation of alpha Gs was enhanced by Mg but was not altered by guanine nucleotide, NaF or luteinizing hormone and was inhibited by cAMP. 9. Incubation of luteal membranes in the presence of [32P]ADP-ribose in the absence and presence of cholera toxin did not result in the labeling of any membrane proteins.  相似文献   

3.
Guanine nucleotide-dependent modulation of agonist binding to the beta-receptor reflects coupling of the receptor to the nucleotide regulatory protein. Similarly, guanine nucleotide-dependent stimulation of adenylate cyclase can be used as an index of coupling between the regulatory protein and the catalytic unit of the cyclase. Using both approaches we have studied coupling in the beta-adrenergic receptor-adenylate cyclase system in rabbit liver during neonatal development. With [3H]dihydroalprenolol as ligand, the Bmax was relatively unchanged (200-300 fmol/mg of protein) between birth and end of day 1 and was similar to adult values. Guanyl-5'-yl imidodiphosphate-dependent shift in agonist (l-isoproterenol) competition curves was biphasic, decreasing from 10-fold in membranes isolated from animals at term to about 6-fold in membranes from 6-h-old neonates, and increasing progressively in older animals to a maximal measurable value of 42-fold in the adult. The ability of guanyl-5'-yl imidodiphosphate, GTP, GTP plus isoproterenol, NaF, or forskolin to activate adenylate cyclase was also biphasic and age-dependent. With Mn2+ the measured activity was not at any time greater than the activity at term. Pretreatment of membranes with cholera toxin resulted in differential levels of enhancement of adenylate cyclase activity wherein much lower enhancement was observed in membranes from neonatal animals. With [32P]NAD as substrate, cholera toxin-catalyzed ADP-ribosylation of membranes indicated development-dependent accumulation of Ns peptides. From these results we suggest that there is a decreased efficiency in the coupling of the beta-adrenergic receptor to hepatic adenylate cyclase in early neonatal life. The molecular basis for the biphasic nature of the coupling is presently unclear.  相似文献   

4.
Inhibition of basal adenylate cyclase by GTP or guanyl-5'-yl imidodiphosphate was abolished in membranes isolated from rat adipocytes previously incubated with pertussis toxin. Forskolin (0.1 microM) stimulated adenylate cyclase about 4-fold and inhibition of cyclase by GTP or guanyl-5'-yl imidodiphosphate was also abolished by pertussis toxin treatment of rat adipocytes. Forskolin (1 microM) increased adenylate cyclase activity at least ten-fold and the inhibitory effect of GppNHp was reduced but not abolished by pertussis toxin. In rabbit adipocytes, pertussis toxin reversed the inhibition of adenylate cyclase activity by GppNHp to the same extent as that by GTP in the presence of 1 microM forskolin. The present results indicate that pertussis toxin can reverse the inhibition of adipocyte adenylate cyclase by nonhydrolyzable GTP analogs as well as that by GTP.  相似文献   

5.
Densensitization of turkey erythrocytes by exposure to the beta-adrenergic agonist (-)isoproterenol leads to decreased activation of adenylate cyclase by agonist, NaF, and guanyl-5'-yl imido diphosphate, with no reduction in the number of beta-adrenergic receptors. Interactions between the receptor and the guanine nucleotide regulatory protein (N protein) also seem to be impaired. These observations suggest that a component distal to the beta-adrenergic receptor may be a locus of modification. Accordingly we examined the N protein to determine whether it was altered by desensitization. The rate at which (-)isoproterenol stimulated the release of [3H]GDP from the N protein was substantially lower in membranes prepared from desensitized cells, providing further evidence for uncoupling of the receptor and the N protein. The amount of N protein in membranes from control and desensitized cells was compared by labeling the 42,000 Mr component of the N protein with [32P]NAD+ and cholera toxin; no significant difference was found. However, significantly more N protein (p less than .001) was solubilized by cholate extraction of desensitized membranes, suggesting an altered association of the N protein with the membrane after desensitization. The functional activity of the N protein was measured by reconstitution of cholate extracts of turkey erythrocyte membranes into S49 lymphoma cyc- membranes. Reconstitution of (-)isoproterenol stimulation of adenylate cyclase activity was reduced significantly (p less than .05) after desensitization. These observations suggest that desensitization of the turkey erythrocyte by (-)isoproterenol results in functional modifications of the guanine nucleotide regulatory protein, leading to impaired interactions with the beta-adrenergic receptor and reduced activation of adenylate cyclase.  相似文献   

6.
Adenylate cyclase of rat adipocyte membranes exhibited dual responses in a strictly GTP-dependent manner; an activation took place in the presence of certain receptor agonists such as isoproterenol or secretin, whereas an inhibitory phase was observed with other agonists such as prostaglandin E1 or purine-modified adenosine as well as with the stimulatory agonists at higher GTP concentrations. Treatment of membrane donor cells with islet-activating protein (IAP), pertussis toxin, abolished the inhibitory phase while preserving the activatory phase. This unique action of IAP was associated with ADP-ribosylation of a membrane Mr = 41,000 protein. In contrast, the inhibitory phase was preserved in membranes from cholera toxin-treated cells. Monophasic and persistent activation of the cyclase was provoked by guanyl-5'-yl beta,gamma-imidodiphosphate. The time lag normally observed for the guanyl-5'-yl beta,gamma-imidodiphosphate activation was decreased by isoproterenol or cholera toxin but was not altered by IAP treatment. Our conclusion is that the sole site of IAP action is the guanine nucleotide regulatory protein (Ni) that is required for transmission of inhibitory signals from receptors to the catalytic unit of adenylate cyclase; the function of Ni is lost upon IAP-catalyzed ADP ribosylation of the Mr = 41,000 protein which appears to be an active subunit of Ni. A possibility is discussed that rather diverse effects of IAP so far reported with various cell types are accounted for in terms of such interference with the function of Ni.  相似文献   

7.
Cholera toxin elicited 5- to 7-fold stimulation of adenylyl cyclase activity. Half-maximal activation was at 4.42 micrograms/ml cholera toxin. Cholera toxin-mediated activation was time dependent. At 0.1 mM ATP, both guanosine triphosphate (GTP) and nicotinamide adenine dinucleotide (NAD+) were required for cholera toxin activation of luteal adenylyl cyclase. The concentrations of GTP and NAD+ required for half-maximal activation were 1 and 200 microM, respectively. The GTP requirement could be eliminated by increasing the ATP concentration to 1.0 mM. Guanosine-5'-O-(2-thiodiphosphate) [GDP beta S] did not support cholera toxin activation of the luteal enzyme. Cholera toxin treatment increased GTP-stimulated activity, did not significantly alter guanyl-5'-yl imidodiphosphate [GMP-P(NH)P]-stimulated activity, and depressed NaF-stimulated activity. Furthermore, toxin treatment resulted in a 3.4-fold reduction in the Kact values for ovine luteinizing hormone (oLH) to activate adenylyl cyclase. A similar reduction in Kact values for oLH was obtained when concentration-effect curves performed in the presence of GMP-P(NH)P were compared to those performed in the presence of GTP. In addition, luteal membranes treated with cholera toxin and [32P]NAD+ were subjected to autoradiographic analysis following sodium dodecyl sulfate-polyacrylamide gel electrophoresis. This treatment resulted in the [32P] adenosine diphospho (ADP)-ribosylation of a 45,000-dalton protein doublet, corresponding to the alpha subunit of the stimulatory guanine nucleotide-binding regulatory component (Ns). As with activation of adenylyl cyclase activity, cholera toxin-specific [32P] ADP-ribosylation was time dependent and increased with increasing concentrations of cholera toxin. GTP, GMP-P(NH)P, and NaF, but not GDP beta S, were capable of supporting [32P] ADP-ribosylation of the protein doublet. oLH did not alter the ability of cholera toxin to ADP-ribosylate the protein activation of luteal adenylyl cyclase activity is due to the ADP-ribosylation of the alpha subunit of Ns and the concomitant inhibition of a GTPase associated with adenylyl cyclase.  相似文献   

8.
The properties of the adenylate cyclase from forskolin-resistant mutants of Y1 adrenocortical tumor cells was compared with the properties of the enzyme from parental Y1 cells in order to localize the site of mutation. In parental Y1 cells, forskolin stimulated adenylate cyclase activity with kinetics suggestive of an interaction at two sites; in mutant cells, forskolin resistance was characterized by a decrease in enzymatic activity at both sites. Forskolin potentiated the enzyme's responses to NaF and guanyl-5'-yl imidodiphosphate (Gpp(NH)p) in parent and mutant clones, and the mutant enzyme showed the same requirements for Mg2+ and Mn2+ as did the parent enzyme. The adenylate cyclase associated with forskolin-resistant mutants was insensitive to ACTH and was less responsive to Gpp(NH)p than was the parent enzyme. In parental Y1 cells and in the forskolin-resistant mutants, cholera toxin catalyzed the transfer of [32P]ADP-ribose from [32P]NAD+ into three membrane proteins associated with the alpha subunit of Gs; however, the amount of labeled ADP-ribose incorporated into mutant membranes was reduced by as much as 70%. Both parent and mutant membranes were labeled by pertussis toxin to the same extent. The insensitivity of the mutant adenylate cyclase to ACTH and Gpp(NH)p and the selective resistance of the mutant membranes to cholera toxin-catalyzed ADP-ribosylation suggest that a specific defect associated with Gs is involved in the mutation to forskolin resistance in Y1 cells.  相似文献   

9.
cyc- S49 cell membranes contain an adenylyl cyclase activity which is stimulated by forskolin and inhibited by guanine nucleotides and NaF. These inhibitory effects are mediated by an inhibitory guanine nucleotide-binding regulatory component (Ni) affecting the adenylyl cyclase catalytic unit (Hildebrandt, J. D., Sekura, R. D., Codina, J., Iyengar, R., Manclark, C. R., and Birnbaumer, L. (1983) Nature (Lond.) 302, 706-709). Since cyc- S49 cells do not contain a stimulatory guanine nucleotide-binding regulatory component (Ns), these membranes were used to study the requirements and kinetics of activation of Ni in the absence of Ns. Activation of Ni by guanyl-5'-yl imidodiphosphate was time-dependent (i.e. hysteretic) and pseudo-irreversible. Although GTP and guanosine 5'-(beta-thio)diphosphate could prevent the inhibition caused by guanyl-5'-yl imidodiphosphate if added simultaneously with it, they could not reverse the inhibited state induced by previous exposure to guanyl-5'-yl imidodiphosphate. Activation of Ni had an absolute requirement for Mg2+. Unlike the activation of Ns, however, which requires millimolar concentrations of Mg2+ in the absence of hormonal stimulation, activation of Ni requires only micromolar concentrations of the divalent cation. These results support the contention that hormones which activate Ni or Ns do so by altering different parameters of a similar activation mechanism.  相似文献   

10.
In mice homozygous for the ob gene (ob/ob), the response of adipose tissue adenylate cyclase to stimulation by lipolytic hormones is abnormally low in comparison to that in lean mice (+/+). Studies on the kinetics of adenylate cyclase activation in white adipocyte membranes under a variety of conditions show the following differences between +/+ and ob/ob mice. 1) The inhibitory effects of GTP and guanyl-5'-yl imidodiphosphate, which were clearly seen in +/+ membranes, were absent in the ob/ob membranes. 2) Half-maximal activation by GTP (in the presence of isoproterenol) required at least 10 times more GTP in ob/ob than in +/+ membranes. 3) Increasing the magnesium concentration (up to 10 mM) of the assay medium facilitated the activation of cyclase by modulatory ligands proportionately more in ob/ob than in +/+ membranes; in the +/+ membranes, 10 mM Mg2+ abolished the inhibitory effects of GTP. 4) Treatment with pertussis toxin attenuated the inhibitory effects of guanine nucleotides in +/+ membranes; no effect of the treatment was seen in the ob/ob membranes. 5) Pretreatment of membranes with cholera toxin facilitated cyclase activation proportionately more in ob/ob than in +/+ membranes; in addition, this treatment led to a shift to the left of the GTP dose-response curve in the ob/ob membranes. Cholera and pertussis toxins catalyzed the incorporation of ADP-ribose into their respective substrates in both the +/+ and the ob/ob membranes, showing that the alpha subunits of the stimulatory and inhibitory proteins of the regulatory component Ns and Ni, respectively are present in both types of membranes. Taken together, the results are consistent with the hypothesis that an excess of beta subunit (either primary or secondary to an altered interaction between beta and Ni alpha or Ns alpha) is responsible for the altered sensitivity to activating ligands of the adipocyte adenylate cyclase of the ob/ob mouse. In addition to these findings, we report an effect of the ob gene on the expression of adenylate cyclase activity, since adipose tissue cyclase from heterozygous lean mice (+/ob) showed characteristics which were intermediate between those of +/+ and ob/ob membranes.  相似文献   

11.
The effects of the muscarinic cholinergic agonist methacholine on affinity of beta-adrenergic receptors for isoproterenol and on isoproterenol-induced stimulation of adenylate cyclase activity were assessed in canine myocardium. GTP and guanyl-5'-yl imidoiphosphate both decreased the affinity of beta-adrenergic receptors for isoproterenol without altering the affinity of these receptors for propranolol. Methacholine (10 nM to 10 micronM) antagonized the guanine nucleotide-induced reduction in beta-adrenergic receptor affinity for isoproterenol. This effect of methacholine was reversed by atropine. The choline ester had no effect on the affinity of beta-adrenergic receptors for isoproterenol in the absence of guanine nucleotides. Likewise, methacholine had no effect on the affinity of beta-adrenergic receptors for propranolol, either in the presence or absence of guanine nucleotides. Methacholine also attenuated GTP-induced activation of adenylate cyclase or isoproterenol-induced activation of the enzyme in the presence of GTP. The effects of methacholine on myocardial adenylate cyclase activity were apparent only in the presence of GTP. These effects were also reversed by atropine. The choline ester had no effect on adenylate cyclase activity in the presence of guanyl-5'-yl imidodiphosphate or NaF. The results of the present study suggest that muscarinic cholinergic agonists can regulate both beta-adrenergic receptors and adenylate cyclase by modulating the effects of GTP.  相似文献   

12.
In freshly isolated parenchymal hepatocytes of adult rats, the beta-adrenergic agonist isoproterenol (Ip) did not stimulate cAMP formation, protein kinase activity, or glycogenolysis, although glucagon markedly stimulated all these activities. However, the beta-adrenergic response appeared when rat hepatocytes were cultured as monolayers. This response had already appeared after 2-h culture and increased during further culture. The appearance of the beta-adrenergic response during culture was blocked by cycloheximide, actinomycin D, or alpha-amanitin. Thus adult rat hepatocytes acquired marked ability to respond to Ip during culture through the syntheses of mRNA and protein. Freshly isolated hepatocytes from postnatal rats showed a high beta-adrenergic response that did not increase further during culture. This response gradually decreased during development and had almost disappeared about 60 days after birth. In plasma membranes prepared from freshly isolated cells of adult rats the basal and NaF-stimulated activities of adenylate cyclase (EC 4.6.1.1) were similar to those of cultured cells and the enzyme activity was also stimulated by guanyl-5'-yl imidodiphosphate. However, in plasma membranes of freshly isolated cells Ip scarcely stimulated adenylate cyclase, but glucagon did. The intact cells, whether they were freshly isolated or cultured, accumulated cAMP when exposed to cholera toxin. Moreover, the two subunits of GTP-binding regulatory protein (also named G/F or Ns site) were detected by [32P]ADP ribosylation with cholera toxin and [32P]NAD+ in freshly isolated cells as well as in cultured cells. These results indicate that freshly isolated and cultured hepatocytes of adult rats contain sufficient levels of all the components of the postreceptor-adenylate cyclase system for activity. However, the number of beta-adrenergic receptors measured by binding of [125I]iodocyanopindolol, a potent beta-adrenergic antagonist, was very low in purified plasma membranes of freshly isolated cells (20 fmol/mg of protein), and the number increased about 6-fold without change in the dissociation constant (Kd = 132 pM) when the cells were cultured for 7 h. This increase in beta-adrenergic receptor sites was completely abolished by cycloheximide and alpha-amanitin. Thus it is concluded that the unresponsiveness of adult rat hepatocytes to Ip was due to a very low amount of beta-adrenergic receptor and that the appearance of a beta-adrenergic response during primary culture was due to new synthesis of beta-adrenergic receptor through synthesis of mRNA.  相似文献   

13.
Adenylate cyclase activity in Xenopus oocyte membranes measured in the presence of guanyl-5'-yl imidodiphosphate and 1.5 mM Mn2+ was maximally inhibited to 57% of control by progesterone and to 89% by the P site agonists, 2',5'-dideoxyadenosine and 9-beta-d-arabinofuranosyladenine. Inhibition by saturating concentrations of 2',5'-dideoxyadenosine and progesterone was not additive, suggesting that inhibition of oocyte adenylate cyclase by progesterone may share a common mechanism with P site inhibition. Kinetic analysis of the effect of progesterone and 2',5'-dideoxyadenosine on the hysteretic activation of adenylate cyclase by guanyl-5'-yl imidodiphosphate indicates that both hormones exert their effects, at least in part, by lengthening the lag in cAMP formation, and this hysteretic effect is inversely proportional to the concentration of guanine nucleotide in the incubation mixture. Direct measurement of [3H] guanine nucleotide release from oocyte membranes preloaded with [3H] GTP demonstrated that treatment with either progesterone or 2',5'-dideoxyadenosine slows the rate of nucleotide exchange. Inhibition of oocyte adenylate cyclase by 2',5'-dideoxyadenosine was potentiated by millimolar concentrations of Mn2+, but inhibition by progesterone was abolished. The results indicate that inhibition of Xenopus oocyte adenylate cyclase by progesterone has features in common with both P site and receptor-mediated inhibitory mechanisms.  相似文献   

14.
Digitonin-solubilized cardiac muscarinic receptors were reconstituted by dialysis into human erythrocyte acceptor membranes which lack high-affinity muscarinic receptors. The number of receptors reconstituted was proportional to the quantity of soluble receptors added to the reconstitution system. Specific [3H](-)-quinuclidinyl benzilate binding to the reconstituted receptor was found to be saturable with a Kd (dissociation constant) equal to 48 +/- 4 pM and a Bmax (maximal density of binding sites) equal to 50 +/- 5 fmol/mg of protein. Competitive binding studies indicated that the reconstituted receptors showed stereoselectivity and drug specificity consistent with a high-affinity muscarinic receptor. Agonist binding to the reconstituted receptor was decreased by the addition of guanyl-5'-yl imidodiphosphate. Sixty per cent of the reconstituted receptors were found to be integral membrane proteins. The molecular weight of the reconstituted receptor as determined by sodium dodecyl sulfate-gel electrophoresis was 76,000 +/- 2,000 and was identical to the molecular weight of the muscarinic receptor in the original cardiac membranes. The data indicate that a partially functional, intact muscarinic receptor was reconstituted into human erythrocyte acceptor membranes and that membrane constituents may be required to stabilize the receptor in a high-affinity state for antagonists.  相似文献   

15.
Cyclic AMP accumulation in response to forskolin, cholera toxin, or isoproterenol is dramatically increased in HIT T-15 cells, a clonal cell line of Syrian hamster pancreatic islet beta cells, as a function of passage number. Forskolin and cholera toxin elevate cyclic AMP levels 5- to 10-fold higher in later passages (87-100) than in earlier passages (70-80). A similar phenomenon is observed with isoproterenol (10 microM) which increases cyclic AMP levels 56-fold in older HIT cells (passage 94), whereas only marginally stimulating cyclic AMP production in younger cells (passage 70-82). To determine whether a change in the stimulatory or inhibitory guanine nucleotide regulatory proteins, Gs or Gi, was responsible for these observations, ADP-ribosylation of HIT cell membranes with cholera toxin and pertussis toxin was examined. All passages contained two cholera toxin substrates at 52 and 45 kDa. The amount of 52 kDa did not appear to change with passage number, but the amount of 45 kDa increased in the later passages (89 and 94). The ratio of 45 to 52 kDa cholera toxin substrate, as determined by densitometric analysis, increased from 0.1 in passages 70, 75, and 82 to 0.45 at passage 89. No passage related changes in a 40-kDa pertussis toxin substrate were observed. An increase in the amount of the 45-kDa alpha-subunit of Gs was confirmed on immunoblots using antisera specific for the alpha-subunits of Gs. The amount of functional Gs present in various HIT cell passages was examined by determining the extent to which extracts from HIT cell membranes reconstituted guanine nucleotide-sensitive adenylyl cyclase in S49 cyc- membranes. Extracts derived from passage 94 reconstituted three to four times more adenylyl cyclase activity in cyc- membranes than extracts from passages 70, 75, and 82. These data indicate that an increase in functional Gs in later passages may be the underlying cause for the increased responsiveness to isoproterenol and forskolin in later passages. These data also suggest that functional differences exist between the Gs alpha-subunits, with the smaller 45-kDa subunit being more efficacious in coupling to cyclic AMP synthesis than the larger 52-kDa subunit. This is a departure from the commonly held view that the two subunits have similar efficacies in stimulating adenylyl cyclase.  相似文献   

16.
The effect of molybdate on adenylate cyclase (EC 4.6.1.1) in rat liver plasma membranes has been examined. The apparent K alpha for molybdate activation of the enzyme is 4.5 mM, and maximal, 7-fold stimulation is achieved at 50 mM. The observed increase in cAMP formation in the adenylate cyclase assay is not due to: (a) an inhibition of ATP hydrolysis; (b) a molybdate-catalyzed conversion of ATP to cAMP; (c) an inhibition of cAMP hydrolysis; or (d) an artifact in the isolation of cAMP formed in the reaction. Molybdate activation of adenylate cyclase is a general phenomenon exhibited by the enzyme in brain, cardiac, and renal tissue homogenates and in erythrocyte ghosts. However, like fluoride and guanyl-5'-yl imidodiphosphate (Gpp(NH)p), molybdate does not activate the soluble rat testicular adenylate cyclase. Molybdate is a reversible activator of adenylate cyclase. Activation is not due to an increase in ionic strength and is independent of the salt used to introduce molybdate. Molybdate does not activate adenylate cyclase previously stimulated with Gpp(NH)p or fluoride. At concentration greater than 20 mM, molybdate inhibits fluoride-stimulated adenylate cyclase, and at concentrations greater than 100 mM, molybdate stimulation of basal adenylate cyclase activity is diminished.  相似文献   

17.
Spontaneous transformation of RL-PR-C hepatocytes leads to alterations in the adenylate cyclase complex which include a lower than normal basal level of activity, a loss of sensitivity to exogenous GTP, and a decreased sensitivity to isoproterenol. Both normal and transformed membranes possess substantial GTPase activity. Treatment of transformed hepatocyte membranes with either isoproterenol plus GMP or with cholera toxin, under conditions that displace tightly bound GDP, restored the GTP effect on adenylate cyclase, and eliminated the lag in the activation by guanyl-5'-yl-imidodiphosphate. Such pretreatment also enhanced guanine nucleotide effects on the adenylate cyclase of normal hepatocytes. These results are explainable on the basis that transformation increases adenylate cyclase-associated GTPase activity, and increases occupancy of nucleotide regulatory sites by inactive or inhibitory guanine nucleotides, e.g., GDP. Seemingly, both catecholamines and cholera toxin promote an exchange reaction at the regulatory sites, resulting in clearance of these sites of inhibitory nucleotides.  相似文献   

18.
A comparison was made of the effects of cholera toxin and p[NH]ppG on the binding affinity of beta-adrenergic receptors in toad erythrocyte membranes. This was determined by studying the ability of isoproterenol and propranolol to compete for the receptor with (-)-[3H]dihydroalprenolol. p[NH]ppG decreased the receptor affinity for the agonist isoproterenol (i.e. a 'right' shift in the displacement-concentration curve), but was without effect on the affinity for the antagonist propranolol. Toad erythrocyte membranes after treatment with cholera toxin exhibited increased receptor affinity for isoproterenol (i.e. a 'left' shift in the displacement curve), but did not affect the affinity for propranolol. p[NH[ppG was able to exert its right shift even in cholera-toxin treated membranes. The ability of cholera toxin to alter beta-adrenergic-receptor affinity is interpreted as further evidence that the toxin affects the nucleotide-regulatory component of adenylate cyclase. The regulatory component affected may be the catecholamine-sensitive guanosine triphosphatase.  相似文献   

19.
Spontaneous transformation of RL-PR-C hepatocytes leads to alterations in the adenylate cyclase complex which include a lower than normal basal level of activity, a loss of sensitivity to exogenous GTP, and a decreased sensitivity to isoproterenol. Both normal and transformed membranes posses substantial TGPase activity. Treatment of transformed hepatocyte membranes with either isoproterenol plus GMP or with cholera toxin, under conditions that displace tightly bound GDP, restored the GTP effect on adenylate cyclase, and eliminated the lag in the activation by guanyl-5′-yl-imidodiphosphate. Such pretreatment also enhanced guanine nucleotide effects on the adenylate cyclase of normal hepatocytes. These results are explainable on the basis that transformation increases adenylate cyclase-associated GTPase activity, and increase occupancy of nuceotide regulatory sites by inactive or inhibitory guanine nucleotides, e.g., GDP. Seemingly, both catecholamines and cholera toxin promote an exchange reaction at the regulatory sites, resulting in clearance of these sites of inhibitory nucleotides.  相似文献   

20.
This study probes the structure and mutual interactions of the components of adenylate cyclase. We use a complementation assay which involves the addition of an adenylate cyclase-related guanine nucleotide-binding protein component to a membrane lacking this component to measure guanine nucleotide-stimulated-adenylate cyclase. Instead of using detergent extracts we were able to achieve full complementation by mixing intact membrane preparations in the presence of the nucleotide component. Of particular interest was the human erythrocyte membrane which contains very low amounts of catalytic activity and no measurable beta-adrenergic receptor but has normal amounts of the nucleotide component. This component appears to be the same, by several criteria, as components found in pigeon and turkey erythrocytes and in rat liver plasma membrane. The component confers Gpp(NH)p, fluoride, and GTP stimulation of adenylate cyclase along a single reconstitution curve. It is labeled with NAD by cholera toxin, and has an apparent molecular weight of 39 000 upon sodium dodecyl sulfate gel electrophoresis. The presence of the nucleotide unit in the virtual absence of the active catalytic unit allowed us to determine those properties intrinsic to each unit and those conferred by the association of the units. The nucleotide component binds guanine nucleotides weakly in the human erythrocyte membrane, yet produces persistent activation of adenylate cyclase and tight binding (of Gpp(NH)p) upon combination with the catalytic unit. Treatment of the human erythrocyte membrane with N-ethylmaleimide causes a simultaneous diminution in both Gpp(NH)p and fluoride stimulation in reconstituted activities, suggesting that both activities are conferred by the same component.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号