首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Discriminant function analysis was used to distinguish morphologically between samples of parr, smolts and adult Atlantic salmon Salmo salar from several hatchery and river systems in Ireland. The effect of habitat shift was investigated in Atlantic salmon parr. Parr grown from the eyed‐egg stage with a non‐sibling group in a hatchery environment, came to resemble the mean body shape of their host hatchery Atlantic salmon stock more closely than that of a full sibling group grown at their natal hatchery. Wild Atlantic salmon smolts differed in shape from hatchery‐reared smolts. This difference was less pronounced, but still statistically significant when wild adults were compared with hatchery‐reared adults captured in the coastal drift‐net fishery after a year spent at sea. Rearing conditions had a significant impact on the production and growth of fish body shape. This in turn may have affected adaptability and survivorship of ranched Atlantic salmon in the marine environment.  相似文献   

2.
We compared the diet of hatchery-reared steelhead produced from an integrated hatchery program as emigrating spring smolts and non-migrating hatchery residuals to their sympatric wild counterparts. Our results suggest that there is a potential for hatchery fish to affect wild steelhead populations due to dietary overlap and subyearling salmonid predation; however, relative ecological risk did not increase as steelhead delayed or forwent emigration. Predation by hatchery smolts was related to release timing, but not experience with native fish. Diet composition appears to be more strongly affected by seasonal and yearly differences in prey abundance and presence rather than differences in rearing environments. Hatchery and wild steelhead showed small but important foraging differences. Hatchery smolts did not consume as many salmonids as wild fish and hatchery residuals showed relatively stronger surface oriented feeding behavior than wild parr. Because most hatchery smolts emigrated shortly after release and the overall number of residuals in the study creek was low, we speculate that in this case there is low dietary and predatory-based risk of hatchery steelhead in Abernathy Creek negatively impacting wild salmonids.  相似文献   

3.
Both wild‐ and hatchery‐reared brown trout Salmo trutta , 18 months of age and of the same genetic origin, responded with increased heart rates (tachycardia) to a simulated predator attack on 2 consecutive days. Brown trout reared in the hatchery showed a more rapidly induced tachycardia compared with wild‐reared fish at day 1, but not day 2. During an undisturbed period several hours after attacks, hatchery‐reared brown trout maintained higher heart rates compared to wild‐reared fish on both days. Behavioural responses to the attack were very low for all fish, although hatchery‐reared fish tended to be more active than wild fish after the attack day 2. The observed differences may have had a genetic background caused by different selection regimes in the hatchery‐ and wild‐rearing environments, or could have been due to different phenotypic responses in the two environments.  相似文献   

4.
Shoals of hatchery‐reared and wild sea bass juveniles Dicentrarchus labrax were tested for differences in their antipredator responses towards a potential live predator, the eel Anguilla anguilla . Eight experimental shoals ( i.e . replicates), each composed of 15 individuals from the same stock of juveniles ( i.e . wild or hatchery), were video recorded for 5 min before and after predator exposure. A set of behavioural variables were measured during the pre‐stimulus and stimulus phases of each test and compared between the two groups of replicates. Results showed that in both hatchery‐reared and wild juveniles predator exposure elicited a significant increase in the mean level of shoal cohesiveness and mean shoal distance from the predator, and a significant decrease in the mean shoal distance from the bottom. Shoals of wild juveniles, however, aggregated more quickly and reached higher shoal cohesiveness within the first 20 s of the stimulus period than shoals of hatchery‐reared fish. During this period, the wild fish also reached the highest peak in shoal cohesiveness, which then decreased gradually towards the levels observed before predator exposure. Another component of the antipredator response, the predator inspection behaviour, was fully developed in both wild and hatchery fish. Wild fish, however, tended to inspect the predator at a closer distance than hatchery fish.  相似文献   

5.
The recapture rate and survival of hatchery‐reared Atlantic salmon Salmo salar stocked as 1 year‐old parr (semi‐wild) with that of hatchery‐reared Atlantic salmon stocked as 2 year‐old smolts and wild smolts of Atlantic salmon in the northern Baltic Sea were compared. This was done through tagging experiments carried out in 1986–1988 and 1992. The recapture rate of the semi‐wild groups varied from 1·0 to 13·1%, being similar in 3 tagging years and lower in 1 year than that of the wild groups (1·7–17·0%). The recapture rate of the semi‐wild groups was similar (in 2 years) or higher (in 2 years) than that of the hatchery‐reared groups stocked as smolts (1·3–6·3%). The survival of semi‐wild smolts during the sea migration was as high as that of wild Atlantic salmon of an equal size and two to three times higher than hatchery‐reared Atlantic salmon stocked as smolts. The survival rate was positively associated with smolt size. The suitability of hatchery‐reared parr and smolts in the management of reduced Atlantic salmon stocks is compared.  相似文献   

6.
Following exposure to a predator stimulus (a brown trout Salmo trutta ), the opercular rate of Atlantic salmon Salmo salar fry increased by 35·3 ± 11·0%(mean ± 95% CI). The time taken for opercular rate to decline to baseline levels depended upon the occurrence of any associated locomotory activity. Opercular rates of fish that dashed when exposed remained elevated for 38·2 ± 20·6 min, whereas those of individuals that did not move ('freezers') recovered within 7·2 ± 2·9 min. The duration that opercular rate remained elevated was positively correlated with the magnitude of the elevation, which was higher in 'dashers' than freezers. The maximum opercular rate in 'freezers' was similar between wild fry and hatchery‐reared fry (from wild parents). There was a significant delay, however, in hatchery compared with wild fry in the time until peak ventilatory response and onset in the decline phase. This difference in opercular response suggests that hatchery fish were slower to realize fully the potential danger from the predator. Any delay in response could be directly attributed to the effect of hatchery‐rearing environment, rather than domestication or hatchery selection effects.  相似文献   

7.
Baer  J. 《Journal of fish biology》2004,65(S1):314-314
In spring 2001 and 2002 a small stream was stocked with tagged hatchery‐reared yearling brown trout ( Salmo trutta ), in order to study their influence on the resident brown trout population. The stream was separated into six sections: two sections without stocking, two sections where stocking doubled the trout population and two sections where the fish population was quadrupled. The working hypothesis was that due to food limitation (competition) growth of the wild fish will be negatively influenced by stocking, and wild fish will be displaced by the (possibly more aggressive) hatchery fish. Surprisingly, growth rate of wild and stocked fish of the same age was similar and independent of stocking density. Two main reasons may be responsible for this finding: only a low percentage of the stocked fish remained in the stream, and food was not limited during summer. Only 12–19% of the stocked fish were recaptured after six months, in contrats to 40–70% of one‐year old and up to 100% of older wild trout. The wild fish were not displaced by hatchery‐reared fish: During summer the wild fish remained more or less stationary, whereas most of the stocked trout had left their release site. The results indicate that in a natural stream stocking of hatchery reared brown trout does not influence negatively growth and movement of the wild fish independent of stocking density.  相似文献   

8.
Hatchery and wild juvenile populations of steelhead Oncorhynchus mykiss and coho salmon Oncorhynchus kisutch , in a small coastal watershed in central California, were sampled throughout the year in a stream and at a hatchery. Both species grew faster in captivity than in the wild. Hatchery fish of both species had elevated gill Na+, K+‐ATPase activity, and thus were ready to enter sea water when planted during the wild fish migration. Downstream migrant trapping and stream surveys indicated that hatchery smolts went to sea soon after planting, consequently avoiding the effects of competition and predation that commonly occur when hatchery‐bred juveniles are released. Adult steelhead were also sampled throughout the watershed. The return of hatchery steelhead was highly synchronized with that of wild steelhead, indicating that hatchery propagation had no adverse effects on the timing of the run. A disproportionate number of hatchery steelhead returned to the tributary where the hatchery was located, despite being planted throughout the watershed. Hatchery steelhead did not differ in mean age or size from wild steelhead. Observations of spawning indicated that hatchery and wild steelhead interbreed. Competition for mates or spawning substratum was rarely observed between hatchery and wild steelhead. Many of the problems commonly associated with artificial propagation can be avoided in small coastal watersheds when wild broodstock are used and fish are released as smolts.  相似文献   

9.
Spedicato  M. T.  Carbonara  P.  & Lembo  G. 《Journal of fish biology》2004,65(S1):322-322
A study was conducted in in the Dale River as a part of a stock enhancement programme. The aim was to compare growth and the incidence of precocious maturation between offspring from precocious and large maturing males, and to study genotype‐environment interactions. River and hatchery performance was compared for 5 × 2 maternal half‐sib family groups, which were stocked as 0+ juveniles or maintained in the hatchery throughout. To identify the offspring, the broodfish were characterized by DNA‐fingerprinting (eight microsatellite markers). Smolt size of 1+ hatchery‐reared smolt and fish caught in a smolt trap, and the size and incidence of precocious maturation among 1+ hatchery‐reared parr and 1+ and 2+ parr caught in the river are compared between the families.  相似文献   

10.
Predation shortly after release is the main source of mortality among hatchery‐reared fish used to restore or enhance endangered salmonid populations. We found, that hatchery‐reared salmonid young originating from endangered stocks have weak innate responses to their natural fish predators. The ability to avoid predation in fish can be improved through social learning from experienced to naïve individuals. Huge benefits would be achieved, if social learning processes could be successfully applied on a large scale to enhance viability of hatchery fish prior to release into the wild. By using model predators together with chemical cues from real predators we tested if social learning could be used to train hatchery‐reared salmonid young to avoid fish predators. As there are clear differences in social behaviour among the salmonid species, we first examined whether these differences affect the probability and efficiency of learning anti‐predator skills from trained demonstrators. We compared anti‐predator responses of observers (fish trained by using experienced fish as demonstrators) with those of control fish, which had been 'trained' by untrained naïve conspecifics. We also examined how the efficiency of social learning depends on the ratio of experienced to naïve fish involved in social transmission trials. The results of these experiments will give guidelines how social learning could be utilized in developing hatchery scale training protocols.  相似文献   

11.
Bitterling as models for studies of sperm competition   总被引:2,自引:0,他引:2  
The plight of the world fish stocks is all too well documented. As part of an ongoing attempt to bolster fish stocks for both commercial and conservation purposes, many fish are reared in captivity and released into the wild. It is well known that hatchery‐reared fish have low post‐release survival compared with wild fish of similar age. Part of the reason for this high mortality is that hatchery fish show deficits in virtually all aspects of their behaviour, including prey selection and predator avoidance. Much behaviour requires repeated experience so that it may become fine‐tuned to prevailing circumstances via learning during development. It has been suggested that inappropriate behaviour is encouraged when fish are reared in the unnatural surroundings of the hatchery. However, hatchery fish can be taught to recognise live, novel prey items and predators and the rate of learning is increased in the presence of a more knowledgeable conspecifics. Here we present data showing how social learning protocols can be used to dramatically increase foraging success in juvenile Atlantic salmon. We also outline related aspects of our ongoing research and discuss some of the possibilities for altering hatchery practices to maximize post‐release survival.  相似文献   

12.
Atlantic salmon salmo salar L. parr were reared for 3 months under standard hatchery conditions or in a structurally enriched tank (containing plants, rocks and novel objects). Half of each of these fish had prior exposure to live prey in the form of live bloodworm while the other half were fed hatchery‐pellets. After 12 days all fish were tested on a novel live prey item (brine shrimp). A significant interaction between the two factors (prior exposure to live prey and rearing condition) revealed that foraging performance was only enhanced in fish that had been reared in a complex environment and exposed to live prey. It appears that the ability to generalize from one live prey type to another is only enhanced in fish that had been reared in an enriched environment. The findings support the assertion that the provision of enriched environments in combination with exposure to live prey prior to release may significantly improve the post‐release survival rates of hatchery‐reared fishes. As both the environmental enrichment and the prior foraging experience procedures were comparatively simple, the provision of such pre‐release experiences are likely to prove cost effective to hatcheries.  相似文献   

13.
Coastal cutthroat trout Onchorhynchus clarkii clarkii life-history variants, migration and freshwater residency were monitored using stationary passive integrated transponder (PIT) tag arrays in two tributaries of the Columbia River from 2001 to 2005 (Abernathy Creek, river kilometre, rkm 76) and from 2002 to 2005 (Chinook River, rkm 6). In 2001–2003 and 2002–2003 (Abernathy and Chinook, respectively), 300–500 coastal O. c. clarkii were captured in each tributary by electrofishing and implanted with 23 mm PIT tags. PIT arrays monitored movements from the initiation of tagging through the spring of 2005. Rotary screw traps were also operated on both tributaries. In Abernathy Creek, 28% of tagged individuals were observed through either active capture or passive interrogation. Of these, 32% were identified as migrants and 68% were identified as residents. In the Chinook River, 48% of tagged fish were observed subsequent to tagging; 92% of these fish were migrants and only 8% were resident. In both tributaries, a greater proportion of resident fish were in the upper reaches. The majority of migrants (78–93%) moved the spring following tagging. Migrants leaving at age 2+ years tended to grow faster than those that migrated at age 3+ years or residents. Patterns of growth or growth opportunities may influence both patterns of life-history expression and the timing of migration.  相似文献   

14.
Hatchery‐reared brown trout Salmo trutta stocked in a natural stream in addition to resident wild brown trout grew more slowly than those stocked with an experimentally reduced density of brown wild trout. In both cases, hatchery‐reared brown trout grew more slowly than resident wild fish in control sections. Mortality and movements did not differ among the three categories of fish. The results showed that growth of stocked hatchery‐reared brown trout parr was density‐dependent, most likely as a consequence of increased competition. Thus, supplementary release of hatchery‐reared fish did not necessarily increase biomass.  相似文献   

15.
Twenty‐one allozyme loci in samples of wild‐caught and hatchery‐reared Indian major carps from Bangladesh were analysed. Bayesian model‐based clustering analysis revealed the presence of four taxa, corresponding to the three known species along with a fourth unknown taxon present in two hatchery samples. Individual admixture coefficients showed that 24% of all hatchery‐reared fishes were hybrids, whereas a single hybrid was observed in the wild‐caught samples. Only catla Catla catla × rohu Labeo rohita and mrigal Cirrhinus cirrhosus × rohu hybrids were observed, the vast majority of which were F1 hybrids, though five individuals represented putative backcrosses. Mitochondrial DNA analysis revealed that catla × rohu hybridization primarily involved catla males and rohu females, whereas mrigal × rohu hybrids primarily resulted from rohu males and mrigal females. Despite the high percentage of F1‐hybrids in hatchery samples, reproductive barriers among species have so far precluded widespread introgression. Continued hybridization may eventually lead to a breakdown of species barriers, thereby compromising the genetic integrity of the species in the wild, and leading to production losses in aquaculture.  相似文献   

16.
The effect of varying the density of hatchery‐reared Atlantic salmon Salmo salar on the ability of single wild fish to occupy a shelter is assessed. Although there was strong density‐dependence on sheltering overall, the ability of wild Atlantic salmon parr to occupy a shelter was not affected by the presence of hatchery‐reared fish even when outnumbered by four to one. These findings illustrate a competitive asymmetry for shelter in favour of the wild fish at the densities tested.  相似文献   

17.
Hatchery‐reared Atlantic salmon Salmo salar ( n  = 25) and wild anadromous brown trout (sea trout) Salmo trutta ( n  = 15) smolts were tagged with coded acoustic transmitters and released at the mouth of the River Eira on the west coast of Norway. Data logging receivers recorded the fish during their outward migration at 9, 32, 48 and 77 km from the release site. Seventeen Atlantic salmon (68%) and eight sea trout (53%) were recorded after release. Mean migratory speeds between different receiver sites ranged from 0·49 to 1·82 body lengths (total length) per second (bl s−1) for Atlantic salmon and 0·11–2·60 bl s−1 for sea trout. Atlantic salmon were recorded 9, 48 and 77 km from the river mouth on average 28, 65 and 83 h after release, respectively. Sea trout were recorded 9 km from the release site 438 h after release. Only four (23%) sea trout were detected in the outer part of the fjord system, while the rest of the fish seemed to stay in the inner fjord system. The Atlantic salmon stayed for a longer time in the inner part than in the outer parts of the fjord system, but distinct from sea trout, migrated through the whole fjord system into the ocean.  相似文献   

18.
Atlantic salmon salmo salar smolts of wild, hybrid and farmed parentage were individually tagged then reared in a sea cage for 8 months. The fish were sampled three times during this period. On all occasions, farmed Atlantic salmon displayed the highest abundance and density of sea lice Lepeophtheirus salmonis , whilst no significant differences were observed between hybrid and wild Atlantic salmon. Percentage variation between the lowest and highest infected groups was as high as 175 and 144% for L. salmonis abundance and density respectively (sample 2). The temporal stability of interindividual sea lice infection levels was investigated pair‐wise between samples using correlation (sample 1 v . 2, 1 v . 3 and 2 v . 3). When calculated using sea louse abundance, correlations ranged from r 2 = 0·11, P  < 0·01 to r 2 = 0·39, P  < 0·001, but, when the effects of fish size were controlled for by converting abundance to density, all correlations were <  r 2 = 0·1. Therefore, these data indicate that a fish's relative infection level in one sample was a weak predictor of its relative infection level in another sample. This suggests that identification of individual Atlantic salmon that display reduced susceptibility to sea lice, may be problematic.  相似文献   

19.
In an experiment to investigate genetic consequences of hatchery rearing in salmon, allozyme variation at five polymorphic loci was examined in Atlantic salmon of known initial genetic composition, which were reared throughout freshwater life in the hatchery or stocked into the wild as swim-up fry. The genetic composition of the juveniles in the hatchery remained homogeneous from fertilization up to stocking, and from stocking to 2+ in the wild, however, those remaining at the hatchery developed genetic differences among smolting and nonsmolting 1+ parr. These differences were attributed to conditions leading to early smolting at 1+ among the hatchery fish, with 1+ smolts diverging from the gene pool from which they were derived, whereas those stocked into the wild did not smolt until a year later and retained the original genetic composition. The results are discussed in relation to hatchery rearing of salmon and implications for the use of reared fish in stocking and enhancement programmes.  相似文献   

20.
Fish provide a wonderful opportunity to explore processes that shape and select cognitive ability. In this presentation, I will illustrate three aspects of work that my colleagues and I have used to investigate fish learning and memory over the last decade. First, I will discuss how comparing different populations sampled from contrasting habitats allows differences in cognitive ability to be related to the evolutionary ecology of the fish. I will use examples that have investigated how differences in learning ability between populations of the same species can arise. Here, the examples will be taken from the ubiquitous three‐spined stickleback, and a Panamanian poecilid, Brachyraphis .
The second approach has used fish cognition as a tool to quantify behaviour to enable assessment of different aspects of fish welfare. For example, the recent work investigating pain perception in trout required the use of a learning task to quantify how fish behaviour was modified after noxious stimulation. Ways in which these, and similar, processes can be used in future studies of fish welfare will be discussed.
The final part of the presentation will consider recent work that addresses the problems of releasing hatchery‐reared fish for restocking purposes. Although a common practice, most of the hatchery‐reared fish die shortly after they are released. Much of the observed mortality apparently stems from the fishes' inexperience with a variable environment. Experiments with juvenile cod and brown trout suggest that both age, and the early rearing environment, have profound effects on fish learning and behaviour. I will discuss how simple modifications to current rearing practices may have large beneficial effects on the post‐release survival of hatchery‐reared fish.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号