首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The phenomenon of cross-limb transfer, in which unilateral strength training can result in bilateral strength gains, has recently been tested for ballistic movements. Performance gains associated with repetitive motor practice, and the associated transfer, occur within a few minutes. In this study, young and older adults were trained to perform ballistic abductions of their dominant (right) index finger as quickly as possible. Performance was assessed bilaterally before, during, and after this training. Both groups exhibited large performance gains in the right hand as a result of training (P < 0.001; young 84% improvement, older 70% improvement), which were not significantly different between groups (P = 0.40). Transcranial magnetic stimulation revealed that the performance improvements were accompanied by increases in excitability, together with decreases in intracortical inhibition, of the projections to both the trained muscle and the homologous muscle in the contralateral limb (P < 0.05). The young group also exhibited performance improvements as a result of cross-limb transfer in the left (untrained) hand (P < 0.005), equivalent to 75% of the performance increase in the trained hand. In contrast, there were no significant performance gains in the left hand for the older group (P = 0.23). This was surprising given that the older group exhibited a significantly greater degree of mirror activity than the young group (P < 0.01) in the left first dorsal interosseus muscle (FDI) during right hand movements. Our findings suggest that older adults exhibit a reduced capacity for cross-limb transfer, which may have implications for motor rehabilitation programs after stroke.  相似文献   

2.
It is well known that following skill learning, improvements in motor performance may transfer to the untrained contralateral limb. It is also well known that retention of a newly learned task A can be degraded when learning a competing task B that takes place directly after learning A. Here we investigate if this interference effect can also be observed in the limb contralateral to the trained one. Therefore, five different groups practiced a ballistic finger flexion task followed by an interfering visuomotor accuracy task with the same limb. Performance in the ballistic task was tested before the training, after the training and in an immediate retention test after the practice of the interference task for both the trained and the untrained hand. After training, subjects showed not only significant learning and interference effects for the trained limb but also for the contralateral untrained limb. Importantly, the interference effect in the untrained limb was dependent on the level of skill acquisition in the interfering motor task. These behavioural results of the untrained limb were accompanied by training specific changes in corticospinal excitability, which increased for the hemisphere ipsilateral to the trained hand following ballistic training and decreased during accuracy training of the ipsilateral hand. The results demonstrate that contralateral interference effects may occur, and that interference depends on the level of skill acquisition in the interfering motor task. This finding might be particularly relevant for rehabilitation.  相似文献   

3.
Are children superior to adults in consolidating procedural memory? This notion has been tied to "critical," early life periods of increased brain plasticity. Here, using a motor sequence learning task, we show, in experiment 1, that a) the rate of learning during a training session, b) the gains accrued, without additional practice, within a 24 hours post-training interval (delayed consolidation gains), and c) the long-term retention of these gains, were as effective in 9, 12 and 17-year-olds and comparable to those reported for adults. However, a follow-up experiment showed that the establishment of a memory trace for the trained sequence of movements was significantly more susceptible to interference by a subsequent motor learning experience (practicing a reversed movement sequence) in the 17-year-olds compared to the 9 and 12-year-olds. Unlike the 17-year-olds, the younger age-groups showed significant delayed gains even after interference training. Altogether, our results indicate the existence of an effective consolidation phase in motor learning both before and after adolescence, with no childhood advantage in the learning or retention of a motor skill. However, the ability to co-consolidate different, successive motor experiences, demonstrated in both the 9 and 12-year-olds, diminishes after puberty, suggesting that a more selective memory consolidation process takes over from the childhood one. Only the adult consolidation process is gated by a recency effect, and in situations of multiple, clashing, experiences occurring within a short time-interval, adults may less effectively establish in memory experiences superseded by newer ones.  相似文献   

4.
The gold standard to acquire motor skills is through intensive training and practicing. Recent studies have demonstrated that behavioral gains can also be acquired by mere exposure to repetitive sensory stimulation to drive the plasticity processes. Single application of repetitive electric stimulation (rES) of the fingers has been shown to improve tactile perception in young adults as well as sensorimotor performance in healthy elderly individuals. The combination of repetitive motor training with a preceding rES has not been reported yet. In addition, the impact of such a training on somatosensory tactile and spatial sensitivity as well as on somatosensory cortical activation remains elusive. Therefore, we tested 15 right-handed participants who underwent repetitive electric stimulation of all finger tips of the left hand for 20 minutes prior to one hour of motor training of the left hand over the period of two weeks. Overall, participants substantially improved the motor performance of the left trained hand by 34%, but also showed a relevant transfer to the untrained right hand by 24%. Baseline ipsilateral activation fMRI-magnitude in BA 1 to sensory index finger stimulation predicted training outcome for somatosensory guided movements: those who showed higher ipsilateral activation were those who did profit less from training. Improvement of spatial tactile discrimination was positively associated with gains in pinch grip velocity. Overall, a combination of priming rES and repetitive motor training is capable to induce motor and somatosensory performance increase and representation changes in BA1 in healthy young subjects.  相似文献   

5.
Many motor skills, such as typing, consist of articulating simple movements into novel sequences that are executed faster and smoother with practice. Dynamics of re-organization of these movement sequences with multi-session training and its dependence on the amount of self-regulation of pace during training is not yet fully understood. In this study, participants practiced a sequence of key presses. Training sessions consisted of either externally (Cued) or self-initiated (Uncued) training. Long-term improvements in performance speed were mainly due to reducing gaps between finger movements in both groups, but Uncued training induced higher gains. The underlying kinematic strategies producing these changes and the representation of the trained sequence differed significantly across subjects, although net gains in speed were similar. The differences in long-term memory due to the type of training and the variation in strategies between subjects, suggest that the different neural mechanisms may subserve the improvements observed in overall performance.  相似文献   

6.
The well-documented observation of bilateral performance gains following unilateral motor training, a phenomenon known as cross-limb transfer, has important implications for rehabilitation. It has recently been shown that provision of a mirror image of the active hand during unilateral motor training has the capacity to enhance the efficacy of this phenomenon when compared to training without augmented visual feedback (i.e., watching the passive hand), possibly via action observation effects [1]. The current experiment was designed to confirm whether mirror-visual feedback (MVF) during motor training can indeed elicit greater performance gains in the untrained hand compared to more standard visual feedback (i.e., watching the active hand). Furthermore, discussing the mechanisms underlying any such MVF-induced behavioural effects, we suggest that action observation and the cross-activation hypothesis may both play important roles in eliciting cross-limb transfer. Eighty participants practiced a fast-as-possible two-ball rotation task with their dominant hand. During training, three different groups were provided with concurrent visual feedback of the active hand, inactive hand or a mirror image of the active hand with a fourth control group receiving no training. Pre- and post-training performance was measured in both hands. MVF did not increase the extent of training-induced performance changes in the untrained hand following unilateral training above and beyond those observed for other types of feedback. The data are consistent with the notion that cross-limb transfer, when combined with MVF, is mediated by cross-activation with action observation playing a less unique role than previously suggested. Further research is needed to replicate the current and previous studies to determine the clinical relevance and potential benefits of MVF for cases that, due to the severity of impairment, rely on unilateral training programmes of the unaffected limb to drive changes in the contralateral affected limb.  相似文献   

7.
The aim of the study was to estimate efficiency of the strength training protocol designed to improve maximal voluntary contraction without development of muscle hypertrophy. The principal difference between chosen training protocol and classical strength training was that the number of training movements during training session was increased to improve the motor skill, and rest periods between the training movements were increased as well to minimize damage of muscle fibers, which is one of the factors inducing muscle hypertrophy. Knee extensors of right leg in 11 physically active males were trained 4 times a week for 4 weeks. Evaluation of force-velocity characteristics with simultaneous recording of EMG-activity was performed in both trained and untrained legs immediately before, during and several times after the 4 wks training period. Before and after training the size and contractile properties ofipsi- and contralateral knee extensors were evaluated by MRI and twitch interpolation technique. Maximum strength gains after 4 week of training were about 17% in both trained and untrained legs and did not differ significantly from each other. A noticeable increase of EMG-activity during contraction was also found for both legs after 4-wks training period. The observed changes were not accompanied by any significant changes of muscle size, demonstrating the "neural" nature of the training effects.  相似文献   

8.
The goal of this study was to approbate a strength training protocol designed to improve motor skills at the maximum voluntary contraction (MVC) without hypertrophy of muscles. The main difference between this protocol and classical strength training was that the number of movements during a training session was increased to improve the motor skill, and the rest periods between the training movements were increased in order to minimize the damage of muscle fibers, which is one of the factors inducing muscle hypertrophy. Eleven subjects trained knee extensors of the right leg four times a week during four weeks. The evaluation of strength and speed characteristics with simultaneous recording the EMG activity was performed in both trained and untrained legs immediately before, during, and several times after the whole training period. Before and after the four-week training period, the size and contractile properties of the trained and contralateral knee extensors were evaluated by MRI and twitch interpolation technique. The maximal strength gains were about 17% in both trained and untrained legs; they did not differ significantly from each other. Noticeable increases in the EMG activity during the training period were observed. These changes were not accompanied by any significant changes in the muscle size, which demonstrates the “neural” nature of the training effects.  相似文献   

9.
Executive functions (EF) are cognitive capacities that allow for planned, controlled behavior and strongly correlate with academic abilities. Several extracurricular activities have been shown to improve EF, however, the relationship between musical training and EF remains unclear due to methodological limitations in previous studies. To explore this further, two experiments were performed; one with 30 adults with and without musical training and one with 27 musically trained and untrained children (matched for general cognitive abilities and socioeconomic variables) with a standardized EF battery. Furthermore, the neural correlates of EF skills in musically trained and untrained children were investigated using fMRI. Adult musicians compared to non-musicians showed enhanced performance on measures of cognitive flexibility, working memory, and verbal fluency. Musically trained children showed enhanced performance on measures of verbal fluency and processing speed, and significantly greater activation in pre-SMA/SMA and right VLPFC during rule representation and task-switching compared to musically untrained children. Overall, musicians show enhanced performance on several constructs of EF, and musically trained children further show heightened brain activation in traditional EF regions during task-switching. These results support the working hypothesis that musical training may promote the development and maintenance of certain EF skills, which could mediate the previously reported links between musical training and enhanced cognitive skills and academic achievement.  相似文献   

10.
We tested the effectiveness of an intensive, on average 17-session, adaptive and computerized working-memory training program for improving performance on untrained, paper and pencil working memory tasks, standardized school achievement tasks, and teacher ratings of classroom behavior. Third-grade children received either a computerized working memory training for about 30 minutes per session (n = 156) or participated in regular classroom activities (n = 126). Results indicated strong gains in the training task. Further, pretest and posttest transfer measures of working memory and school achievement, as well as teacher ratings, showed substantial correlations with training task performance, suggesting that the training task captured abilities that were relevant for the transfer tasks. However, effect sizes of training-specific transfer gains were very small and not consistent across tasks. These results raise questions about the benefits of intensive working-memory training programs within a regular school context.  相似文献   

11.
How motor skills are stored in the nervous system represents a fundamental question in neuroscience. Although musical motor skills are associated with a variety of adaptations [1-3], it remains unclear how these changes are linked to the known superior motor performance of expert musicians. Here we establish a direct and specific relationship between the functional organization of the corticomuscular system and skilled musical performance. Principal component analysis was used to identify joint correlation patterns in finger movements evoked by transcranial magnetic stimulation over the primary motor cortex while subjects were at rest. Linear combinations of a selected subset of these patterns were used to reconstruct active instrumental playing or grasping movements. Reconstruction quality of instrumental playing was superior in skilled musicians compared to musically untrained subjects, displayed taxonomic specificity for the trained movement repertoire, and correlated with the cumulated long-term training exposure, but not with the recent past training history. In violinists, the reconstruction quality of grasping movements correlated negatively with the long-term training history of violin playing. Our results indicate that experience-dependent motor skills are specifically encoded in the functional organization of the primary motor cortex and its efferent system and are consistent with a model of skill coding by a modular neuronal architecture [4].  相似文献   

12.
Blood flow in the right and left forearms was determined by venous occlusion plethysmography in ten healthy male subjects before and after training with a hand ergometer. The subjects in group A and B were trained using work loads of 1/3 and 1/2, respectively, of maximum grip strength 6 days/week for 6 weeks. It was found that the blood flow in the left (untrained or contralateral) forearm during exhaustive training of the right hand increased gradually with increasing training periods, and that after 6 weeks of training, grip strength, endurance and peak blood flow of the forearm increased significantly not only in the trained forearm, but also in the untrained forearm. From these results, it is suggested that the increase of blood flow in the contralateral limb after training may, at least in part, be related to the cross transfer effect of muscular endurance.  相似文献   

13.
In adults, sleep is necessary for the offline improvement of certain skills, such as sequential finger tapping, but whether children show a similar effect is still debatable. Here, we tested whether sleep is associated with offline performance improvement in children. Nine- and 11-year-old children trained on an explicit sequential finger tapping task. On the night following training, their parents observed and recorded the duration of each child’s sleep. The following day, all children performed a surprise retest session on the previously trained sequence. In both 9- and 11-year-old children, skill performance was significantly improved during the first retest session relative to the end of training on the previous day, confirming the offline improvement in performance. There was a significant correlation between the degree of improvement and sleep duration the night after training, suggesting that in children, as in adults, sleep is associated with offline skill enhancement.  相似文献   

14.
《应用发育科学》2013,17(2):136-147
The last decade has seen major developments in the legal arena concerning the evidential interviewing of children. Research evidence clarifying the ability of children to provide valid and reliable information has been incorporated into the development of evidential interviewing techniques. This in turn has focused attention on the importance of training. Despite the increase in training, research with both child and adult interviewers has shown that inappropriate questioning strategies and poorly structured interviews still typify a significant number of investigations. This study evaluated the effect of a 1-week intensive training course on police and social worker forensic interviewing with children and investigated the actual types of questions employed by interviewers. Analysis of videoed interviews was used to compare trained and untrained interviewers on a series of rating scales designed to assess interviewer performance. The number of requests for free reports and the number of open, specific, leading, and nonleading questions used were obtained. The study found no differences in performance between trained and untrained interviewers on any rated behaviors with both trained and untrained interviewers rating poorly. Specific and leading questions were found to occupy over half the total number of questions used by both sets of interviewers, and few free report requests were used. That is, interviewers mostly asked the types of questions least likely to obtain valid and reliable information from children, with no evident variation from this pattern within the trained group. These findings echo the results of other studies in suggesting that interviewers use inappropriate questioning strategies to obtain information even after training and rely heavily on specific rather than open questioning. The results of this study suggest that the frequently adopted model of the short, intensive training course may not be the most effective way of training investigators to interview children, and more research is needed to establish the best way forward.  相似文献   

15.
Recent research on bilateral transfer suggests that imagery training can facilitate the transfer of motor skill from a trained limb to that of an untrained limb above and beyond that of physical practice. To further explore this effect, the present study examined the influence of practice duration and task difficulty on the extent to which imagery training and physical training influences bilateral transfer of a sequential key pressing task. In experiment 1, participants trained on the key pressing task using their non-dominant arm under one of three conditions (physical practice, imagery practice, and no practice). In a subsequent bilateral transfer test, participants performed the sequential task using their untrained dominant arm in either an original order or mirror-ordered sequence. In experiment 2, the same procedures were followed as in experiment 1 except that participants trained with their dominant arm and performed the bilateral transfer task with their non-dominant arm. Results indicated that with extended practice beyond what has been employed in previous studies, physical practice is more effective at facilitating bilateral transfer compared to training with imagery. Interestingly, significant bilateral transfer was only observed for transfer from the non-dominant to the dominant arm with no differences observed between performing the task in an original or mirror ordered sequence. Overall, these findings suggest that imagery training may benefit bilateral transfer primarily at the initial stages of learning, but with extended training, physical practice leads to larger influences on transfer.  相似文献   

16.
It has long been known that practicing a task with one limb can result in performance improvements with the opposite, untrained limb. Hypotheses to account for cross-limb transfer of performance state that the effect is mediated either by neural adaptations in higher order control centers that are accessible to both limbs, or that there is a "spillover" of neural drive to the opposite hemisphere that results in bilateral adaptation. Here we address these hypotheses by assessing performance and corticospinal excitability in both hands after unilateral practice of a ballistic finger movement. Participants (n = 9) completed 300 practice trials of a ballistic task with the right hand, the aim of which was to maximize the peak abduction acceleration of the index finger. Practice caused a 140% improvement in right-hand performance and an 82% improvement for the untrained left hand. There were bilateral increases in the amplitude of responses to transcranial magnetic stimulation, but increased corticospinal excitability was not correlated with improved performance. There were no significant changes in corticospinal excitability or task performance for a control group that did not train (n = 9), indicating that performance testing for the left hand alone did not induce performance or corticospinal effects. Although the data do not provide conclusive evidence whether increased corticospinal excitability in the untrained hand is causally related to the cross-transfer of ballistic performance, the finding that ballistic practice can induce bilateral corticospinal adaptations may have important clinical implications for movement rehabilitation.  相似文献   

17.
Despite the well-established involvement of both sensory (“bottom-up”) and cognitive (“top-down”) processes in literacy, the extent to which auditory or cognitive (memory or attention) learning transfers to phonological and reading skills remains unclear. Most research has demonstrated learning of the trained task or even learning transfer to a closely related task. However, few studies have reported “far-transfer” to a different domain, such as the improvement of phonological and reading skills following auditory or cognitive training. This study assessed the effectiveness of auditory, memory or attention training on far-transfer measures involving phonological and reading skills in typically developing children. Mid-transfer was also assessed through untrained auditory, attention and memory tasks. Sixty 5- to 8-year-old children with normal hearing were quasi-randomly assigned to one of five training groups: attention group (AG), memory group (MG), auditory sensory group (SG), placebo group (PG; drawing, painting), and a control, untrained group (CG). Compliance, mid-transfer and far-transfer measures were evaluated before and after training. All trained groups received 12 x 45-min training sessions over 12 weeks. The CG did not receive any intervention. All trained groups, especially older children, exhibited significant learning of the trained task. On pre- to post-training measures (test-retest), most groups exhibited improvements on most tasks. There was significant mid-transfer for a visual digit span task, with highest span in the MG, relative to other groups. These results show that both sensory and cognitive (memory or attention) training can lead to learning in the trained task and to mid-transfer learning on a task (visual digit span) within the same domain as the trained tasks. However, learning did not transfer to measures of language (reading and phonological awareness), as the PG and CG improved as much as the other trained groups. Further research is required to investigate the effects of various stimuli and lengths of training on the generalization of sensory and cognitive learning to literacy skills.  相似文献   

18.
Previous examinations of search under camouflage conditions have reported that performance improves with training and that training can engender near perfect transfer to similar, but novel camouflage-type displays [1]. What remains unclear, however, are the cognitive mechanisms underlying these training improvements and transfer benefits. On the one hand, improvements and transfer benefits might be associated with higher-level overt strategy shifts, such as through the restriction of eye movements to target-likely (background) display regions. On the other hand, improvements and benefits might be related to the tuning of lower-level perceptual processes, such as figure-ground segregation. To decouple these competing possibilities we had one group of participants train on camouflage search displays and a control group train on non-camouflage displays. Critically, search displays were rapidly presented, precluding eye movements. Before and following training, all participants completed transfer sessions in which they searched novel displays. We found that search performance on camouflage displays improved with training. Furthermore, participants who trained on camouflage displays suffered no performance costs when searching novel displays following training. Our findings suggest that training to break camouflage is related to the tuning of perceptual mechanisms and not strategic shifts in overt attention.  相似文献   

19.
An increasing concern affecting a growing aging population is working memory (WM) decline. Consequently, there is great interest in improving or stabilizing WM, which drives expanded use of brain training exercises. Such regimens generally result in temporary WM benefits to the trained tasks but minimal transfer of benefit to untrained tasks. Pairing training with neurostimulation may stabilize or improve WM performance by enhancing plasticity and strengthening WM-related cortical networks. We tested this possibility in healthy older adults. Participants received 10 sessions of sham (control) or active (anodal, 1.5 mA) tDCS to the right prefrontal, parietal, or prefrontal/parietal (alternating) cortices. After ten minutes of sham or active tDCS, participants performed verbal and visual WM training tasks. On the first, tenth, and follow-up sessions, participants performed transfer WM tasks including the spatial 2-back, Stroop, and digit span tasks. The results demonstrated that all groups benefited from WM training, as expected. However, at follow-up 1-month after training ended, only the participants in the active tDCS groups maintained significant improvement. Importantly, this pattern was observed for both trained and transfer tasks. These results demonstrate that tDCS-linked WM training can provide long-term benefits in maintaining cognitive training benefits and extending them to untrained tasks.  相似文献   

20.
Uehara S  Nambu I  Tomatsu S  Lee J  Kakei S  Naito E 《PloS one》2011,6(10):e25670
Procedural motor learning includes a period when no substantial gain in performance improvement is obtained even with repeated, daily practice. Prompted by the potential benefit of high-frequency transcutaneous electrical stimulation, we examined if the stimulation to the hand reduces redundant motor activity that likely exists in an acquired hand motor skill, so as to further upgrade stable motor performance. Healthy participants were trained until their motor performance of continuously rotating two balls in the palm of their right hand became stable. In the series of experiments, they repeated a trial performing this cyclic rotation as many times as possible in 15 s. In trials where we applied the stimulation to the relaxed thumb before they initiated the task, most reported that their movements became smoother and they could perform the movements at a higher cycle compared to the control trials. This was not possible when the dorsal side of the wrist was stimulated. The performance improvement was associated with reduction of amplitude of finger displacement, which was consistently observed irrespective of the task demands. Importantly, this kinematic change occurred without being noticed by the participants, and their intentional changes of motor strategies (reducing amplitude of finger displacement) never improved the performance. Moreover, the performance never spontaneously improved during one-week training without stimulation, whereas the improvement in association with stimulation was consistently observed across days during training on another week combined with the stimulation. The improved effect obtained in stimulation trials on one day partially carried over to the next day, thereby promoting daily improvement of plateaued performance, which could not be unlocked by the first-week intensive training. This study demonstrated the possibility of effectively improving a plateaued motor skill, and pre-movement somatic stimulation driving this behavioral change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号