首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The hot-hand phenomenon, according to which a player’s performance is significantly elevated during certain phases relative to the expected performance based on the player’s base rate, has left many researchers and fans in basketball puzzled: The vast majority of players, coaches and fans believe in its existence but statistical evidence supporting this belief has been scarce. It has frequently been argued that the hot hand in basketball is unobservable because of strategic adjustments and defensive interference of the opposing team. We use a dataset with novel metrics, such as the number of defenders and the defensive intensity for each shot attempt, which enable us to directly measure defensive pressure. First, we examine how the shooting percentage of NBA players changes relative to the attributes of each metric. We find that it is of lesser importance by how many defenders a player is guarded but that defensive intensity, e.g., whether a defender raises his hand when his opponent shoots, has a larger impact on shot difficulty. Second, we explore how the underlying metrics and shooting accuracy change as a function of streak length. Our results indicate that defensive pressure and shot difficulty increase (decrease) during hot (cold) streaks, so that defenders seem to behave according to the hot-hand belief and try to force hot players into more difficult shots. However, we find that shooting percentages of presumably hot players do not increase and that shooting performance is not related to streakiness, so that the defenders’ hot-hand behavior cannot be considered ecologically rational. Therefore, we are unable to find evidence in favor of the hot-hand effect even when accounting for defensive pressure.  相似文献   

2.
We asked how team dynamics can be captured in relation to function by considering games in the first round of the NBA 2010 play-offs as networks. Defining players as nodes and ball movements as links, we analyzed the network properties of degree centrality, clustering, entropy and flow centrality across teams and positions, to characterize the game from a network perspective and to determine whether we can assess differences in team offensive strategy by their network properties. The compiled network structure across teams reflected a fundamental attribute of basketball strategy. They primarily showed a centralized ball distribution pattern with the point guard in a leadership role. However, individual play-off teams showed variation in their relative involvement of other players/positions in ball distribution, reflected quantitatively by differences in clustering and degree centrality. We also characterized two potential alternate offensive strategies by associated variation in network structure: (1) whether teams consistently moved the ball towards their shooting specialists, measured as “uphill/downhill” flux, and (2) whether they distributed the ball in a way that reduced predictability, measured as team entropy. These network metrics quantified different aspects of team strategy, with no single metric wholly predictive of success. However, in the context of the 2010 play-offs, the values of clustering (connectedness across players) and network entropy (unpredictability of ball movement) had the most consistent association with team advancement. Our analyses demonstrate the utility of network approaches in quantifying team strategy and show that testable hypotheses can be evaluated using this approach. These analyses also highlight the richness of basketball networks as a dataset for exploring the relationships between network structure and dynamics with team organization and effectiveness.  相似文献   

3.
High-stakes team competitions can present a social dilemma in which participants must choose between concentrating on their personal performance and assisting teammates as a means of achieving group objectives. We find that despite the seemingly strong group incentive to win the NBA title, cooperative play actually diminishes during playoff games, negatively affecting team performance. Thus team cooperation decreases in the very high stakes contexts in which it is most important to perform well together. Highlighting the mixed incentives that underlie selfish play, personal scoring is rewarded with more lucrative future contracts, whereas assisting teammates to score is associated with reduced pay due to lost opportunities for personal scoring. A combination of misaligned incentives and psychological biases in performance evaluation bring out the “I” in “team” when cooperation is most critical.  相似文献   

4.
Yaari G  Eisenmann S 《PloS one》2011,6(10):e24532
The long lasting debate initiated by Gilovich, Vallone and Tversky in is revisited: does a “hot hand” phenomenon exist in sports? Hereby we come back to one of the cases analyzed by the original study, but with a much larger data set: all free throws taken during five regular seasons () of the National Basketball Association (NBA). Evidence supporting the existence of the “hot hand” phenomenon is provided. However, while statistical traces of this phenomenon are observed in the data, an open question still remains: are these non random patterns a result of “success breeds success” and “failure breeds failure” mechanisms or simply “better” and “worse” periods? Although free throws data is not adequate to answer this question in a definite way, we speculate based on it, that the latter is the dominant cause behind the appearance of the “hot hand” phenomenon in the data.  相似文献   

5.
The amount of wounding during routine culling is an important factor in the welfare of wild deer. Little information exists on factors determining shooting accuracy and wounding rates under field conditions in the UK. In this study, 102 anonymous stalkers collected data on the outcomes and circumstances of 2281 shots. Using hot-deck imputation and generalised linear mixed modelling, we related the probability that a shot hit its target, and the probability that the shot killed the deer if it was hit, to 28 variables describing the circumstances of the shot. Overall, 96% of deer were hit, of which 93% were killed outright. A reduced probability of hitting the target was associated with an uncomfortable firing position, too little time available, shooting off elbows or freehand, taking the head or upper neck as point of aim, a heavily obscured target, a distant target, shooting at females, lack of shooting practice and a basic (or no) stalker qualification. An increase in the likelihood of wounding was associated with an uncomfortable firing position, shooting with insufficient time, a distant target (only when time was not sufficient), a bullet weight below 75 grains, a target concealed in thicket or on the move and an area rarely stalked. To maximise stalking success and deer welfare, we recommend that stalkers ensure a comfortable firing position, use a gun rest, aim at the chest, use bullets heavier than 75 grains, avoid taking a rushed shot, shoot a distant animal only if there is plenty of time, fire only when the target is stationary, avoid shooting at an obscured animal, take care when the ground is unfamiliar, and do shooting practice at least once a month. The high miss rate of basic-level stalkers suggests that training should include additional firing practice under realistic shooting conditions.  相似文献   

6.
The goal of this research was to identify parameters among the 12 indicators of situation-related efficiency that differentiated between the winning and defeated top quality teams which played in final tournaments of the European club championships from 1992 to 2000. The differences were confirmed by discriminant analysis, although the canonical correlation was here somewhat lower than in the previous similar research studies done on the so-called regular season games. The probable reason for the smaller differences obtained in the present study may be found in almost equal (high) quality of the teams competing in Final Fours. The highest discriminative power was obtained in the variable defensive rebounds, then in the variables field goal percentage and free throw percentage, whereas the variable assist had evidently smaller impact with regard to the referent studies. The obtained results suggested that the winning teams showed more of tactical discipline and responsibility in controlling inside positions for defensive rebounds, as well as in controlling play on offense and the ball until the required open shot chance, which considerably reduced game risks and resulted in a lower number of turnovers and in a higher shooting percentage. Such a type of decision-making in play require a high degree of reciprocal help of players on both defense and offense and a higher level of concentration and self-confidence when shooting field goals and free throws. The common denominator of the winning teams was a lower number of imbalanced states in their play (the organized style of play on defense and offense implied) and a higher level of collective outplaying the opponents with the controlled system of play, which enabled entire potential of the victorious teams to be expressed.  相似文献   

7.
The purpose of our research was to investigate the relative frequencies of different types of basketball shots (above head, hook shot, layup, dunk, tip-in), some details about their technical execution (one-legged, two-legged, drive, cut, …), and shot success in different levels of basketball competitions. We analysed video footage and categorized 5024 basketball shots from 40 basketball games and 5 different levels of competitive basketball (National Basketball Association (NBA), Euroleague, Slovenian 1st Division, and two Youth basketball competitions). Statistical analysis with hierarchical multinomial logistic regression models reveals that there are substantial differences between competitions. However, most differences decrease or disappear entirely after we adjust for differences in situations that arise in different competitions (shot location, player type, and attacks in transition). Differences after adjustment are mostly between the Senior and Youth competitions: more shots executed jumping or standing on one leg, more uncategorised shot types, and more dribbling or cutting to the basket in the Youth competitions, which can all be attributed to lesser technical and physical ability of developing basketball players. The two discernible differences within the Senior competitions are that, in the NBA, dunks are more frequent and hook shots are less frequent compared to European basketball, which can be attributed to better athleticism of NBA players. The effect situational variables have on shot types and shot success are found to be very similar for all competitions.  相似文献   

8.
Traditionally, the information content of the neural response is quantified using statistics of the responses relative to stimulus onset time with the assumption that the brain uses onset time to infer stimulus identity. However, stimulus onset time must also be estimated by the brain, making the utility of such an approach questionable. How can stimulus onset be estimated from the neural responses with sufficient accuracy to ensure reliable stimulus identification? We address this question using the framework of colour coding by the archer fish retinal ganglion cell. We found that stimulus identity, “what”, can be estimated from the responses of best single cells with an accuracy comparable to that of the animal''s psychophysical estimation. However, to extract this information, an accurate estimation of stimulus onset is essential. We show that stimulus onset time, “when”, can be estimated using a linear-nonlinear readout mechanism that requires the response of a population of 100 cells. Thus, stimulus onset time can be estimated using a relatively simple readout. However, large nerve cell populations are required to achieve sufficient accuracy.

Authors Summary

In our interaction with the environment we are flooded with a stream of numerous objects and events. Our brain needs to understand the nature of these complex and rich stimuli in order to react. Research has shown ways in which a ‘what’ stimulus was presented can be encoded by the neural responses. However, to understand ‘what was the nature of the stimulus’ the brain needs to know ‘when’ the stimulus was presented. Here, we investigated how the onset of visual stimulus can be signalled by the retina to higher brain regions. We used archer fish as a framework to test the notion that the answer to the question of ‘when’ something has been presented lies within the larger cell population, whereas the answer to the question of ‘what’ has been presented may be found at the single-neuron level. The utility of the archer fish as model animal stems from its remarkable ability to shoot down insects settling on the foliage above the water level, and its ability to distinguish between artificial targets. Thus, the archer fish can provide the fish equivalent of a monkey or a human that can report psychophysical decisions.  相似文献   

9.
The idea that the success rate of a team increases when playing home is broadly accepted and documented for a wide variety of sports. Investigations on the so-called “home advantage phenomenon” date back to the 70’s and ever since has attracted the attention of scholars and sport enthusiasts. These studies have been mainly focused on identifying the phenomenon and trying to correlate it with external factors such as crowd noise and referee bias. Much less is known about the effects of home advantage in the “microscopic” dynamics of the game (within the game) or possible team-specific and evolving features of this phenomenon. Here we present a detailed study of these previous features in the National Basketball Association (NBA). By analyzing play-by-play events of more than sixteen thousand games that span thirteen NBA seasons, we have found that home advantage affects the microscopic dynamics of the game by increasing the scoring rates and decreasing the time intervals between scores of teams playing home. We verified that these two features are different among the NBA teams, for instance, the scoring rate of the Cleveland Cavaliers team is increased ≈0.16 points per minute (on average the seasons 2004–05 to 2013–14) when playing home, whereas for the New Jersey Nets (now the Brooklyn Nets) this rate increases in only ≈0.04 points per minute. We further observed that these microscopic features have evolved over time in a non-trivial manner when analyzing the results team-by-team. However, after averaging over all teams some regularities emerge; in particular, we noticed that the average differences in the scoring rates and in the characteristic times (related to the time intervals between scores) have slightly decreased over time, suggesting a weakening of the phenomenon. This study thus adds evidence of the home advantage phenomenon and contributes to a deeper understanding of this effect over the course of games.  相似文献   

10.
The complete sequencing of the human genome introduced a new knowledge base for decoding information structured in DNA sequence variation. My research is predicated on the supposition that the genome is the most sophisticated knowledge system known, as evidenced by the exquisite information it encodes on biochemical pathways and molecular processes underlying the biology of health and disease. Also, as a living legacy of human origins, migrations, adaptations, and identity, the genome communicates through the complexity of sequence variation expressed in population diversity. As a biomedical research scientist and academician, a question I am often asked is: “How is it that a black woman like you went to the University of Michigan for a PhD in Human Genetics?” As the ASCB 2012 E. E. Just Lecturer, I am honored and privileged to respond to this question in this essay on the science of the human genome and my career perspectives.
“Knowledge is power, but wisdom is supreme.”
  相似文献   

11.
12.
Past theory and research view reciprocal resource sharing as a fundamental building block of human societies. Most studies of reciprocity dynamics have focused on trading among individuals in laboratory settings. But if motivations to engage in these patterns of resource sharing are powerful, then we should observe forms of reciprocity even in highly structured group environments in which reciprocity does not clearly serve individual or group interests. To this end, we investigated whether patterns of reciprocity might emerge among teammates in professional basketball games. Using data from logs of National Basketball Association (NBA) games of the 2008–9 season, we estimated a series of conditional logistic regression models to test the impact of different factors on the probability that a given player would assist another player in scoring a basket. Our analysis found evidence for a direct reciprocity effect in which players who had “received” assists in the past tended to subsequently reciprocate their benefactors. Further, this tendency was time-dependent, with the probability of repayment highest soon after receiving an assist and declining as game time passed. We found no evidence for generalized reciprocity – a tendency to “pay forward” assists – and only very limited evidence for indirect reciprocity – a tendency to reward players who had sent others many assists. These findings highlight the power of reciprocity to shape human behavior, even in a setting characterized by extensive planning, division of labor, quick decision-making, and a focus on inter-group competition.  相似文献   

13.
Cells are made up of complex assemblies of cytoskeletal proteins that facilitate force transmission from the molecular to cellular scale to regulate cell shape and force generation. The “living matter” formed by the cytoskeleton facilitates versatile and robust behaviors of cells, including their migration, adhesion, division, and morphology, that ultimately determine tissue architecture and mechanics. Elucidating the underlying physical principles of such living matter provides great opportunities in both biology and physics. For physicists, the cytoskeleton provides an exceptional toolbox to study materials far from equilibrium. For biologists, these studies will provide new understanding of how molecular-scale processes determine cell morphological changes.The distinction between being “alive” or “not alive” has been a long-standing question for those interested in our natural world. In many ancient cultures, the difference between living organisms and inorganic matter was thought to be due to innate differences arising from a “vital force,” such that biology operated with different fundamental properties than the physical world. The ability to disprove such theories came about over the course of the 17th to the 19th centuries, as scientists developed theories of atoms and were able to synthesize organic matter from inorganic constituents. Over the past 100 years, developments in molecular biology and biochemistry have provided a wealth of information on the structure and function of biological molecules, much of which was acquired in collaborations between physical and biological scientists. Application of X-ray–scattering techniques first developed to study metals enabled discovery of the structure of complicated biological molecules ranging from DNA to ion channels. Use of laser trapping techniques first developed to trap and cool atoms enabled precise force spectroscopy measurements of single molecular motors. We now know that biological molecules, while more complicated than their inorganic counterparts, must obey the rules of physics and chemistry.This wealth of molecular-scale information does not directly inform the behaviors of living cells. The organelles within cells are made up of complex and dynamic assemblies of proteins, lipids, and nucleic acids, all immersed within an aqueous environment. These assemblies are somehow able to build materials that can robustly facilitate the plethora of morphological and physical behaviors of cells at the subcellular (intracellular transport), cellular (division, adhesion, migration), and multicellular (tissue morphogenesis, wound healing) length scales. The dynamic cytoskeleton transmits information and forces from the molecular to the cellular length scales. But what is it about the behaviors of biological molecules that endow cells with the ability to respirate, move, and replicate themselves robustly—all qualities we consider essential to “life”? For these questions, understanding of the physics and chemistry of systems of biological molecules is needed. Interactions that occur within ensembles of molecules lead to emergent properties and behaviors that cannot be predicted at the single-molecule level. These emergent chemical and physical properties of living matter are likely fundamentally different from inorganic or “dead” materials. Discovering the underlying principles of living matter provides fantastic opportunities to learn new physics and biology.The fields of condensed matter physics and materials science study the physical properties that emerge when objects (e.g., atoms, molecules, grains of sand, or soap bubbles) are placed in sufficiently close proximity, such that interactions between them cannot be ignored. Interatomic or intermolecular interactions give rise to emergent properties that are not seen in isolated species. Familiar examples involve electron transport across a material or a material''s response to externally applied magnetic fields or mechanical forces. These emergent properties, such as conductivity, elasticity, and viscosity, enable us to predict the behavior of a collection of objects in these condensed phases. In this paper, I will focus on my perspective of how approaches to understanding the mechanical properties of physical materials can inform understanding of the mechanical properties of living matter found within cells.In a crystal of metal, precisely organized atoms are located nanometers apart, and the energies of their interactions are on the scale of an electron volt (40-fold larger than thermal energy or twice the energy released on the hydrolysis of a single ATP molecule). These give rise to an energy density, or elastic modulus, on the order of gigapascals, which underlies the rigidity of metals. For small deformations, the restoring force between atoms means that this metal behaves like an elastic spring: after a force is applied, the metal returns to its original shape. Understanding force transmission through crystalline metals was facilitated by the development of elasticity theory in the 16th and 17th centuries. Fluids, such as water, lack crystalline order, but predictive understanding of fluid flows and forces was captured through development of theories of fluid dynamics. Now think of another material, Silly Putty, which behaves elastically at short timescales (it bounces like a rubber ball) but then oozes and flows at long timescales, acting like a viscous fluid. Silly Putty is made of long polymers that are trapped by one another at short timescales, but thermal energy is sufficient to allow them to diffuse and translocate at long timescales. Silly Putty is also a “soft material,” in that the polymer''s interaction energies are at the thermal energy level, and its length scale is at the micrometer level. Materials like Silly Putty were thought to be too complicated for analytical theory. It was only in the middle of the 20th century that the theoretical framework to understand these “messy” and “disorganized” polymer-based materials was developed.The most powerful theories for understanding these vastly different forms of physical matter were developed in the absence of even the simplest of computers. The theories relied on developing physical properties or parameters to describe the material with a “mean field,” a type of coarse-graining that identifies the essential properties of individual constituents and interactions but ignores many other details. These mean fields give us new intuitions concerning the origin of material properties and give rise to definitions of physical parameters, such as elasticity and viscosity. However, these theories also require materials that do not jostle around a lot and remain close to equilibrium. In fact, understanding materials “far from equilibrium” has been identified as a major challenge in physics for the next century (National Research Council, 2007) .Materials formed by dynamic protein assemblies in the cytoskeleton are disorganized, heterogeneous, and driven far from equilibrium. Motor proteins generate local stresses, and their activity is spatially modulated. The polymerization and depolymerization of cytoskeletal polymers is controlled by a myriad of regulatory proteins. All these dynamic molecular processes endow the cytoskeletal assemblies with unique behaviors that enable them to support complex physiological tasks. It is likely these dynamics also provide underlying robustness of the cells in response to fluctuating and changing environments. These properties make living cells exquisite materials that cannot be captured by existing frameworks of physical matter. I suspect that we have not yet identified the important parameters needed to characterize their properties. The rich dynamics created by active biological matter present a formidable challenge in the area of materials science.How do we hope to understand the properties of these complex cytoskeletal assemblies and materials? It may seem as though understanding cytoskeletal machinery is an insurmountable feat, the approaches that have been successful for physical materials will not work, and we must rely on complex simulations that require modeling of all individual components. This may be true. However, I think that this is a pessimistic view. Just consider how complicated physical materials would be if we did not have the appropriate parameters to describe the macroscopic responses and had instead became obsessed about knowing the details of all the interactions between underlying atoms and molecules? In the same vein, I believe that predictive insights into biological matter will emerge through development of new physical theories that use mean-field approaches to understanding materials that contain active components and are driven far from equilibrium. The burgeoning field of active-matter physics is currently considering these questions (Ramaswamy, 2010) . However, these theoretical approaches require physical measurements of cells and cellular proteins that may not be clearly linked to a physiological process or have a clear biological context. Materials built from cytoskeletal proteins in vitro should also provide an excellent source of experimental measurements, but closer collaboration with theorists working in this field and collaboration between biochemists and experimental physical scientists is needed to develop control over such materials. Developing predictive physical theories of the cytoskeleton will elucidate principles of why “the whole is more than the sum of its parts” that will provide greater control and design over living matter, in the same way that engineering has provided great advances in applications of materials from the physical world.What do biologists gain from theories of living matter? These theories will provide a crucial link between molecular and cellular length scale behaviors and will provide insight into the mechanisms of why specific molecular perturbations alter cell behavior. Moreover, they should provide us with general design principles of living matter. What are the basic aspects of a machine needed to separate chromosomes, establish polarity, or generate contractile forces that is utilized across different cell types? Can knowing these aspects provide insight into the evolution of cellular machines and the robustness of cell behavior? Thus, study of cellular materials both provides new opportunities for physicists and will provide crucial predictive understanding of cell physiology.Open in a separate windowMargaret L. Gardel  相似文献   

14.
Jane Stewart 《CMAJ》1995,153(4):459-462
The CMA''s incoming president is Dr. Jack Armstrong, a Winnipeg pediatrician with a particular interest in aboriginal issues. Armstrong, who graduated from the University of Manitoba in 1966, considers himself a team player. “You have to be a part of a team. My job is to try to be as good a spokesperson as possible, along with the other team members, for the physicians of the country.”  相似文献   

15.
ObjectivesTo characterise the information needs of family doctors by collecting the questions they asked about patient care during consultations and to classify these in ways that would be useful to developers of knowledge bases.DesignObservational study in which investigators visited doctors for two half days and collected their questions. Taxonomies were developed to characterise the clinical topic and generic type of information sought for each question.SettingEastern Iowa.ParticipantsRandom sample of 103 family doctors.ResultsParticipants asked a total of 1101 questions. Questions about drug prescribing, obstetrics and gynaecology, and adult infectious disease were most common and comprised 36% of all questions. The taxonomy of generic questions included 69 categories; the three most common types, comprising 24% of all questions, were “What is the cause of symptom X?” “What is the dose of drug X?” and “How should I manage disease or finding X?” Answers to most questions (702, 64%) were not immediately pursued, but, of those pursued, most (318, 80%) were answered. Doctors spent an average of less than 2 minutes pursuing an answer, and they used readily available print and human resources. Only two questions led to a formal literature search.ConclusionsFamily doctors in this study did not pursue answers to most of their questions. Questions about patient care can be organised into a limited number of generic types, which could help guide the efforts of knowledge base developers.

Key messages

  • Questions that doctors have about the care of their patients could help guide the content of medical information sources and medical training
  • In this study of US family doctors, participants frequently had questions about patient care but did not pursue answers to most questions (64%)
  • On average, participants spent less than 2 minutes seeking an answer to a question
  • The most common resources used to answer questions included textbooks and colleagues; formal literature searches were rarely performed
  • The most common generic questions were “What is the cause of symptom X?” “What is the dose of drug X?” and “How should I manage disease or finding X?”
  相似文献   

16.
In extremely rapid maneuvers, animals including man can launch ballistic motor patterns that cannot immediately be corrected. Such patterns are difficult to direct at targets that move in three-dimensional space, and it is presently unknown how animals learn to acquire the precision required. Archer fish live in groups and are renowned for their ballistic hunting technique in which they knock down stationary aerial insect prey with a precisely aimed shot of water. Here we report that these fish can learn to release their shots so as to hit prey that moves rapidly at great height, a remarkable accomplishment in which the shooter must take both the target's three-dimensional motion as well as that of its rising shot into account. To successfully perform in the three-dimensional task, training with horizontal motion suffices. Moreover, all archer fish of a group were able to learn the complex sensomotor skill from watching a performing group member, without having to practice. This instance of social learning in a fish is most remarkable as it could imply that observers can "change their viewpoint," mapping the perceived shooting characteristics of a distant team member into angles and target distances that they later must use to hit.  相似文献   

17.
蕨类植物是地球上起源最为古老的维管植物, 在陆生植物演化中具有重要意义。本文通过Web of Science核心数据库(Core Collection)对目前所有关于“fern”、“lycophyte”、“pteridophyte”、“pteridophyta”等的科研论文进行了分析。结果表明: (1) 2000年后, 蕨类植物论文数量增加迅速, 特别是2006年以来增加显著, 现在年均已突破600篇; (2) 2010年以来的以蕨类植物为研究材料和对象的学科和研究领域变得越来越多元化, 多学科结合和交叉的研究方向成为新趋势; (3)中国正在成为蕨类植物研究的热点国家并且成果显著; (4)中国蕨类植物研究在快速发展的同时也出现了各研究机构之间的发展不同步。期望本论文能给蕨类植物的相关研究提供新的方向, 为中国蕨类植物工作者提供借鉴。  相似文献   

18.
19.
Geneticists and historians collaborated recently to identify the remains of King Richard III of England, found buried under a car park. Genetics has many more contributions to make to history, but scientists and historians must learn to speak each other''s languages.The remains of King Richard III (1452–1485), who was killed with sword in hand at the Battle of Bosworth Field at the end of the War of the Roses, had lain undiscovered for centuries. Earlier this year, molecular biologists, historians, archaeologists and other experts from the University of Leicester, UK, reported that they had finally found his last resting place. They compared ancient DNA extracted from a scoliotic skeleton discovered under a car park in Leicester—once the site of Greyfriars church, where Richard was rumoured to be buried, but the location of which had been lost to time—with that of a seventeenth generation nephew of King Richard: it was a match. Richard has captured the public imagination for centuries: Tudor-friendly playwright William Shakespeare (1564–1616) portrayed Richard as an evil hunchback who killed his nephews in order to ascend to the throne, whilst in succeeding years others have leapt to his defence and backed an effort to find his remains.The application of genetics to history is revealing much about the ancestry and movements of groups of humans, from the fall of the Roman Empire to ancient ChinaMolecular biologist Turi King, who led the Leicester team that extracted the DNA and tracked down a descendant of Richard''s older sister, said that Richard''s case shows how multi-disciplinary teams can join forces to answer history''s questions. “There is a lot of talk about what meaning does it have,” she said. “It tells us where Richard III was buried; that the story that he was buried in Greyfriars is true. I think there are some people who [will] try and say: “well, it''s going to change our view of him” […] It won''t, for example, tell us about his personality or if he was responsible for the killing of the Princes in the Tower.”The discovery and identification of Richard''s skeleton made headlines around the world, but he is not the main prize when it comes to collaborations between historians and molecular biologists. Although some of the work has focused on high-profile historic figures—such as Louis XVI (1754–1793), the only French king to be executed, and Vlad the Impaler, the Transylvanian royal whose patronymic name inspired Bram Stoker''s Dracula (Fig 1)—many other projects involve population studies. Application of genetics to history is revealing much about the ancestry and movements of groups of humans, from the fall of the Roman Empire to ancient China.Open in a separate windowFigure 1The use of molecular genetics to untangle history. Even when the historical record is robust, molecular biology can contribute to our understanding of important figures and their legacies and provide revealing answers to questions about ancient princes and kings.Medieval historian Michael McCormick of Harvard University, USA, commented that historians have traditionally relied on studying records written on paper, sheepskin and papyrus. However, he and other historians are now teaming up with geneticists to read the historical record written down in the human genome and expand their portfolio of evidence. “What we''re seeing happening now—because of the tremendous impact from the natural sciences and particularly the application of genomics; what some of us are calling genomic archaeology—is that we''re working back from modern genomes to past events reported in our genomes,” McCormick explained. “The boundaries between history and pre-history are beginning to dissolve. It''s a really very, very exciting time.”…in the absence of written records, DNA and archaeological records could help fill in gapsMcCormick partnered with Mark Thomas, an evolutionary geneticist at University College London, UK, to try to unravel the mystery of one million Romano-Celtic men who went missing in Britain after the fall of the Roman Empire. Between the fourth and seventh centuries, Germanic tribes of Angles, Saxons and Jutes began to settle in Britain, replacing the Romano-British culture and forcing some of the original inhabitants to migrate to other areas. “You can''t explain the predominance of the Germanic Y chromosome in England based on the population unless you imagine (a) that they killed all the male Romano-Celts or (b) there was what Mark called ‘sexual apartheid'' and the conquerors mated preferentially with the local women. [The latter] seems to be the best explanation that I can see,” McCormick said of the puzzle.Ian Barnes, a molecular palaeobiologist at Royal Holloway University of London, commented that McCormick studies an unusual period, for which both archaeological and written records exist. “I think archaeologists and historians are used to having conflicting evidence between the documentary record and the archaeological record. If we bring in DNA, the goal is to work out how to pair all the information together into the most coherent story.”Patrick Geary, Professor of Western Medieval History at the Institute for Advanced Study in Princeton, New Jersey, USA, studies the migration period of Europe: a time in the first millennium when Germanic tribes, including the Goths, Vandals, Huns and Longobards, moved across Europe as the Roman Empire was declining. “We do not have detailed written information about these migrations or invasions or whatever one wants to call them. Primarily what we have are accounts written later on, some generations later, from the contemporary record. What we tend to have are things like sermons bemoaning the faith of people because God''s wrath has brought the barbarians on them. Hardly the kind of thing that gives us an idea of exactly what is going on—are these really invasions, are they migrations, are they small military groups entering the Empire? And what are these ‘peoples'': biologically related ethnic groups, or ad hoc confederations?” he said.Geary thinks that in the absence of written records, DNA and archaeological records could help fill in the gaps. He gives the example of jewellery, belt buckles and weapons found in ancient graves in Hungary and Northern and Southern Italy, which suggest migrations rather than invasions: “If you find this kind of jewellery in one area and then you find it in a cemetery in another, does it mean that somebody was selling jewellery in these two areas? Does this mean that people in Italy—possibly because of political change—want to identify themselves, dress themselves in a new style? This is hotly debated,” Geary explained. Material goods can suggest a relationship between people but the confirmation will be found in their DNA. “These are the kinds of questions that nobody has been able to ask because until very recently, DNA analysis simply could not be done and there were so many problems with it that this was just hopeless,” he explained. Geary has already collected some ancient DNA samples and plans to collect more from burial sites north and south of the Alps dating from the sixth century, hoping to sort out kinship relations and genetic profiles of populations.King said that working with ancient DNA is a tricky business. “There are two reasons that mitochondrial DNA (mtDNA) is the DNA we wished to be able to analyse in [King] Richard. In the first instance, we had a female line relative of Richard III and mtDNA is passed through the female line. Fortunately, it''s also the most likely bit of DNA that we''d be able to retrieve from the skeletal remains, as there are so many copies of it in the cell. After death, our DNA degrades, so mtDNA is easier to retrieve simply due to the sheer number of copies in each cell.”Geary contrasted the analysis of modern and ancient DNA. He called modern DNA analysis “[…] almost an industrial thing. You send it off to a lab, you get it back, it''s very mechanical.” Meanwhile, he described ancient DNA work as artisanal, because of degeneration and contamination. “Everything that touched it, every living thing, every microbe, every worm, every archaeologist leaves DNA traces, so it''s a real mess.” He said the success rate for extracting ancient mtDNA from teeth and dense bones is only 35%. The rate for nuclear DNA is only 10%. “Five years ago, the chances would have been zero of getting any, so 10% is a great step forward. And it''s possible we would do even better because this is a field that is rapidly transforming.”But the bottleneck is not only the technical challenge to extract and analyse ancient DNA. Historians and geneticists also need to understand each other better. “That''s why historians have to learn what it is that geneticists do, what this data is, and the geneticists have to understand the kind of questions that [historians are] trying to ask, which are not the old nineteenth century questions about identity, but questions about population, about gender roles, about relationship,” Geary said.DNA analysis can help to resolve historical questions and mysteries about our ancestors, but both historians and geneticists are becoming concerned about potential abuses and frivolous applications of DNA analysis in their fields. Thomas is particularly disturbed by studies based on single historical figures. “Unless it''s a pretty damn advanced analysis, then studying individuals isn''t particularly useful for history unless you want to say something like this person had blue eyes or whatever. Population level studies are best,” he said. He conceded that the genetic analysis of Richard III''s remnants was a sound application but added that this often is not the case with other uses, which he referred to as “genetic astrology.” He was critical of researchers who come to unsubstantiated conclusions based on ancient DNA, and scientific journals that readily publish such papers.…both historians and geneticists are becoming concerned about potential abuses or frivolous applications of DNA analysis in their fieldsThomas said that it is reasonable to analyse a Y chromosome or mtDNA to estimate a certain genetic trait. “But then to look at the distribution of those, note in the tree where those types are found, and informally, interpretively make inferences—“Well this must have come from here and therefore when I find it somewhere else then that means that person must have ancestors from this original place”—[…] that''s deeply flawed. It''s the most widely used method for telling historical stories from genetic data. And yet is easily the one with the least credibility.” Thomas criticized such facile use of genetic data, which misleads the public and the media. “I suppose I can''t blame these [broadcast] guys because it''s their job to make the programme look interesting. If somebody comes along and says ‘well, I can tell you you''re descended from some Viking warlord or some Celtic princess'', then who are they to question.”Similarly, the historians have reservations about making questionable historical claims on the basis of DNA analysis. Geary said the use of mtDNA to identify Richard III was valuable because it answered a specific, factual question. However, he is turned off by other research using DNA to look at individual figures, such as a case involving a princess who was a direct descendant of the woman who posed for Leonardo Da Vinci''s Mona Lisa. “There''s some people running around trying to dig up famous people and prove the obvious. I think that''s kind of silly. There are others that I think are quite appropriate, and while is not my kind of history, I think it is fine,” he said. “The Richard III case was in the tradition of forensics.”…the cases in which historians and archaeologists work with molecular biologists are rare and remain disconnected in general from the mainstream of historical or archaeological researchNicola Di Cosmo, a historian at the Institute for Advanced Study, who is researching the impact of climate change on the thirteenth century Mongol empire, follows closely the advances in DNA and history research, but has not yet applied it to his own work. Nevertheless, he said that genetics could help to understand the period he studies because there are no historical documents, although monumental burials exist. “It is important to get a sense of where these people came from, and that''s where genetics can help,” he said. He is also concerned about geneticists who publish results without involving historians and without examining other records. He cited a genetic study of a so-called ‘Eurasian male'' in a prestige burial of the Asian Hun Xiongnu, a nomadic people who at the end of the third century B.C. formed a tribal league that dominated most of Central Asia for more than 500 years. “The conclusion the geneticists came to was that there was some sort of racial tolerance in this nomadic empire, but we have no way to even assume that they had any concept of race or tolerance.”Di Cosmo commented that the cases in which historians and archaeologists work with molecular biologists are rare and remain disconnected in general from the mainstream of historical or archaeological research. “I believe that historians, especially those working in areas for which written records are non-existent, ought to be taking seriously the evidence churned out by genetic laboratories. On the other hand, geneticists must realize that the effectiveness of their research is limited unless they access reliable historical information and understand how a historical argument may or may not explain the genetic data” [1].Notwithstanding the difficulties in collaboration between two fields, McCormick is excited about historians working with DNA. He said the intersection of history and genomics could create a new scientific discipline in the years ahead. “I don''t know what we''d call it. It would be a sort of fusion science. It certainly has the potential to produce enormous amounts of enormously interesting new evidence about our human past.”  相似文献   

20.
Sodium inactivation in nerve fibers   总被引:8,自引:3,他引:5       下载免费PDF全文
R C Hoyt 《Biophysical journal》1968,8(10):1074-1097
A number of models proposed to account for the sodium conductance changes are shown to fall into two classes. The Hodgkin-Huxley (HH) model falls into a class (I) in which the conductance depends on two or more independent variables controlled by independent processes. The Mullins, Hoyt, and Goldman models fall into class II in which conductance depends directly on one variable only, a variable which is controlled by two or more coupled processes. The HH and Hoyt models are used as specific examples of the two classes. It is shown that, contrary to a recently published report, the results from double experiments can be equally well accounted for by both models. It is also shown that steady-state conditioning, or “inactivation,” curves, obtained at more than one test potential, can be used to distinguish the two models. The HH equations predict that such curves should be shifted, by very small amounts, in the hyperpolarizing direction when more depolarizing test potentials are used, while the Hoyt model predicts that they should be shifted in the depolarizing direction, by quite appreciable amounts. Several pieces of published experimental information are used as tests of these predictions, and give tentative support to the class II model. Further experiments are necessary before a definite conclusion can be reached.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号