首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
We investigated the mRNA expression levels of all six antiapoptotic Bcl-2 subfamily members in 68 human cancer cell lines using qPCR techniques and measured the ability of known Bcl-2 inhibitors to induce cell death in 36 of the studied tumor cell lines. Our study reveals that Mcl-1 represents the anti-apoptotic Bcl-2 subfamily member with the highest mRNA levels in the lung, prostate, breast, ovarian, renal, and glioma cancer cell lines. In leukemia/lymphoma and melanoma cancer cell lines, Bcl-2 and Bfl-1 had the highest levels of mRNA, respectively. The observed correlation between the cell killing properties of known Bcl-2 inhibitors and the relative mRNA expression levels of anti-apoptotic Bcl-2 proteins provide critical insights into apoptosis-based anticancer strategies that target Bcl-2 proteins. Our data may explain current challenges of selective Bcl-2 inhibitors in the clinic, given that severe expression of Bcl-2 seems to be limited to leukemia cell lines. Furthermore, our data suggest that in most cancer types a strategy targeted to Mcl-1 inhibition, or combination of Bfl-1 and Mcl-1 inhibition for melanoma, may prove to be more successful than therapies targeting only Bcl-2.  相似文献   

2.
The mitogen-activated protein kinase (MAPK) pathway is constitutively activated in the majority of melanomas, promoting cell survival, proliferation and migration. In addition, anti-apoptotic Bcl-2 family proteins Mcl-1, Bcl-xL and Bcl-2 are frequently overexpressed, contributing to melanoma’s well-documented chemoresistance. Recently, it was reported that the combination of MAPK pathway inhibition by specific MEK inhibitors and Bcl-2 family inhibition by BH3-mimetic ABT-737 synergistically induces apoptotic cell death in melanoma cell lines. Here we provide the first evidence that inhibition of another key MAPK, p38, synergistically induces apoptosis in melanoma cells in combination with ABT-737. We also provide novel mechanistic data demonstrating that inhibition of p38 increases expression of pro-apoptotic Bcl-2 protein PUMA. Furthermore, we demonstrate that PUMA can be cleaved by a caspase-dependent mechanism during apoptosis and identify what appears to be the PUMA cleavage product. Thus, our findings suggest that the combination of ABT-737 and inhibition of p38 is a promising, new treatment strategy that acts through a novel PUMA-dependent mechanism.  相似文献   

3.
Resistance of malignant melanoma cells to Fas-mediated apoptosis is among the mechanisms by which they escape immune surveillance. However, the mechanisms contributing to their resistance are not completely understood, and it is still unclear whether antiapoptotic Bcl-2-related family proteins play a role in this resistance. In this study, we report that treatment of Fas-resistant melanoma cell lines with cycloheximide, a general inhibitor of de novo protein synthesis, sensitizes them to anti-Fas monoclonal antibody (mAb)-induced apoptosis. The cycloheximide-induced sensitization to Fas-induced apoptosis is associated with a rapid down-regulation of Mcl-1 protein levels, but not that of Bcl-2 or Bcl-xL. Targeting Mcl-1 in these melanoma cell lines with specific small interfering RNA was sufficient to sensitize them to both anti-Fas mAb-induced apoptosis and activation of caspase-9. Furthermore, ectopic expression of Mcl-1 in a Fas-sensitive melanoma cell line rescues the cells from Fas-mediated apoptosis. Our results further show that the expression of Mcl-1 in melanoma cells is regulated by the mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK) and not by phosphatidylinositol 3-kinase/AKT signaling pathway. Inhibition of ERK signaling with the mitogen-activated protein/ERK kinase-1 inhibitor or by expressing a dominant negative form of mitogen-activated protein/ERK kinase-1 also sensitizes resistant melanoma cells to anti-Fas mAb-induced apoptosis. Thus, our study identifies mitogen-activated protein kinase/ERK/Mcl-1 as an important survival signaling pathway in the resistance of melanoma cells to Fas-mediated apoptosis and suggests that its targeting may contribute to the elimination of melanoma tumors by the immune system.  相似文献   

4.
Migration and invasion of malignant cells are prerequisites for cancer progression and metastasis. The Bcl-2 family of proteins consists of about 25 members and has been extensively studied in the context of apoptosis. Despite the fact that small molecules targeting Bcl-2 proteins have already entered clinical trials, very few studies investigated a role of antiapoptotic Bcl-2 proteins beside cell death in the context of metastasis. The aim of this study was to dissect a potential role of the antiapoptotic Bcl-2 proteins Mcl-1, Bcl-2 and Bcl-xL on migration and invasion of colorectal cancer cells independent of their cell death control function. We used migration and invasion assays as well as three dimensional cell cultures to analyze colorectal cancer cell lines (HT29 and SW480) after siRNA mediated knockdown or overexpression of Mcl-1, Bcl-2 or Bcl-xL. We observed neither spontaneous cell death induction nor impaired proliferation of cells lacking Mcl-1, Bcl-2 or Bcl-xL. In contrast, knockdown of Mcl-1 led to increased proliferation. Strikingly, we demonstrate a profound impairment of both, migration and invasion, of colorectal cancer cells after Mcl-1, Bcl-2 or Bcl-xL knockdown. This phenotype was completely revised in cells overexpressing Mcl-1, Bcl-2 or Bcl-xL. The most pronounced effect among the investigated proteins was observed for Bcl-2. The data presented indicate a pivotal role of Mcl-1, Bcl-2 and Bcl-xL for migration and invasion of colorectal cancer cells independent of their known antiapoptotic effects. Thus, our study illustrates novel antitumoral mechanisms of Bcl-2 protein targeting.  相似文献   

5.
Glucose uptake and utilization are growth factor-stimulated processes that are frequently upregulated in cancer cells and that correlate with enhanced cell survival. The mechanism of metabolic protection from apoptosis, however, has been unclear. Here we identify a novel signaling pathway initiated by glucose catabolism that inhibited apoptotic death of growth factor-deprived cells. We show that increased glucose metabolism protected cells against the proapoptotic Bcl-2 family protein Bim and attenuated degradation of the antiapoptotic Bcl-2 family protein Mcl-1. Maintenance of Mcl-1 was critical for this protection, as glucose metabolism failed to protect Mcl-1-deficient cells from apoptosis. Increased glucose metabolism stabilized Mcl-1 in both cell lines and primary lymphocytes via inhibitory phosphorylation of glycogen synthase kinase 3alpha and 3beta (GSK-3alpha/beta), which otherwise promoted Mcl-1 degradation. While a number of kinases can phosphorylate and inhibit GSK-3alpha/beta, we provide evidence that protein kinase C may be stimulated by glucose-induced alterations in diacylglycerol levels or distribution to phosphorylate GSK-3alpha/beta, maintain Mcl-1 levels, and inhibit cell death. These data provide a novel nutrient-sensitive mechanism linking glucose metabolism and Bcl-2 family proteins via GSK-3 that may promote survival of cells with high rates of glucose utilization, such as growth factor-stimulated or cancerous cells.  相似文献   

6.
Glioblastoma is a very aggressive form of brain tumor with limited therapeutic options. Usually, glioblastoma is treated with ionizing radiation (IR) and chemotherapy after surgical removal. However, radiotherapy is frequently unsuccessful, among others owing to resistance mechanisms the tumor cells have developed. Antiapoptotic B-cell leukemia (Bcl)-2 family members can contribute to radioresistance by interfering with apoptosis induction in response to IR. Bcl-2 and the closely related Bcl-xL and Mcl-1 are often overexpressed in glioblastoma cells. In contrast to Bcl-2 and Bcl-xL, Mcl-1 is a short-lived protein whose stability is closely regulated by ubiquitylation-dependent proteasomal degradation. Although ubiquitin ligases facilitate degradation, the deubiquitylating enzyme ubiquitin-specific protease 9x (USP9x) interferes with degradation by removing polyubiquitin chains from Mcl-1, thereby stabilizing this protein. Thus, an inability to downregulate Mcl-1 by enhanced USP9x activity might contribute to radioresistance. Here we analyzed the impact of USP9x on Mcl-1 levels and radiosensitivity in glioblastoma cells. Correlating Mcl-1 and USP9x expressions were significantly higher in human glioblastoma than in astrocytoma. Downregulation of Mcl-1 correlated with apoptosis induction in established glioblastoma cell lines. Although Mcl-1 knockdown by siRNA increased apoptosis induction after irradiation in all glioblastoma cell lines, USP9x knockdown significantly improved radiation-induced apoptosis in one of four cell lines and slightly increased apoptosis in another cell line. In the latter two cell lines, USP9x knockdown also increased radiation-induced clonogenic death. The massive downregulation of Mcl-1 and apoptosis induction in A172 cells transfected with USP9x siRNA shows that the deubiquitinase regulates cell survival by regulating Mcl-1 levels. In contrast, USP9x regulated radiosensitivity in Ln229 cells without affecting Mcl-1 levels. We conclude that USP9x can control survival and radiosensitivity in glioblastoma cells by Mcl-1-dependent and Mcl-1-independent mechanisms.Along with surgery, radiotherapy, and chemotherapy are the main treatment options of tumors. While the former aims to remove the tumor bulk mass, the latter two intend to neutralize remaining tumor cells. Ionizing radiation (IR) exerts its cytotoxic effects by inducing cell death. One form of specific cell death induced by IR is intrinsic apoptosis, which is regulated by members of the B-cell leukemia (Bcl)-2 protein family.1The Bcl-2 protein family consists of protective antiapoptotic and pro-apoptotic members, which keep each other in check by antagonizing each other''s function.2 The activation of pro-apoptotic multidomain proteins Bax and Bak is essential to induce mitochondrial outer membrane permeabilization, resulting in the release of cytochrome C and other apoptotic factors into the cytosol where, in turn, caspases become activated. Antiapoptotic Bcl-2 family members prevent the activation of Bax and Bak either by direct interaction or indirectly by sequestering pro-apoptotic BH3-only proteins Bim and Bid that are required to activate Bax and Bak. Other BH3-only proteins are also able to bind to antiapoptotic proteins, thereby releasing Bax and Bak from their inhibitory complexes with antiapoptotic proteins. Changing the balance between anti- and pro-apoptotic Bcl-2 family members can shift the cells toward survival or apoptosis, depending on whether the protective or the detrimental proteins dominate.Bcl-2 itself, Bcl-xL, and myeloid cell lymphoma-1 (Mcl-1) belong to the antiapoptotic proteins of the Bcl-2 family. They are often overexpressed in tumor cells and are associated with increased resistance to apoptosis induction in response to radio- and chemotherapy.3, 4 As more than one of the protective proteins can be upregulated in tumors, the neutralization of all antiapoptotic proteins is needed to successfully induce apoptosis. Blocking the antiapoptotic function of Bcl-2/Bcl-xL by inhibitors mimicking BH3-only proteins, such as ABT737 and ABT263, can induce apoptosis in cells with low Mcl-1 levels but has no effect on cells with high Mcl-1 levels.5, 6, 7 In contrast, specific inhibitors targeting Mcl-1 have been insufficiently described until now. However, Mcl-1 availability might be modulated by targeting pathways that regulate Mcl-1 stability.In contrast to Bcl-2 and Bcl-xL, Mcl-1 is a relatively short-lived protein.8, 9 Usually, Mcl-1 is quickly ubiquitylated by specific ubiquitin ligases and targeted for proteasomal degradation. Phosphorylation of Mcl-1, for example by glycogen synthase kinase GSK-3β, can accelerate this degrading process,10, 11 whereas deubiquitinases counteract it by removing the polyubiquitin chain, thereby stabilizing the short-lived protein. The ubiquitin-specific protease 9x (USP9x) was recently identified as a Mcl-1 specific deubiquitinase.12 However, the circumstances under which USP9x regulates Mcl-1 stability are not well understood. Schwickart et al.12 showed that USP9x levels correlated with Mcl-1 levels, suggesting a constitutive regulation of Mcl-1 levels by the deubiquitinase. In contrast, our recent results showed no effect of USP9x on Mcl-1 levels in healthy Jurkat cells, but an accelerated IR-induced Mcl-1 degradation was detected when USP9x was knocked down.9 This indicates that the association of USP9x with Mcl-1 is regulated by a yet unknown mechanism in response to irradiation.In the present study, we aimed to analyze the impact of USP9x on Mcl-1 and cell survival in glioblastoma cell lines. Glioblastoma is not only the most common but also a very aggressive form of brain tumor that are primarily removed by surgery as radically as possible and consecutively treated with radiochemotherapy, if the patient''s condition allows for adjuvant therapy.13 Despite the multimodal treatment, the median patient survival is below 1.5 years. Comparing human grade III astrocytoma with grade IV glioblastoma samples, we could show that Mcl-1 and USP9x are upregulated during tumor progression. Furthermore, we examined four established (A172, U373, Ln229, T98G) and two primary (LKI, WKI) glioblastoma cell lines that differ in their ability to downregulate Mcl-1 and induce apoptosis in response to IR. Analyzing A172 and U373 cells more closely, we detected an increased Mcl-1 ubiquitylation that correlated with a reduced Mcl-1 stability 48 h after irradiation in U373 cells, but not in A172 cells. Moreover, Mcl-1 knockdown sensitized A172, Ln229, and T98G cells to IR-induced apoptosis, suggesting that Mcl-1 is an important factor increasing glioblastoma cell survival after irradiation. In contrast, USP9x knockdown slightly increased apoptosis in IR-resistant A172 cells and significantly in Ln229 cells and reduced clonogenic survival after irradiation only on these two cell lines. Although USP9x knockdown reduced Mcl-1 levels and increased apoptosis in A172 cells, USP9x regulated radiosensitivity independently of Mcl-1 in Ln229 cells.Our results show a different requirement of USP9x in the control of glioblastoma cell survival and radiosensitivity.  相似文献   

7.
Bcl-2 family proteins act as essential regulators and mediators of intrinsic apoptosis. Several lines of evidence suggest that the anti-apoptotic members of the family, including Bcl-2, Bcl-xL and Mcl-1, exhibit functional redundancy. However, the current evidence is largely indirect, and based mainly on pharmacological data using small-molecule inhibitors. In order to study compensation and redundancy of anti-apoptotic Bcl-2 proteins at the molecular level, we used a combined knockdown/overexpression strategy to essentially replace the function of one member with another. The results show that HeLa cells are strictly dependent on Mcl-1 for survival and correspondingly refractory to the Bcl-2/Bcl-xL inhibitor ABT-263, and remain resistant to ABT-263 in the context of Bcl-xL overexpression because endogenous Mcl-1 continues to provide the primary guardian role. However, if Mcl-1 is knocked down in the context of Bcl-xL overexpression, the cells become Bcl-xL-dependent and sensitive to ABT-263. We also show that Bcl-xL compensates for loss of Mcl-1 by sequestration of two key pro-apoptotic Bcl-2 family members, Bak and Bim, normally bound to Mcl-1, and that Bim is essential for cell death induced by Mcl-1 knockdown. To our knowledge, this is the first example where cell death induced by loss of Mcl-1 was rescued by the silencing of a single BH3-only Bcl-2 family member. In colon carcinoma cell lines, Bcl-xL and Mcl-1 also play compensatory roles, and Mcl-1 knockdown sensitizes cells to ABT-263. The results, obtained employing a novel strategy of combining knockdown and overexpression, provide unique molecular insight into the mechanisms of compensation by pro-survival Bcl-2 family proteins.  相似文献   

8.
Melanoma cells depend on sustained proteasomal function for survival. However, bortezomib, the first proteasome inhibitor in clinical use, is not sufficient to improve the poor prognosis of metastatic melanoma patients. Since the proteasome is also expressed in all normal cell compartments, it is unclear how to enhance the efficacy of bortezomib without exacerbating secondary toxicities. Here, we present pharmacological and genetic analyses of mechanisms of resistance to proteasome inhibition. We focused on Bcl-2, Bcl-x(L) and Mcl-1 as main antiapoptotic factors associated with melanoma progression. Despite an efficient blockage of the proteasome, bortezomib could not counteract the intrinsically high levels of Bcl-2 and Bcl-x(L) in melanoma cells. Moreover, Mcl-1 was only downregulated at late time points after treatment. Based on these results, a combination treatment including (-)-gossypol, an inhibitor of Mcl-1/Bcl-2/Bcl-x(L), was designed and proven effective in vivo. Using a specific RNA interference approach, the survival of bortezomib-treated melanoma cells was found to rely primarily on Mcl-1, and to a lesser extent on Bcl-x(L) (but not on Bcl-2). Importantly, neither Mcl-1 nor Bcl-x(L) inactivation affected the viability of normal melanocytes. This hierarchical requirement of Bcl-2 family members for the maintenance of normal and malignant cells offers a therapeutic window to overcome melanoma chemoresistance in a tumor cell-selective manner.  相似文献   

9.
Members of the Bcl-2 family of proteins are important inhibitors of apoptosis in human cancer and are targets for novel anticancer agents such as the Bcl-2 antagonists, ABT-263 (Navitoclax), and its analog ABT-737. Unlike Bcl-2, Mcl-1 is not antagonized by ABT-263 or ABT-737 and is considered to be a major factor in resistance. Also, Mcl-1 exhibits differential regulation when compared with other Bcl-2 family members and is a target for anticancer drug discovery. Here, we demonstrate that BAG3, an Hsp70 co-chaperone, protects Mcl-1 from proteasomal degradation, thereby promoting its antiapoptotic activity. Using neuroblastoma cell lines, with a defined Bcl-2 family dependence, we found that BAG3 expression correlated with Mcl-1 dependence and ABT-737 resistance. RNA silencing of BAG3 led to a marked reduction in Mcl-1 protein levels and overcame ABT-737 resistance in Mcl-1-dependent cells. In ABT-737-resistant cells, Mcl-1 co-immunoprecipitated with BAG3, and loss of Mcl-1 after BAG3 silencing was prevented by proteasome inhibition. BAG3 and Mcl-1 were co-expressed in a panel of diverse cancer cell lines resistant to ABT-737. Silencing BAG3 reduced Mcl-1 protein levels and overcame ABT-737 resistance in several of the cell lines, including triple-negative breast cancer (MDA-MB231) and androgen receptor-negative prostate cancer (PC3) cells. These studies identify BAG3-mediated Mcl-1 stabilization as a potential target for cancer drug discovery.  相似文献   

10.
Mcl-1L (myeloid cell leukemia-1 long) is an antiapoptotic Bcl-2 family protein discovered as an early induction gene during leukemia cell differentiation. Previously, we identified Mcl-1S (short) as a short splicing variant of the Mcl-1 gene with proapoptotic activity. To identify Mcl-1-interacting proteins, we performed yeast two-hybrid screening and found cDNAs encoding tankyrase 1. This protein possesses poly(ADP-ribose) polymerase activity and presumably facilitates the turnover of substrates following ADP-ribosylation. In yeast and mammalian cells, tankyrase 1 interacts with both Mcl-1L and Mcl-1S, but does not bind to other Bcl-2 family proteins tested. Analysis of truncated tankyrase 1 mutants indicated that the first 10 ankyrin repeats are involved in interaction with Mcl-1. In the N terminus of Mcl-1, a stretch of 25 amino acids is sufficient for binding to tankyrase 1. Overexpression of tankyrase 1 antagonizes both Mcl-1L-mediated cell survival and Mcl-1S-induced cell death. Furthermore, coexpression of tankyrase 1 with Mcl-1L or Mcl-1S decreased the levels of Mcl-1 proteins. Although tankyrase 1 down-regulates Mcl-1 protein expression, no ADP-ribosylation of Mcl-1 was detected. In contrast, overexpression of Mcl-1 proteins suppressed the ADP-ribosylation of the telomeric repeat binding factor 1, another tankyrase 1-interacting protein. Thus, interaction of Mcl-1L and Mcl-1S with tankyrase 1 could serve as a unique mechanism to decrease the expression of these Bcl-2 family proteins, thereby leading to the modulation of the apoptosis pathway.  相似文献   

11.
Spontaneous immunity against Bcl-xL in cancer patients   总被引:4,自引:0,他引:4  
It is well-established that peptide epitopes derived from human tumor-associated Ags can be recognized by CTL in the context of the MHC molecule. However, the vast majority of Ags described are not vital for survival and growth of the tumor cells, and immunoselection of Ag-loss variants during immunotherapy has been demonstrated in several cases. Malfunctions in death pathways observed in human cancers are often due to overexpression of antiapoptotic proteins in the Bcl-2 protein family, i.e., Bcl-2, Mcl-1, and Bcl-xL. These antiapoptotic proteins are implicated in cancer development, tumor progression, and drug resistance. The general overexpression of the antiapoptotic members of the Bcl-2 family in cancer and the fact that down-regulation or loss of expression of these proteins as a means of immune escape would impair sustained tumor growth makes them very attractive targets for anticancer immunotherapy. Recently, we identified spontaneous T cell responses against Bcl-2- and Mcl-1-derived peptides in patients suffering from cancers of different origin. In this study, we demonstrate that Bcl-xL is a target for T cell recognition in cancer patients. Thus, we describe spontaneous HLA-A2-restricted cytotoxic T cell responses against peptide epitopes derived from Bcl-xL by means of ELISPOT and flow cytometry stainings, whereas no responses were detected against any of the Bcl-xL epitopes in any healthy controls. Moreover, Bcl-xL-specific T cells are cytotoxic against HLA-matched cancer cells of different origin. Thus, cellular immune responses against apoptosis inhibitors like the Bcl-2 family proteins appear to represent a general feature in cancer.  相似文献   

12.
Anti-apoptotic Bcl-2 family proteins have been reported to play an important role in apoptotic cell death of human malignancies. The aim of this study was to delineate the mechanism of anti-apoptotic Bcl-2 family proteins in pancreatic cancer (PaCa) cell survival. We first analyzed the endogenous expression and subcellular localization of anti-apoptotic Bcl-2 family proteins in six PaCa cell lines by Western blot. To delineate the functional role of Bcl-2 family proteins, siRNA-mediated knock-down of protein expression was used. Apoptosis was measured by Cell Death ELISA and Hoechst 33258 staining. In the results, the expression of anti-apoptotic Bcl-2 family proteins varied between PaCa cell lines. Mcl-1 knock-down resulted in marked cleavage of PARP and induction of apoptosis. Down-regulation of Bcl-2 or Bcl-xL had a much weaker effect. Simultaneous knock-down of Bcl-xL and Mcl-1 strongly induced apoptosis, but simultaneous knock-down of Bcl-xL/Bcl-2 or Mcl-1/Bcl-2 had no additive effect. The apoptosis-inducing effect of simultaneous knock-down of Bcl-xL and Mcl-1 was associated with translocation of Bax from the cytosol to the mitochondrial membrane, cytochrome c release, and caspase activation. These results demonstrated that Bcl-xL and Mcl-1 play an important role in pancreatic cancer cell survival. Targeting both Bcl-xL and Mcl-1 may be an intriguing therapeutic strategy in PaCa.  相似文献   

13.

Background

Malignant melanoma is resistant to almost all conventional forms of chemotherapy. Recent evidence suggests that anti-apoptotic proteins of the Bcl-2 family are overexpressed in melanoma and may contribute to melanoma''s striking resistance to apoptosis. ABT-737, a small-molecule inhibitor of Bcl-2, Bcl-xl and Bcl-w, has demonstrated efficacy in several forms of leukemia, lymphoma as well as solid tumors. However, overexpression of Mcl-1, a frequent observance in melanoma, is known to confer ABT-737 resistance.

Methodology/Principal Findings

Here we report that knockdown of Mcl-1 greatly reduces cell viability in combination with ABT-737 in six different melanoma cell lines. We demonstrate that the cytotoxic effect of this combination treatment is due to apoptotic cell death involving not only caspase-9 activation but also activation of caspase-8, caspase-10 and Bid, which are normally associated with the extrinsic pathway of apoptosis. Caspase-8 (and caspase-10) activation is abrogated by inhibition of caspase-9 but not by inhibitors of the death receptor pathways. Furthermore, while caspase-8/-10 activity is required for the full induction of cell death with treatment, the death receptor pathways are not. Finally, we demonstrate that basal levels of caspase-8 and Bid correlate with treatment sensitivity.

Conclusions/Significance

Our findings suggest that the combination of ABT-737 and Mcl-1 knockdown represents a promising, new treatment strategy for malignant melanoma. We also report a death receptor-independent role for extrinsic pathway proteins in treatment response and suggest that caspase-8 and Bid may represent potential markers of treatment sensitivity.  相似文献   

14.
Nicotine is a major carcinogen in cigarettes, which can enhance cell proliferation and metastasis and increase the chemoresistance of cancer cells. Our previous data found that nicotine promotes cell survival in lung cancer by affecting the expression of antiapoptotic protein Mcl-1, suggesting that the Mcl-1 may be a therapeutic target for patients with lung cancer. In this study, we found that the effects of drug resistance on nicotine-induced lung cancer cell lines were shown to influence the phosphorylation of Mcl-1. Moreover, nicotine induces Mcl-1 phosphorylation exclusively at the T163 site, which results in enhancement of the antiapoptotic activity of Mcl-1 and increased cell survival. Meanwhile, nicotine can reduce the sensitivity of H1299 cells to CDDP via enhancement of the binding of Mcl-1 to Bak, which inhibits the proapoptotic effect of Bak and ultimately leads to increased survival and drug resistance of lung cancer cells. Thus, nicotine-induced cell survival and chemoresistance may occur in a mechanism by stimulating Mcl-1 phosphorylation and its interaction with Bak, which may contribute to improving the efficacy of chemotherapy in the treatment of human lung cancer.  相似文献   

15.
Mcl-1 is a recently described homologue of Bcl-2 whose function and biochemical characteristics remain poorly defined. Gene transfer experiments in lnterleukin-3 (IL-3)-dependent myeloid progenitor 32D.3 cells and pro-B-lymphoid FL5.12 cells demonstrated that enforced production of high levels of Mcl-1 protein failed to prolong the survival of cells when cultured in the absence of IL-3, whereas Bcl-2 did delay cell death. Mcl-1 also did not prolong the survival in vitro of 32D.3 cells that had been induced to differentiate into mature neutrophils using Granulocyte-Colony Stimulating Factor (G-CSF), whereas Bcl-2 did. 32D.3 and FL5.12 cells co-transfected with Mcl-1 and Bcl-2 displayed survival kinetics essentially identical to cells transfected with Bcl-2 alone, when cultured in the absence of IL-3, indicating that Mcl-1 neither enhances nor impairs Bcl-2 function. In contrast to the lack of effects of Mcl-1 in 32D.3 and FL5.12 cells, Mcl-1 (like Bcl-2) was able to neutralise Bax-induced cytotoxicity in yeast (S. cerevisiae). Moreover, the recombinant GST-Mcl-1 protein bound specifically to in vitro translated Bax protein, as well as to Bax protein present in detergent lysates prepared from 32D.3 and FL5.12 cells, based on in vitro binding assays. However, Mcl-1 and Bax proteins could not be co-immunoprecipitated from control and transfected 32D.3 and FL5.12 cells, whereas Bcl-2 and Bax were easily co-immunoprecipitated under the same conditions. The findings suggest that while Mcl-1 has the capacity to bind to and neutralise the cell death promoting activity of Bax, other factors such as perhaps additional proteins or undefined post-translational modifications may influence its ability to bind to Bax in vivo and thus affect its function as a cell death blocker.  相似文献   

16.
Melanoma is an aggressive skin cancer. Unfortunately, there is currently no chemotherapeutic agent available to significantly prolong the survival of the most patients with metastatic melanomas. Here we report that the Ginkgo biloba extract (EGb761), one of the most widely sold herbal supplements in the world, potently induces apoptosis in human melanoma cells by disturbing the balance between pro- and anti-apoptosis Bcl-2 family proteins. Treatment with EGb761 induced varying degrees of apoptosis in melanoma cell lines but not in melanocytes. Induction of apoptosis was caspase-dependent and appeared to be mediated by the mitochondrial pathway, in that it was associated with reduction in mitochondrial membrane potential and activation of Bax and Bak. Although EGb761 did not cause significant change in the expression levels of the BH3-only Bcl-2 family proteins Bim, Puma, Noxa, and Bad, it significantly downregulated Mcl-1 in sensitive but not resistant melanoma cells, suggesting a major role of Mcl-1 in regulating apoptosis of melanoma cells induced by EGb761. Indeed, siRNA knockdown of Mcl-1 enhanced EGb761-induced apoptosis, which was associated with increased activation of Bax and Bak. Taken together, these results demonstrate that EGb761 kills melanoma cells through the mitochondrial apoptotic pathway, and that Mcl-1 is a major regulator of sensitivity of melanoma cells to apoptosis induced by EGb761. Therefore, EGb761 with or without in combination with targeting Mcl-1 may be a useful strategy in the treatment of melanoma.  相似文献   

17.
How cells die in the absence of oxygen (anoxia) is not understood. Here we report that cells deficient in Bax and Bak or caspase-9 do not undergo anoxia-induced cell death. However, the caspase-9 null cells do not survive reoxygenation due to the generation of mitochondrial reactive oxygen species. The individual loss of Bim, Bid, Puma, Noxa, Bad, caspase-2, or hypoxia-inducible factor 1beta, which are potential upstream regulators of Bax or Bak, did not prevent anoxia-induced cell death. Anoxia triggered the loss of the Mcl-1 protein upstream of Bax/Bak activation. Cells containing a mitochondrial DNA cytochrome b 4-base-pair deletion ([rho(-)] cells) and cells depleted of their entire mitochondrial DNA ([rho(0)] cells) are oxidative phosphorylation incompetent and displayed loss of the Mcl-1 protein under anoxia. [rho(0)] cells, in contrast to [rho(-)] cells, did not die under anoxia. However, [rho(0)] cells did undergo cell death in the presence of the Bad BH3 peptide, an inhibitor of Bcl-X(L)/Bcl-2 proteins. These results indicate that [rho(0)] cells survive under anoxia despite the loss of Mcl-1 protein due to residual prosurvival activity of the Bcl-X(L)/Bcl-2 proteins. Collectively, these results demonstrate that anoxia-induced cell death requires the loss of Mcl-1 protein and inhibition of the electron transport chain to negate Bcl-X(L)/Bcl-2 proteins.  相似文献   

18.
19.
The microenvironment of cancerous cells includes endoplasmic reticulum (ER) stress the resistance to which is required for the survival and growth of tumors. Acute ER stress triggers the induction of a family of ER stress proteins that promotes survival and/or growth of the cancer cells, and also confers resistance to radiation and chemotherapy. Prolonged or severe ER stress, however, may ultimately overwhelm the cellular protective mechanisms, triggering cell death through specific programmed cell death (pcd) pathways. Thus, downregulation of the protective stress proteins may offer a new therapeutic approach to cancer treatment. In this regard, recent reports have demonstrated the roles of the phytochemical curcumin in the inhibition of proteasomal activity and triggering the accumulation of cytosolic Ca2+ by inhibiting the Ca2+-ATPase pump, both of which enhance ER stress. Using a mouse melanoma cell line, we investigated the possibility that curcumin may trigger ER stress leading to programmed cell death. Our studies demonstrate that curcumin triggers ER stress and the activation of specific cell death pathways that feature caspase cleavage and activation, p23 cleavage, and downregulation of the anti-apoptotic Mcl-1 protein.  相似文献   

20.
The rise in type 1 diabetes (T1D) incidence in recent decades is probably related to modifications in environmental factors. Viruses are among the putative environmental triggers of T1D. The mechanisms regulating beta cell responses to viruses, however, remain to be defined. We have presently clarified the signaling pathways leading to beta cell apoptosis following exposure to the viral mimetic double-stranded RNA (dsRNA) and a diabetogenic enterovirus (Coxsackievirus B5). Internal dsRNA induces cell death via the intrinsic mitochondrial pathway. In this process, activation of the dsRNA-dependent protein kinase (PKR) promotes eIF2α phosphorylation and protein synthesis inhibition, leading to downregulation of the antiapoptotic Bcl-2 protein myeloid cell leukemia sequence 1 (Mcl-1). Mcl-1 decrease results in the release of the BH3-only protein Bim, which activates the mitochondrial pathway of apoptosis. Indeed, Bim knockdown prevented both dsRNA- and Coxsackievirus B5-induced beta cell death, and counteracted the proapoptotic effects of Mcl-1 silencing. These observations indicate that the balance between Mcl-1 and Bim is a key factor regulating beta cell survival during diabetogenic viral infections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号