首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Cell populations of Paramecium bursaria show mating reactivity in the light period, but not in the dark period, when exposed to a light-dark cycle (LD 12:12). After they are transferred to constant-light (LL) conditions (1,000 lux), they continue to show a circadian rhythm of mating reactivity. The rhythm gradually dampens in LL so that mating reactivity in populations becomes arrhythmic in LL within 2 weeks. We wanted to know whether the arrhythmicity of this population was due to the absence of circadian rhythmicity within each individual cell, or merely due to asynchrony of a population of individually rhythmic cells. Therefore, single cells were isolated randomly from an arrhythmic population that had been in LL for a long time. Then the mating reactivity of these single cells was individually tested every 3 hr for 2 days. Each single cell showed a circadian mating rhythm in LL. This shows that the disappearance of the mating rhythm in cell populations under LL is not caused by disappearance of circadian rhythmicity within individual cells, but is due to desynchronization among cells in a population. When an arrhythmic population in LL is darkened for 9 hr, the mating reactivity rhythm of the cell population reappears. This occurs by resynchronization of the rhythms among individual cells, as can be shown by exposing single cells to pulses of 9 hr of darkness. This dark treatment causes phase shifts of single-cell rhythms, and a phase response curve is obtained for this stimulus. This phase-shifting behavior explains the efficacy of 9-hr dark pulses in restoring the population's rhythm.  相似文献   

2.
It has been suggested that two endogenous timekeeping systems, a light-entrainable pacemaker (LEP) and a food-entrainable pacemaker (FEP), control circadian rhythms. To understand the function and interaction between these two mechanisms better, we studied two behavioral circadian rhythmicities, feeding and locomotor activity, in rats exposed to two conflicting zeitgebers, food restriction and light-dark cycles. For this, the food approaches and wheel-running activity of rats kept under light-dark (LD) 12:12, constant darkness (DD), or constant light (LL) conditions and subjected to different scheduled feeding patterns were continuously recorded. To facilitate comparison of the results obtained under the different lighting conditions, the period of the feeding cycles was set in all three cases about Ih less than the light-entrained or free-running circadian rhythms. The results showed that, depending on the lighting conditions, some components of the feeding and wheel-running circadian rhythms could be entrained by food pulses, while others retained their free-running or light-entrained state. Under LD, food pulses had little influence on the light-entrained feeding and loco-motor rhythms. Under DD, relative coordination between free-running and food-associated rhythms may appear. In both cases, the feeding activity associated with the food pulses could be divided into a prominent phase-dependent peak of activity within the period of food availability and another afterward. Wheel-running activity mainly followed the food pulses. Under LL conditions, the food-entrained activity consisted mainly of feeding and wheel-running anticipatory activity. The results provide new evidence that lighting conditions influence the establishment and persistence of food-entrained circadian rhythms in rats. The existence of two coupled pacemakers, LEP and FEP, or a multioscillatory LEP may both explain our experimental results.  相似文献   

3.
It has been suggested that two endogenous timekeeping systems, a light-entrainable pacemaker (LEP) and a food-entrainable pacemaker (FEP), control circadian rhythms. To understand the function and interaction between these two mechanisms better, we studied two behavioral circadian rhythmicities, feeding and locomotor activity, in rats exposed to two conflicting zeitgebers, food restriction and light-dark cycles. For this, the food approaches and wheel-running activity of rats kept under light-dark (LD) 12:12, constant darkness (DD), or constant light (LL) conditions and subjected to different scheduled feeding patterns were continuously recorded. To facilitate comparison of the results obtained under the different lighting conditions, the period of the feeding cycles was set in all three cases about Ih less than the light-entrained or free-running circadian rhythms. The results showed that, depending on the lighting conditions, some components of the feeding and wheel-running circadian rhythms could be entrained by food pulses, while others retained their free-running or light-entrained state. Under LD, food pulses had little influence on the light-entrained feeding and loco-motor rhythms. Under DD, relative coordination between free-running and food-associated rhythms may appear. In both cases, the feeding activity associated with the food pulses could be divided into a prominent phase-dependent peak of activity within the period of food availability and another afterward. Wheel-running activity mainly followed the food pulses. Under LL conditions, the food-entrained activity consisted mainly of feeding and wheel-running anticipatory activity. The results provide new evidence that lighting conditions influence the establishment and persistence of food-entrained circadian rhythms in rats. The existence of two coupled pacemakers, LEP and FEP, or a multioscillatory LEP may both explain our experimental results.  相似文献   

4.
The circadian rhythms of locomotor activity of the scorpion Leiurus quinqueslriatus were examined under different light-dark cycles and in free-running conditions. The circadian rhythm is bimodal in LD 12:12 with alternating cycles of temperature (35°-25°C) with high intensity (1300 lux) or in LD 12: 12 with constant temperature 35° C with 300 lux. In LD 12:12 (1300 lux), in long or in short light spans with constant temperature, the bimodal pattern is slightly changed with the appearance of a third minor peak of activity. In free-running conditions, the bimodal rhythm of locomotor activity persists in DD with T about 24 hr, but in LL the rhythm becomes unimodal with T about 24 hr. Cosinor and power spectrum analysis showed the presence of more than one periodic component. It seems that there is a correlation between the range of light regimens, temperature, light intensity and the coincidence of these components. These components are independently entrained by the environmental light cycle. The mechanism of entrainment of components is discussed.  相似文献   

5.
Hamsters that showed splitting of their circadian rhythms of wheel-running activity following long-term exposure to constant illumination (LL) were exposed to light-dark (LD) cycles with 2-hr dark segments, and with periods of 24.00, 24.23 or 24.72 hr. For comparison, hamsters showing nonsplit rhythms were also studied. In all cases of split rhythms, at least one of the two split components entrained to the LD cycles. In some animals, the second component continued to free-run until it merged with the entrained component, while in others, the second component also entrained to the LD cycle but maintained a stable phase angle of 6-14.5 hr relative to dark onset. These results were obtained in cases where the period of the LD cycle was shorter than that of the split rhythms and in cases where it was longer, implying that split components can be phase-advanced as well as phase-delayed by 2 hr of darkness. Three hamsters that showed stable entrainment of split rhythms were allowed to free-run in LL. The LD cycles were then reinstated, but instead of overlapping with the first component, as it did before, the dark segment was timed to overlap with the second. The entrainment patterns that ensued were similar to the ones obtained during the first LD exposure, indicating that the two split components respond to darkness in a qualitatively similar fashion. These results are further evidence that the pacemaker system underlying split circadian activity rhythms in hamsters is composed of two mutually coupled populations of oscillators that have similar properties, including a bidirectional phase response curve. Such a dual-oscillator organization may also underlie normal, or nonsplit, activity rhythms, as suggested by Pittendrigh and Daan (1976c), but the data are also compatible with the alternative view that the circadian pacemaker consists of a large number of coupled oscillators, which only dissociate into two separate populations in some animals under conditions of moderate LL intensity.  相似文献   

6.
Investigations on the effects of the 5-HT agonists and antagonists on the phase of the circadian locomotor activity rhythm of animals kept in constant light conditions (LL) are rare. Therefore the influence of R-(+)-OH-DPAT (5-HT1A receptors agonist) and metergoline (5-HT1/2/7 receptors antagonist) on the phase shift of the locomotor-activity rhythm alone and when combined with dark pulses in mice kept in LL are examined. The results indicate that 8-OH-DPAT administered independently at 12.00CT (Circadian Time) shifted the phase of the circadian rhythm and reinforced the effect of dark pulses on this parameter. 12.00CT was defined arbitrarily as the onset of locomotor activity in constant conditions. Metergoline diminished the phase shifts after dark pulses compared to 8-OH-DPAT. The influence of the serotonin agonist showed that serotonin can reinforce the phase shifting effect of the locomotor activity rhythm after dark pulses in LL condition.  相似文献   

7.
Serotonin (5-HT) can act presynaptically at 5-HT1B receptors on retinal terminals in the suprachiasmatic nucleus (SCN) to inhibit glutamate release, thereby modulating the effects of light on circadian behavior. 5-HT1B receptor agonists (1) inhibit light-induced phase shifts of circadian activity rhythms, (2) attenuate light-induced Fos expression in the SCN, and (3) reduce the amplitude of optic nerve-evoked excitatory postsynaptic currents in SCN neurons in vitro. To determine whether functional disruption of the 5-HT1B presynaptic receptors would result in an amplified response of the SCN to light, the period (tau) of the circadian rhythm of wheel-running activity was estimated under several different conditions in 5-HT1B receptor knockout (KO) mice and genetically matched wild-type animals. Under constant light (LL) conditions, the tau of 5-HT1B receptor KO mice was significantly greater than the tau of wild-type mice. A quantitative analysis of the wheel-running activity revealed no differences between wild-type and KO mice in either total activity or the temporal distribution of activity under LL conditions, suggesting that the observed increase in tau was not a function of reduced activity. Under constant dark conditions, the period of the circadian rhythm of wheel-running activity of wild-type and 5-HT1B receptor KO mice was similar. In addition, no differences were noted between wild-type and 5-HT1B receptor KO mice in the rate of reentrainment to a 6 h phase advance in the 12:12 light:dark cycle or in phase shifts in response to a 10 min light pulse presented at circadian time 16. The enhanced response of the SCN circadian clock of the 5-HT1B receptor KO mice to LL conditions is consistent with the hypothesis that the endogenous activation of 5-HT1B presynaptic receptors modulates circadian behavior by attenuating photic input to the SCN.  相似文献   

8.
Circadian rhythms of animals are reset by exposure to light as well as dark; however, although the parameters of photic entrainment are well characterized, the phase-shifting actions of dark pulses are poorly understood. Here, we determined the tonic and phasic effects of short (0.25 h), moderate (3 h), and long (6-9 h) duration dark pulses on the wheel-running rhythms of hamsters in constant light. Moderate- and long-duration dark pulses phase dependently reset behavioral rhythms, and the magnitude of these phase shifts increased as a function of the duration of the dark pulse. In contrast, the 0.25-h dark pulses failed to evoke consistent effects at any circadian phase tested. Interestingly, moderate- and long-dark pulses elevated locomotor activity (wheel-running) on the day of treatment. This induced wheel-running was highly correlated with phase shift magnitude when the pulse was given during the subjective day. This, together with the finding that animals pulsed during the subjective day are behaviorally active throughout the pulse, suggests that both locomotor activity and behavioral activation play an important role in the phase-resetting actions of dark pulses. We also found that the robustness of the wheel-running rhythm was weakened, and the amount of wheel-running decreased on the days after exposure to dark pulses; these effects were dependent on pulse duration. In summary, similarly to light, the resetting actions of dark pulses are dependent on both circadian phase and stimulus duration. However, dark pulses appear more complex stimuli, with both photic and nonphotic resetting properties.  相似文献   

9.
Male crickets of the species Teleogryllus commodus express circadian rhythms in both their stridulatory and locomotory behaviours. Both forms of activity show the same free-running period (τ) in either DD (23·4 hr) or LL (25·1 hr). Although some overlap is seen between periods of locomotion and stridulation, the majority of each activity is found in different phases of the circadian cycle: locomotion occurs mainly in the subjective day and stridulation in the subjective night. Entraining LD cycles with photoperiods of 12 hr produce exogenous effects that can obscure endogenous components of the rhythms. Red light (λ>600 nm) causes the period to lengthen and RD cycles can entrain both rhythms. Single white light pulses of 2 or 6 hr did not produce significant phase shifts, but did cause τ to shorten when given in the subjective night. The significance of these observations is discussed. Given the results obtained to date, it is not likely that each rhythm is under the control of a separate circadian pacemaker.  相似文献   

10.
Arctic and subarctic environments are exposed to extreme light: dark (LD) regimes, including periods of constant light (LL) and constant dark (DD) and large daily changes in day length, but very little is known about circadian rhythms of mammals at high latitudes. The authors investigated the circadian rhythms of a subarctic population of northern red-backed voles (Clethrionomys rutilus). Both wild-caught and third-generation laboratory-bred animals showed predominantly nocturnal patterns of wheel running when exposed to a 16:8 LD cycle. In LL and DD conditions, animals displayed large phenotypic variation in circadian rhythms. Compared to wheel-running rhythms under a 16:8 LD cycle, the robustness of circadian activity rhythms decreased among all animals tested in LL and DD (i.e., decreased chi-squared periodogram waveform amplitude). A large segment of the population became noncircadian (60% in DD, 72% in LL) within 8 weeks of exposure to constant lighting conditions, of which the majority became ultradian, with a few individuals becoming arrhythmic, indicating highly labile circadian organization. Wild-caught and laboratory-bred animals that remained circadian in wheel running displayed free-running periods between 23.3 and 24.8 h. A phase-response curve to light pulses in DD showed significant phase delays at circadian times 12 and 15, indicating the capacity to entrain to rapidly changing day lengths at high latitudes. Whether this phenotypic variation in circadian organization, with circadian, ultradian, and arrhythmic wheel-running activity patterns in constant lighting conditions, is a novel adaptation to life in the arctic remains to be elucidated.  相似文献   

11.
Photic signals affect circadian activity rhythms by both phasic and tonic mechanisms that modulate pacemaker phase and period. In mammals, the effects of light on circadian activity are mediated by the retina, which communicates with the suprahiasmatic nucleus (SCN) by two different anatomical routes: the retino-hypothalamic tract (RHT), originating in the retina, and the geniculo-hypothalamic tract (GHT), arising from a retino-recipient nucleus, the intergeniculate leaflet (IGL). We assessed the roles of these two afferent systems in mediating phasic and tonic effects of light on circadian activity in IGL-lesioned animals. Destruction of the IGL significantly affected phase shifts produced by brief light pulses (phasic effect) and modified the change in period (tau) of the free-running activity rhythm produced by changing the level of constant light (LL) (tonic effect). Phase advances produced by brief light pulses were decreased in amplitude while phase delays were increased in IGL-lesioned animals as compared to controls. The free-running period in constant dark (tau DD) of IGL-lesioned animals was greater than tau DD of controls, and the lengthening of tau normally produced by LL was not observed or was greatly reduced in IGL-lesioned animals. Entrainment to light-dark cycles was unaffected by the lesions, as were other aspects of the circadian activity rhythm that normally change in response to LL (e.g., activity-rest ratio, total activity, splitting). Our data support the interpretation that the IGL plays a significant role in relaying information regarding illumination intensity to the SCN.  相似文献   

12.
We have investigated the effects of destruction of the geniculo-hypothalamic tract (GHT) on the circadian system of golden hamsters. In the first experiment, intact hamsters were housed in constant darkness, and phase shifts in running-wheel activity rhythms were assessed following 15-min light pulses administered at circadian time (CT) 12 (defined as the beginning of activity), CT 14, CT 18, and CT 20. Responses to light pulses at the same CTs were then reassessed after GHT lesions. Hamsters with complete lesions showed decreases in phase advances caused by light pulses at CT 18 and CT 20. Phase delays elicited by light at CT 12 and CT 14 were not altered. In a second study, intact and GHT-ablated hamsters housed in constant light received 6-hr dark pulses at various CTs. Hamsters with complete GHT ablation showed smaller advances than controls to dark pulses centered on CT 8-10. After 110 days in constant light, 7 of 10 intact hamsters showed splitting of their activity rhythms into two components, while only 1 of the 8 similarly treated ablated hamsters displayed dissociated activity components. Ablated hamsters had significantly shorter free-running periods during the first 35 days of exposure to constant light than did the intact hamsters. These results demonstrate that destruction of the GHT in the hamster alters phase shifting in response to periods of light or dark, and they indicate a role for the GHT in mediating several photic effects on the circadian system.  相似文献   

13.
Circadian rhythms of wheel-running activity of the antelope ground squirrel (Ammospermophilus leucurus) were entrained by light-dark cycles (LD: 100 1x vs total darkness) with periods (T) between ca 23.75 and 24.75 hr. Two 1-hr light pulses per cycle ('skeleton photoperiods') with T = 24.25 hr as well as one 1-hr light pulse per cycle with Ts of 23.75 and 24.25 hr were effective in entraining the circadian activity rhythms in at least 50% of the antelope ground squirrels. Phase and period responses to single 1-hr light pulses were measured which depend on the initial phase and period of the rhythm. It is concluded that discrete (phasic) light input contributes to the mechanism of entrainment to LD cycles in diurnal rodents.  相似文献   

14.
The relationship between circadian rhythms in the blood plasma concentrations of melatonin and rhythms in locomotor activity was studied in adult male sheep (Soay rams) exposed to 16-week periods of short days (8 hr of light and 16 hr of darkness; LD 8:16) or long days (LD 16:8) followed by 16-week periods of constant darkness (dim red light; DD) or constant light (LL). Under both LD 8:16 and LD 16:8, there was a clearly defined 24-hr rhythm in plasma concentrations of melatonin, with high levels throughout the dark phase. Periodogram analysis revealed a 24-hr rhythm in locomotor activity under LD 8:16 and LD 16:8. The main bouts of activity occurred during the light phase. A change from LD 8:16 to LD 16:8 resulted in a decrease in the duration of elevated melatonin secretion (melatonin peak) and an increase in the duration of activity corresponding to the changes in the ratio of light to darkness. In all rams, a significant circadian rhythm of activity persisted over the first 2 weeks following transfer from an entraining photoperiod to DD, with a mean period of 23.77 hr. However, the activity rhythms subsequently became disorganized, as did the 24-hr melatonin rhythms. The introduction of a 1-hr light pulse every 24 hr (LD 1:23) for 2 weeks after 8 weeks under DD reinduced a rhythm in both melatonin secretion and activity: the end of the 1-hr light period acted as the dusk signal, producing a normal temporal association of the two rhythms. Under LL, the 24-hr melatonin rhythms were disrupted, though several rams still showed periods of elevated melatonin secretion. Significant activity rhythms were either absent or a weak component occurred with a period of 24 hr. The introduction of a 1-hr dark period every 24 hr for 2 weeks after 8 weeks under LL (LD 23:1) failed to induce or entrain rhythms in either of the parameters. The occurrence of 24-hr activity rhythm in some rams under LL may indicate nonphotoperiodic entrainment signals in our experimental facility. Reproductive responses to the changes in photoperiod were also monitored. After pretreatment with LD 8:16, the rams were sexually active; exposure to LD 16:8, DD, or LL resulted in a decline in all measures of reproductive function. The decline was slower under DD than LD 16:8 or LL.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
This study reports for the first time the effects of retinoid-related orphan receptors [RORbeta; receptor gene deletion RORbeta(C3H)(-/-)] in C3H/HeN mice on behavioral and circadian phenotypes. Pineal melatonin levels showed a robust diurnal rhythm with high levels at night in wild-type (+/+), heterozygous (+/-), and knockout (-/-) mice. The RORbeta(C3H)(-/-) mice displayed motor ("duck gait," hind paw clasping reflex) and olfactory deficits, and reduced anxiety and learned helplessness-related behaviors. Circadian rhythms of wheel-running activity in all genotypes showed entrainment to the light-dark (LD) cycle, and free running in constant dark, with RORbeta(C3H)(-/-) mice showing a significant increase in circadian period (tau). Melatonin administration (90 microg/mouse sc for 3 days) at circadian time (CT) 10 induced phase advances, while exposure to a light pulse (300 lux) at CT 14 induced phase delays of circadian activity rhythms of the same magnitude in all genotypes. In RORbeta(C3H)(-/-) mice a light pulse at CT 22 elicited a larger phase advance in activity rhythms and a slower rate of reentrainment after a 6-h advance in the LD cycle compared with (+/+) mice. Yet, the rate of reentrainment was significantly advanced by melatonin administration at the new dark onset in both (+/+) and (-/-) mice. We conclude that the RORbeta nuclear receptor is not involved in either the rhythmic production of pineal melatonin or in mediating phase shifts of circadian rhythms by melatonin, but it may regulate clock responses to photic stimuli at certain time domains.  相似文献   

16.
To examine the role of light in the maturation of the circadian pacemaker, twelve groups of rats were raised in different conditions of exposure to constant bright light (LL) during lactation: both duration and timing of LL were varied. We studied the motor activity rhythm of the rats after weaning, first under LL and then under constant darkness (DD). In DD, two light pulses [at circadian time 15 (CT15) and CT22] were applied to test the response of the pacemaker. Greater exposure to LL days during lactation increased the number of rhythmic animals and the amplitude of their motor activity rhythm in the LL stage and decreased the phase delay due to the light pulse at CT15. The timing of LL during lactation affected these variables too. Because the response of the adult to light depended on both the number and timing of LL days during lactation, the exposure to light at early stages may influence the development of the circadian system by modifying it structurally or functionally.  相似文献   

17.
The split circadian activity rhythm that emerges in hamsters after prolonged exposure to constant light has been a theoretical cornerstone of a multioscillator view of the mammalian circadian pacemaker. The present study demonstrates a novel method for splitting hamster circadian rhythms and entraining them to exotic light:dark cycles. Male Syrian hamsters previously maintained on a 14-h day and 10-h night were exposed to a second 5-h dark phase in the afternoon. The 10-h night was progressively shortened until animals experienced two 5-h dark phases beginning 10 h apart. Most hamsters responded by splitting their activity rhythms into two components associated with the afternoon and nighttime dark phases, respectively. Each activity component was entrained to this light:dark:light:dark cycle. Transfer of split hamsters to constant darkness resulted in rapid joining of the two activity components with the afternoon component associated with onset of the fused rhythm. In constant light, the nighttime component corresponded to activity onset of the fused rhythm, but splitting emerged again at an interval characteristic for this species. The results place constraints on multi-oscillator models of circadian rhythms and offer opportunities to characterize the properties of constituent circadian oscillators and their interactions.  相似文献   

18.
The circadian wheel-running activity rhythms of individual hamster pups raised and maintained in constant dim light were measured beginning at 18 days of age. Records of the postweaning free-running activity rhythm were used to determine the phase of a pup's rhythm on the day of weaning and its phase relationship to its mother's rhythm. Although raised in constant light, the rhythms of pups within a litter were approximately synchronous and in phase with their mother's activity rhythm. These results indicate that the circadian oscillator underlying the activity rhythm is functional prior to weaning and is entrained by some as yet unidentified aspect of maternal rhythmicity. Furthermore, the results suggest that even in the absence of external entraining cycles, behavioral rhythms, and perhaps physiologic rhythms as well, of a mother and her offspring are normally synchronized.  相似文献   

19.
The study employed electrical lesions of dorsal raphe nucleus (DRN) to determine the functional significance of those nuclei in the regulation of wheel-running activity rhythm in mice in light/dark (LD 12:12), constant light (LL), and constant dark (DD) conditions. The wheel-running records showed that raphe nucleus lesions resulted in few days' decrease in common activity and amplitude in LD. The activity phase was not compact but in fragmentary form, especially in DD condition. In some animals an earlier onset of activity after DRN lesion in LD was observed. In LL extension of the rhythm period occurred. Destruction of DRN only slightly modulates the wheel-running circadian rhythm in mice.  相似文献   

20.
Summary Perch hopping activity and food intake were recorded in starlings in different intensities of continuous illumination (LL), varying from 0.1 to 1000 lux. Circadian rhythmicity in perch hopping disappeared in 10 lux and all higher intensities. In contrast, freerunning circadian rhythms in feeding were always present. In low light intensities, the perch hopping rhythm usually phase leads feeding, increasingly so with shorter circadian period. Locomotor activity may reflect motivational states unrelated to feeding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号