首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Averaged evoked potentials (AEP) to verbal (letters) and nonverbal (random shapes) stimuli exposed in the left and right visual fields were registered in healthy subjects with normal vision. Analysis of the later AEP latencies pointed to asymmetry in the temporal parameters of the interhemispheric interaction. The late AEP latency is shorter in the right hemisphere than in the left hemisphere. The difference is more pronounced in responses to nonverbal stimuli. The earlier development of the evoked potential in the right hemisphere (or the later one in the left hemisphere) accounts for the interhemispheric difference in the temporal parameters of the late AEP components. Comparison of the latency of the component P300 to verbal and nonverbal stimuli presented in the ipsilateral or the contralateral visual fields reveals a transfer of the results of the cortical processing of visual information in the course of interhemispheric interaction.  相似文献   

2.
3.
A series of behavioural and electrophysiological parameters was recorded in subjects with chronic alcohol intoxication during solving of visual-spatial nonverbalized task. It is shown that in comparison with the healthy subjects, their reaction time (RT) of correct decisions was increased; it was more expressed when stimuli were presented in the left visual field, i.e., directly to the right hemisphere, and the number of correct reactions decreased at stimuli presentation directly to the left hemisphere. During repeated tests there were no changes in the number of correct reactions and RT value in the group with chronic alcohol intoxication. It is found that long-term taking of alcohol produces an increase of latency and decrease of the amplitude of the late positive wave P300, more pronounced in the right cerebral hemisphere.  相似文献   

4.
Visual input from the left and right visual fields is processed predominantly in the contralateral hemisphere. Here we investigated whether this preference for contralateral over ipsilateral stimuli is also found in high-level visual areas that are important for the recognition of objects and faces. Human subjects were scanned with functional magnetic resonance imaging (fMRI) while they viewed and attended faces, objects, scenes, and scrambled images in the left or right visual field. With our stimulation protocol, primary visual cortex responded only to contralateral stimuli. The contralateral preference was smaller in object- and face-selective regions, and it was smallest in the fusiform gyrus. Nevertheless, each region showed a significant preference for contralateral stimuli. These results indicate that sensitivity to stimulus position is present even in high-level ventral visual cortex.  相似文献   

5.
In an automatized experiment, with a computer on line, amplitude-temporal parameters of evoked potentials (EPs) to purposive and non-purposive stimuli (digits), were analyzed in normal and mental retarded children. At unilateral stimuli presentation to the left or right visual half-fields EPs were recorded simultaneously in projection, TPO, parietal and central areas of the left and right hemispheres. It has been shown that in normal children, differential involvement of projection and associative structures in the analysis of sensory information takes place in both hemispheres. The amplitudes of most EP components in the range of 100-400 ms to the purposive stimuli are higher than to the non-purposive ones. Considerable similarity of EPs developing in response to ipsi- and contralateral stimulations of visual fields ("direct" and "transmitted" EP) is observed. In mental retarded children significant changes are revealed in intra- and interhemisphere organization of the process of perception of purposive and non-purposive stimuli. In the right hemisphere structures there are no differential EP reactions to the two types of stimuli. Significant, in comparison with the norm, prolongation of the latencies of most EP components is noted, especially in the structures of the left hemisphere, to the purposive stimuli. In the process of perception, changes are seen of the integration of functions of both hemispheres. The totality of disturbances of systemic brain organization at perceptive activity in mental retarded children may reflect neurophysiological mechanisms of mental deficiency.  相似文献   

6.
The dynamics of the cortical evoked activity in the process of learning of time microintervals (10, 60 and 180 ms) discrimination was studied in healthy adults. Feedback stimulus visually informing of the real correlations of the differentiated pauses facilitates the discrimination. The factor of the visual field does not affect the estimation of brief time intervals. At correct identifications, the P300 wave is recorded with a higher amplitude, than at errors. In the trial following the "nonconfirming" feedback stimulus, the standard and test stimuli evoke in the left hemisphere a greater P300 wave, than in the trial after the "confirming" stimulus. Feedback influence is retained in the long-term memory.  相似文献   

7.
Visual evoked potentials (EPs) of the left and right hemispheres in response to relevant and irrelevant stimuli in the structures of the left and right hemispheres have been studied in healthy young schoolchildren, learning-disabled (LD) children, and mentally retarded (MR) children. In healthy children, the largest EP variations depending on the stimulus relevancy have been found in associative structures of the left hemisphere. In LD children of the same age, the amplitude and temporal characteristics of left-hemispheric EPs to target and nontarget stimuli are the same. In MR children, EPs to relevant and irrelevant stimuli do not differ from each other in either the left or the right hemisphere. EP latencies are significantly longer in MR children than in healthy children. The results of simultaneous recording of EPs in the left and right hemispheres during isolated stimulation of the right and left visual half-fields indicate that interhemispheric interaction is impaired in children with deviations in mental development. The results of the study are discussed in terms of the psychological characteristics and learning ability of children.  相似文献   

8.
The amplitudes of all deflections of the slow auditory evoked potential (AEP) regularly decrease in alert subjects with the increase of stimulation rate. As compared with the late deflections (P2N2), the decrease of the amplitude of comparatively early deflections (N1P2) is more pronounced. It is a rather logarithmic, than a linear function of the interstimulus interval. The degree of amplitude diminution of slow AEPs due to a greater stimulation rate depends on the intensity of acoustic stimul: at greater sound intensities the decrease is more pronounced. The higher rates of stimulation produce, along with a decreased amplitude, a shorter peak latencies of all slow AEP deflections (except the peak of deflection P1). In narcotic (chloralhydrate) sleep higher rates of stimulation are not attended with any regular changes in the amplitude and peak latencies of the slow AEP.  相似文献   

9.
The influence of seduxen (diazepam) on cortical potentials P300 evoked by neutral and emotional words was studied in adult subjects having life conflicts. The therapeutic dose of seduxen (10 mg) had no significant effect on the amplitude of the late positive cortical response P300 to neutral words. Seduxen depresses the emotional activation of the cerebral cortex; that is manifested in selective elimination of those changes in latency and amplitude of P300 wave which are observed in response to emotionally significant words. Under the action of seduxen, the interhemispheric difference in the latency of cortical response disappears due to latency increase in the right hemisphere.  相似文献   

10.
The study was made on healthy adult subjects. The reaction time of the hand (RT) was measured under two conditions: 1) the choice of reaction (right or left hand) is determined by the nature of the warning stimulus; 2) decision on the choice is taken, depending on the second, trigger stimulus. Stimuli are presented at random sequences to different visual fields. The reaction time to the visual signal presented to the visual field ipsilateral to the hand is significantly shorter (by 15 to 26 msec) than to the stimulus in the contralateral visual field. In a simple motor reaction, when no discrimination of trigger stimulus and the decision on the choice of reaction is required, a hemispheric asymmetry of reaction time is manifested: the left hemisphere only responds differently to direct visual stimulation and to that mediated through the contralateral hemisphere.  相似文献   

11.
Peptide extracts of the right and left hemispheres were applied to the projective (somatosensory and visual) and temporal associative regions of the left brain hemisphere in cats. In the zones of peptide application, evoked potentials (EP) in response to singular and coupled somatic, visual and transcallosal stimuli were registered. The data obtained showed that right and left peptide extracts had different effects on evoked potentials of the left hemisphere. Thus ipsilateral extract increased the amplitude of projective EP, decreased duration of their cycles and amplitude of transcallosal responses. Contralateral extract, on the contrary, activated interhemispheric inputs to brain cortex, suppressed thalamic inputs and increased multimodal properties of neurons. A differential approach to the problem of specific correction of pathological states of the right and left brain hemispheres is required. Right and left peptide extracts may be used in normalization of interhemispheric activity balance in compensatory-recovering processes.  相似文献   

12.
Saccadic latency and averaged EEG-potentials connected with switching on of the set and cue visual stimuli were examined in 12 right-handed healthy subjects in M. Posner's "cost-benefit" experimental paradigm. It was shown that attention was reflected in parameters of positive potential P100 evoked by switching on of set and cue stimuli and P300 and slow positive wave PMP1 evoked by switching on of the set stimulus in the relevant conditions. The spatiotemporal pattern of P100 probably reflects the involvement of the frontoparietal network of spacial attention in the perception of a relevant stimulus. Prevalence of the P300 and PMP1 potentials in the right parietal cortex suggests that these potentials reflect processes of space attention and visual fixation. Late positive potentials in a 600-900-ms interval after switching on of the set stimulus were found. Their amplitude was higher in backward averaging and they were predominantly localized in the left frontal cortex. These findings suggest that the late potentials reflect the anticipation and motor attention processes.  相似文献   

13.
Reaction time (RT) and the number of correct estimations of time microintervals (10 and 180 ms) between two visual stimuli were recorded in healthy subjects. It has been shown that 10 ms interval is better estimated when the stimuli are presented in the right visual field, i.e. when they are addressed directly to the left hemisphere. At the same time the number of correct estimations of 180 ms interval is greater and their RT is less when the stimuli are addressed directly to the right hemisphere. This points to different hemispheric mechanisms of time microintervals estimation. Study of the influence of different forms of verbal reinforcement on this learning has shown that after positive reinforcement (the word "good") the number of correct estimations is on average by 10% greater than after negative reinforcement (the word "error"). This may be connected with such processes as isolation and identification of erroneous reaction.  相似文献   

14.
Macaluso E  Frith CD  Driver J 《Neuron》2002,34(4):647-658
Recent results indicate that crossmodal interactions can affect activity in cortical regions traditionally regarded as "unimodal." Previously we found that combining touch on one hand with visual stimulation in the anatomically corresponding hemifield could boost responses in contralateral visual cortex. Here we manipulated which visual hemifield corresponded to the location of the stimulated hand, by changing gaze direction such that right-hand touch could now arise in either the left or right visual field. Crossmodal effects on visual cortex switched from one hemisphere to the other, depending on gaze direction, regardless of whether the hand was seen. This indicates that crossmodal influences of touch upon visual cortex depend on spatial alignment for the multimodal stimuli, with gaze posture taken into account.  相似文献   

15.
Although the behavioral repertoire of crustaceans is largely guided by visual information their visual nervous system has been little explored. In search for central mechanisms of visual integration, this study was aimed at identifying and characterizing brain neurons in the crab involved in binocular visual processing. The study was performed in the intact animal, by recording intracellularly the response to visual stimuli of neurons from one of the two optic lobes. Identified neurons recorded from the medulla (second optic neuropil), which include sustaining neurons, dimming neurons, depolarizing and hyperpolarizing tonic neurons and on-off neurons, all presented exclusively monocular (ipsilateral) responses. In contrast, all wide field movement detector neurons recorded from the lobula (third optic neuropil) responded to moving stimuli presented to the ipsilateral and to the contralateral eye. In these cells, the responses evoked by ipsilateral or contralateral stimulation were almost identical, as revealed by analysing the number and amplitude of the elicited postsynaptic potentials and spikes, and the ability to habituate upon repeated visual stimulation. The results demonstrate that in crustaceans important binocular processing takes place at the level of the lobula.  相似文献   

16.

Background

A flexed neck posture leads to non-specific activation of the brain. Sensory evoked cerebral potentials and focal brain blood flow have been used to evaluate the activation of the sensory cortex. We investigated the effects of a flexed neck posture on the cerebral potentials evoked by visual, auditory and somatosensory stimuli and focal brain blood flow in the related sensory cortices.

Methods

Twelve healthy young adults received right visual hemi-field, binaural auditory and left median nerve stimuli while sitting with the neck in a resting and flexed (20° flexion) position. Sensory evoked potentials were recorded from the right occipital region, Cz in accordance with the international 10–20 system, and 2 cm posterior from C4, during visual, auditory and somatosensory stimulations. The oxidative-hemoglobin concentration was measured in the respective sensory cortex using near-infrared spectroscopy.

Results

Latencies of the late component of all sensory evoked potentials significantly shortened, and the amplitude of auditory evoked potentials increased when the neck was in a flexed position. Oxidative-hemoglobin concentrations in the left and right visual cortices were higher during visual stimulation in the flexed neck position. The left visual cortex is responsible for receiving the visual information. In addition, oxidative-hemoglobin concentrations in the bilateral auditory cortex during auditory stimulation, and in the right somatosensory cortex during somatosensory stimulation, were higher in the flexed neck position.

Conclusions

Visual, auditory and somatosensory pathways were activated by neck flexion. The sensory cortices were selectively activated, reflecting the modalities in sensory projection to the cerebral cortex and inter-hemispheric connections.  相似文献   

17.
In dichotic listening tasks, the (dominant) right ear's superiority in processing verbal stimuli has been attributed to its direct access to the linguistically dominant left hemisphere. The roles played by the extralinguistic factors, such as induced attentiveness and functional tuning of the auditory system, have not been carefully examined. The evidence for the facilitating effects of subcortical stimulation on processing dichotic stimuli is presented.  相似文献   

18.
Repeated warm laser stimuli produce a progressive increase of the sensation of warmth and heat and eventually that of a burning pain. The pain resulting from repetitive warm stimuli is mediated by summated C fibre responses. To shed more light on the cortical changes associated with pain during repeated subnoxious warm stimulation, we analysed magnetoencephalographic (MEG) evoked fields in eleven subjects during application of repetitive warm laser stimuli to the dorsum of the right hand. One set of stimuli encompassed 10 laser pulses occurring at 2.5 s intervals. Parameters of laser stimulation were optimised to elicit a pleasant warm sensation upon a single stimulus with a rise of skin temperature after repeated stimulation not exceeding the threshold of C mechano-heat fibres. Subjects reported a progressive increase of the intensity of heat and burning pain during repeated laser stimulation in spite of only mild (4.8°C) increase of skin temperature from the first stimulus to the tenth stimulus. The mean reaction time, evaluated in six subjects, was 1.33 s, confirming involvement of C fibres. The neuromagnetic fields were modelled by five equivalent source dipoles located in the occipital cortex, cerebellum, posterior cingulate cortex, and left and right operculo-insular cortex. The only component showing statistically significant changes during repetitive laser stimulation was the late component of the contralateral operculo-insular source peaking at 1.05 s after stimulus onset. The amplitude increases of the late component of the contralateral operculo-insular source dipole correlated with the subjects' numerical ratings of warmth and pain. Results point to a pivotal role of the contralateral operculo-insular region in processing of C-fibre mediated pain during repeated subnoxious laser stimulation.  相似文献   

19.
Auditory evoked brain potentials (AEP) were recorded from nine healthy male subjects during three types of condition: A - subject and visual field stationary; B - subject vibrated (z-axis, 0.6 Hz, 1.85 ms-2 rms), visual field stationary; C - subject stationary, visual field vibrated (as for B). The visual surround was confined to a checkerboard pattern in front of the subject. Auditory stimuli (1000 Hz, 86 dB, interstimulus interval 7 s) were delivered via headphones to evoke AEP. Vibration-synchronous activity in the EEG was eliminated by a subtraction technique. In comparison with condition A, conditions B and C caused an attenuation of P2 and N1P2 components of AEP together with an increased latency of N1. Effects of conditions B and C did not differ. Direct vestibular stimulation and mechanisms specific for whole-body vibration were rejected as modes of action. The AEP-changes and the subjective evaluation of experimental conditions, arousal and performance, as well as symptoms of kinetosis (motion sickness) suggest a sensory mismatch, leading to a "latent kinetosis" with de-arousal, as the dominating mechanism by which the processing of information was affected. This suggestion was supported by an additional pilot study. Under real working conditions a similar effect can be expected during relative motion between the driver and his visual surround, i.e. even with perfect vibro-isolation of the driver's seat.  相似文献   

20.
We employed voltage-sensitive dye (VSD) imaging to investigate the spatio-temporal dynamics of the responses of the supragranular somatosensory cortex to stimulation of the four paws in urethane-anesthetized rats. We obtained the following main results. (1) Stimulation of the contralateral forepaw evoked VSD responses with greater amplitude and smaller latency than stimulation of the contralateral hindpaw, and ipsilateral VSD responses had a lower amplitude and greater latency than contralateral responses. (2) While the contralateral stimulation initially activated only one focus, the ipsilateral stimulation initially activated two foci: one focus was typically medial to the focus activated by contralateral stimulation and was stereotaxically localized in the motor cortex; the other focus was typically posterior to the focus activated by contralateral stimulation and was stereotaxically localized in the somatosensory cortex. (3) Forepaw and hindpaw somatosensory stimuli activated large areas of the sensorimotor cortex, well beyond the forepaw and hindpaw somatosensory areas of classical somatotopic maps, and forepaw stimuli activated larger cortical areas with greater activation velocity than hindpaw stimuli. (4) Stimulation of the forepaw and hindpaw evoked different cortical activation dynamics: forepaw responses displayed a clear medial directionality, whereas hindpaw responses were much more uniform in all directions. In conclusion, this work offers a complete spatio-temporal map of the supragranular VSD cortical activation in response to stimulation of the paws, showing important somatotopic differences between contralateral and ipsilateral maps as well as differences in the spatio-temporal activation dynamics in response to forepaw and hindpaw stimuli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号