首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The role of nutrient supply in the replicative capacity and secretory phenotype of cultured human diploid cells is unclear. We examined the relationship between amino acid privation, the secretion of vascular endothelial growth factor (VEGF) and growth phenotype of vascular smooth muscle cells (VSMC), and endothelial cells. Cultures of VSMCs, but not endothelial cells, were growth inhibited by exposure to medium that was 75% deficient in leucine, methionine, arginine, and cysteine over two passages. Exposed VSMC cultures exhibited an increased vulnerability to apoptosis. The maximal cumulative population doubling of the exposed cells was reduced significantly compared with the control cells (25.7 ± 2.0 doublings vs. 27.9 ± 2.1 doublings; P < 0.03). Constitutive VEGF production first became evident in the later passages of the exposed and nonexposed cell cultures. However, production of VEGF was 17-fold greater in the exposed cultures at the tenth passage (P < 0.001). The replicative capacity and constitutive production of VEGF in VSMCs in culture may be programmed by transient privation of amino acids. These observations are relevant to new concepts concerning the pathogenesis of vascular disease. J. Cell. Physiol. 176:359–364, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

3.
We have examined the effects of hydrocortisone on growth and Na+/H+ exchange in cultured rat aortic vascular smooth muscle cells (VSMC). Hydrocortisone (2 microM) treatment of growth-arrested VSMC significantly decreased VSMC growth in response to 10% calf serum assayed by 3H-thymidine incorporation and cell number at confluence. This effect was associated with the appearance of an altered cell phenotype characterized by large, flat VSMC that did not form typical "hillocks." Na+/H+ exchange was also altered in hydrocortisone-treated cells assayed by dimethylamiloride-sensitive 22Na+ influx into acid-loaded cells or by intracellular pH (pHi) change using the fluorescent dye BCECF. Resting pHi was 7.25 +/- 0.04 and 7.15 +/- 0.05 in control and hydrocortisone-treated cells, respectively (0.1 less than P less than 0.05). Following intracellular acidification in the absence of external Na+, pHi recovery upon addition of Na+ was increased 89% in hydrocortisone-treated cells relative to control. This was due to an increase in the Vmax for the Na+/H+ exchanger from 17.5 +/- 2.4 to 25.9 +/- 2.0 nmol Na+/mg protein x min (P less than 0.01) without a significant change in Km. Treatment of VSMC with actinomycin D (1 microgram/ml) or cycloheximide (10 microM) completely inhibited the hydrocortisone-mediated increase in Na+/H+ exchange, indicating a requirement for both RNA and protein synthesis. Because hydrocortisone altered the Vmax for Na+/H+ exchange, in contrast to agonists such as serum or angiotensin II which alter the Km for intracellular H+ or extracellular Na+, respectively, we studied the effect of hydrocortisone on activation of Na+/H+ exchange by these agonists. In cells maintained at physiological pHi (7.2), the initial rate (2 min) of angiotensin II-stimulated alkalinization was increased 66 +/- 39% in hydrocortisone-treated compared with control cells. Hydrocortisone caused no change in angiotensin II-stimulated phospholipase C activity assayed by measurement of changes in intracellular Ca2+ or diacylglycerol formation. However, angiotensin II and serum stimulated only small increases in Na+/H+ exchange in acid-loaded (pHi = 6.8) hydrocortisone-treated cells. These findings suggest that hydrocortisone-mediated increases in VSMC Na+/H+ exchange occur in association with a nonproliferating phenotype that has altered regulation of Na+/H+ exchange activation. We propose that hydrocortisone-mediated growth inhibition may be a useful model for studying the role of Na+/H+ exchange in cell growth responsiveness.  相似文献   

4.
We investigated the effect of peroxisome proliferator-activated receptor gamma (PPARgamma) agonists on serum vascular endothelial growth factor (VEGF) in diet-induced insulin resistant SD rats and ZDF rats. SD rats fed a high fat/sucrose diet showed increases in serum insulin and VEGF (both p < 0.01). Treatment with a PPARgamma agonist GI262570 normalized the diet-elevated insulin and VEGF (both p < 0.01). There was a positive correlation between serum insulin and VEGF (p < 0.05) in SD rats. ZDF rats had higher serum glucose, insulin, and VEGF than Zucker lean rats (all p < 0.01). Treatment of ZDF rats with PPARgamma agonist pioglitazone decreased serum glucose and VEGF (both p <0.01). There was a positive correlation between glucose and VEGF in ZDF rats (p < 0.05). In 3T3-L1 adipocytes, GI262570 did not affect insulin-stimulated VEGF secretion. These studies demonstrated that hyperinsulinemia in SD rats and hyperglycemia in ZDF rats were associated with increased serum VEGF; PPARgamma agonists normalized serum insulin, glucose, and VEGF, but did not affect VEGF secretion in vitro.  相似文献   

5.
Therapeutic angiogenesis can be induced by local implantation of bone marrow cells. We tried to enhance the angiogenic potential of this treatment by ex vivo hypoxia stimulation of bone marrow cells before implantation. Bone marrow cells were collected and cultured at 33 degrees C under 2% O(2)-5% CO(2)-90% N(2) (hypoxia) or 95% air-5% CO(2) (normoxia). Cells were also injected into the ischemic hindlimb of rats after 24 h of culture. Hypoxia culture increased the mRNA expression of vascular endothelial growth factor (VEGF), vascular endothelial (VE)-cadherin, and fetal liver kinase-1 (Flk-1) from 2.5- to fivefold in bone marrow cells. The levels of VEGF protein in the ischemic hindlimb were significantly higher 1 and 3 days after implantation with hypoxia-cultured cells than with normoxia-cultured or noncultured cells. The microvessel density and blood flow rate in the ischemic hindlimbs were also significantly (P < 0.001) higher 2 wk after implantation with hypoxia-cultured cells (89.7 +/- 5.5%) than with normoxia-cultured cells (67.0 +/- 9.6%) or noncultured cells (70.4 +/- 7.7%). Ex vivo hypoxia stimulation increased the VEGF mRNA expression and endothelial differentiation of bone marrow cells, which together contributed to improved therapeutic angiogenesis in the ischemic hindlimb after implantation.  相似文献   

6.
Increased endothelial permeability is involved in the pathogenesis of many cardiovascular and pulmonary diseases. Vascular endothelial growth factor (VEGF) is a permeability-increasing cytokine. At the same time, VEGF is known to have a beneficial effect on endothelial cells (EC), increasing their survival. Pulmonary endothelium, particularly, may be exposed to higher VEGF concentrations, since the VEGF level is the higher in the lungs than in any other organ. The purpose of this work was to evaluate the effects of VEGF on barrier function and motility of cultured human pulmonary EC. Using transendothelial resistance measurements as an indicator of permeability, we found that 10 ng/ml VEGF significantly improved barrier properties of cultured human pulmonary artery EC (118.6+/-0.6% compared with 100% control, P<0.001). In contrast, challenge with 100 ng/ml VEGF decreased endothelial barrier (71.6+/-1.0% compared with 100% control, P<0.001) and caused disruption of adherens junctions. VEGF at both concentrations increased cellular migration; however, 10 ng/ml VEGF had a significantly stronger effect. VEGF caused a dose-dependent increase in intracellular Ca2+ concentration; however, phosphorylation of myosin light chain was detectably elevated only after treatment with 100 ng/ml. In contrast, 10 ng/ml but not 100 ng/ml VEGF caused a significant increase in intracellular cAMP (known barrier-protective stimulus) compared with nonstimulated cells (1,096+/-157 and 610+/-86 fmol/mg, respectively; P<0.024). Y576-specific phosphorylation of focal adhesion kinase was also stimulated by 10 ng/ml VEGF. Our data suggest that, depending on its concentration, VEGF may cause diverse effects on pulmonary endothelial permeability via different signaling pathways.  相似文献   

7.
Endogenously produced reactive oxygen species are important for intracellular signaling mechanisms leading to vascular smooth muscle cell (VSMC) growth. It is therefore critical to define the potential enzymatic sources of ROS and their regulation by agonists in VSMCs. Previous studies have investigated O2*- production using lucigenin-enhanced chemiluminescence. However, lucigenin has been recently criticized for its ability to redox cycle and its propensity to measure cellular reductase activity independent from O2*-. To perform a definitive characterization of VSMC oxidase activity, we used electron spin resonance trapping of O2*- with DEPMPO. We confirmed that the main source of O2*- from VSMC membranes is an NAD(P)H oxidase and that the O2*- formation from mitochondria, xanthine oxidase, arachidonate-derived enzymes, and nitric oxide synthases in VSMC membranes was minor. The VSMC NAD(P)H oxidase(s) are able to produce more O2*- when NADPH is used as the substrate compared to NADH (the maximal NADPH signal is 2.4- +/- 0.4-fold higher than the NADH signal). The two substrates had similar EC(50)'s ( approximately 10-50 microM). Stimulation with angiotensin II and platelet-derived growth factor also predominantly increased the NADPH-driven signal (101 +/- 8% and 83 +/- 1% increase above control, respectively), with less of an effect on NADH-dependent O2*- (17 +/- 3% and 36 +/- 5% increase, respectively). Moreover, incubation of the cells with diphenylene iodonium inhibited predominantly NADPH-stimulated O2*-. In conclusion, electron spin resonance characterization of VSMC oxidase activity supports a major role for an NAD(P)H oxidase in O2*- production in VSMCs, and provides new evidence concerning the substrate dependency and agonist-stimulated activity of this key enzyme.  相似文献   

8.
9.
To explore the role of adrenomedullin (ADM) in pathophysiology of ischemic heart disease, we investigated the effects of hypoxia on the production and secretion of ADM in cultured human coronary artery endothelial cells. Treatment with hypoxia (5% CO2/94% N2/1% O2) for 6 and 12 h increased expression levels of ADM mRNA 2.2-fold and fivefold compared with the normoxia control, respectively. The levels of immunoreactive ADM in the media were increased by 12-h hypoxia about fivefold compared with the control (39.0+/-1.1 fmol/10(5) cells per 12 h under hypoxia and 7.9+/-0.4 fmol/10(5) cells per 12 h under normoxia; P<0.01, n = 4, mean +/- SEM). Reverse-phase high-performance liquid chromatography of the extracts of culture media under normoxia and hypoxia showed one major peak eluting in the position of human ADM standard. The production and secretion of ADM were increased in cultured human coronary artery endothelial cells under hypoxia. ADM may therefore play an important pathophysiological role in ischemic heart disease.  相似文献   

10.
Alcohol abuse has a negative impact on human health; however, epidemiological studies show that moderate consumption of ethanol (EtOH) reduces the risk of coronary heart disease, sudden cardiac death, and ischemic stroke. The mechanisms for these reductions in cardiovascular disease are not well established. Using cultured coronary artery vascular smooth muscle cells, we found that moderate levels of EtOH (10 and 20 mM) caused dose-related increases in both vascular endothelial growth factor (VEGF) mRNA (Northern blot) expression (1.9- and 2.6-fold) and VEGF protein (ELISA) expression (19 and 68%) compared with control (P < 0.05). EtOH at 0.25 g. kg(-1). day(-1) (7 days) increased VEGF mRNA expression by 1.48-fold over control, and increased vessel length density from 3.9 +/- 0.7 (control) to 6.0 +/- 0.3 mm/mm(2) (P < 0.05) in chick chorioallantoic membrane (CAM). We conclude that moderate levels of ethanol can induce VEGF expression and stimulate angiogenesis in chick CAM. Therefore, the results provide a theoretical basis for speculating that the cardiovascular-protective effects of moderate alcohol consumption may be partly mediated through VEGF-induced angiogenesis.  相似文献   

11.
Migration and proliferation of vascular smooth muscle cells (VSMC) contribute to angiogenesis and the lesions of atherosclerosis. Since, vascular endothelial growth factor (VEGF) is overexpressed by VSMC in intima of atherosclerotic human coronary arteries, we determined if VEGF could stimulate VSMC migration and the intracellular signals involved. VEGF induced VSMC migration but had no significant activity on proliferation. VEGF increased intracellular reactive oxygen species (ROS), NF-kappaB activation and IL-6 expression. Blockade of the generation of intracellular ROS by antioxidants inhibited VEGF-induced NF-kappaB activation, IL-6 expression, and cell migration indicating that generation of ROS was required for NF-kappaB activation and the chemotactic activity of VEGF. Expression of a mutated, nondegradable form of inhibitor of NF-kappaB (IkappaB-alphaM) suppressed VEGF-triggered activation of NF-kappaB and upregulation of IL-6 as well as VSMC migration. Neutralization of IL-6 by its antibody significantly attenuated the migration stimulated by VEGF. Collectively, our data provide the first evidence that intracellular ROS and NF-kappaB are required for VEGF-mediated smooth muscle cell migration. Further, IL-6 induced by VEGF is involved in the ability of the growth factor to stimulate migration.  相似文献   

12.
Kanda Y  Watanabe Y 《Life sciences》2007,80(15):1409-1414
Cigarette smoke has been firmly established as an independent risk factor for atherosclerosis and other vascular diseases. The proliferation and migration of vascular smooth muscle cells (VSMC) induced by growth factors have been proposed to play an important role in the progression of atherosclerosis. In the present study, we investigated the effects of nicotine, which is one of the important constituents of cigarette smoke, on vascular endothelial growth factor (VEGF) release, in rat VSMC. The stimulation of cells with nicotine resulted in a time- and concentration-dependent release of VEGF. Hexamethonium, an antagonist of nicotinic acetylcholine receptor (nAChR), inhibited nicotine-induced VEGF release. We next investigated the mechanisms by which nicotine induces VEGF release in the cells. The nicotine-induced VEGF release was inhibited by treatment with U0126, a selective inhibitor of MEK, which attenuated the nicotine-induced ERK phosphorylation. Nicotine induced a transient phosphorylation of ERK. Furthermore, AG1478, a selective inhibitor of epidermal growth factor receptor (EGFR) kinase, inhibited nicotine-induced ERK phosphorylation and VEGF release. These data suggest that nicotine releases VEGF through nAChR in VSMC. Moreover, VEGF release induced by nicotine is mediated by an EGFR-ERK pathway in VSMC. VEGF may contribute to the risk of cardiovascular diseases in cigarette smokers.  相似文献   

13.
Angiogenesis: how a tumor adapts to hypoxia   总被引:1,自引:0,他引:1  
Early atherosclerotic lesions are characterized by increased monocyte adhesion to the overlying endothelium. Oxidized LDL (oxLDL) stimulates the adhesion of human monocytes to endothelial cells, in part, by increasing expression of ICAM-1. However, the cellular role of oxLDL in endothelial adhesiveness is not well understood. The peroxisome proliferator-activated receptor gamma (PPARgamma), a member of the nuclear receptor superfamily, is expressed in vascular endothelial cells. Whether it can be activated by a synthetic ligand, troglitazone, as well as by natural ligands, oxLDL and its lipid components (i.e., 9- and 13-HODE), has not yet been explored. This study was undertaken to determine whether PPARgamma is expressed in ECV304 human vascular endothelial cells and if so to define the biological effects of its activation by these agonists. Our results demonstrate that PPARgamma mRNA is expressed in ECV304 cells, and transfected cells with a PPARE luciferase construct respond to these agonists. In addition, ligand-dependent PPARgamma activation increased ICAM-1 protein expression and enhanced adherence of monocytes to ECV304 cells by two- to threefold. These findings suggest that the PPARgamma signaling pathway might contribute to the atherogenicity of oxLDL in vascular endothelial cells.  相似文献   

14.
Dulak J  Tomala K  Loboda A  Józkowicz A 《Life sciences》2004,75(21):2573-2586
Synthesis of vascular endothelial growth factor (VEGF), the major angiogenic molecule, is induced by nitric oxide (NO) in various cell types, including vascular smooth muscle cells (VSMC). Therefore, compounds which inhibit NO generation can also influence VEGF synthesis. Here we investigated the effect of increased glucose concentration (25 mM vs. 5.5 mM) on cytokine-induced VEGF synthesis in rat VSMC. The cells growing in the medium containing 5.5 mM glucose and exposed to IL-1-beta, TNF-alpha and IFN-gamma induced expression of an inducible isoform of nitric oxide synthase (NOS II). This is followed by generation of NO and the concomitant expression of VEGF gene and release of VEGF protein. In contrast, 25 mM glucose impaired induction of NOS II expression and thus NO synthesis was lower than in 5.5 mM glucose. Consequently, the VEGF promoter activation was attenuated, resulting in decreased mRNA synthesis and lower production of VEGF protein. The results indicate that abnormally high concentrations of glucose can impair generation of NO and the NO-dependent VEGF synthesis. This may play a role in the development and progression of vascular dysfunctions in cardiovascular diseases.  相似文献   

15.
Shyu KG  Chang H  Isner JM 《Life sciences》2003,73(5):563-579
Vascular endothelial growth factor (VEGF) and angiopoietin-1 (Ang1) are essential for vascular integrity and development. The purpose of the study was to test the hypothesis that Ang1 will promote angiogenic response to VEGF in the spontaneous Watanabe heritable hypercholesterolemic (WHHL) rabbit model of acute hindlimb ischemia. Immediately after the ligation of the external iliac artery and the excision of the common and superficial femoral artery in one female WHHL rabbit, 250 microg of phVEGF(165) (n = 8), 500 microg of pAng1* (n = 8), or 250 microg of phVEGF(165) plus 500 microg of pAng1* (n = 8) was injected intramuscularly into the ischemic hindlimb muscles. Gross appearance of ischemic limb, collateral vessel formation and limb perfusion were assessed 30 days after treatment. The incidence of ischemic limb necrosis was higher in the animals treated by phVEGF(165) or by pAng1* than in those treated by phVEGF(165) plus pAng1* (100%, 75% and 14.3%, respectively; P = 0.002). Animals in the combination therapy group had a significantly higher calf blood pressure ratio at day 30 (VEGF plus Ang1* = 0.84 +/- 0.06; VEGF = 0.54 +/- 0.01; Ang1* = 0.59 +/- 0.05; P < 0.01). A combination therapy of VEGF plus Ang*1 had a significantly higher (P < 0.01) angiographic score than either therapy alone. Capillary density (P < 0.05) and capillary/muscle fiber ratio (P < 0.01) of the combination therapy group were also significantly higher than that of either therapy alone. In conclusion, Ang1 can potentiate the angiogenic response to VEGF in the hyperlipidemic rabbit model of acute hindlimb ischemia. Intramuscular administration of cytokines on revascularization of the ischemic hindlimb model of hyperlipidemic rabbit is feasible.  相似文献   

16.
Lipid accumulation by vascular smooth muscle cells (VSMC) is a feature of atherosclerotic plaques. In this study we describe two mechanisms whereby human VSMC foam cell formation is driven by de novo synthesis of fatty acids leading to triacylglycerol accumulation in intracellular vacuoles, a process distinct from serum lipoprotein uptake. VSMC cultured in adipogenic differentiation medium accumulated lipids and were induced to express the adipocyte marker genes adipsin, adipocyte fatty acid-binding protein, C/EBPalpha, PPARgamma, and leptin. However, complete adipocyte differentiation was not observed as numerous genes present in mature adipocytes were not detected, and the phenotype was reversible. The rate of lipid accumulation was not affected by PPARgamma agonists, but screening for the effects of other nuclear receptor agonists showed that activation of the liver X receptors (LXR) dramatically promoted lipid accumulation in VSMC. Both LXRalpha and LXRbeta were present in VSMC, and their activation with TO901317 resulted in induction of the lipogenic genes fatty acid synthetase, sterol regulatory element binding protein (SREBP1c), and stearoyl-CoA desaturase. 27-Hydroxycholesterol, an abundant oxysterol synthesized by VSMC acted as an LXR antagonist and, therefore, may have a protective role in preventing foam cell formation. Immunohistochemistry showed that VSMC within atherosclerotic plaques express adipogenic and lipogenic markers, suggesting these pathways are present in vivo. Moreover, the development of an adipogenic phenotype in VSMC is consistent with their known phenotypic plasticity and may contribute to their dysfunction in atherosclerotic plaques and, thus, impinge on plaque growth and stability.  相似文献   

17.
The Na+/H+ antiporter is a ubiquitous transmembrane protein that plays a vital role in cell growth via regulation of intracellular Na+ and H+. In vascular smooth muscle cells (VSMC), vasoconstrictors and mitogens rapidly activate the antiporter, suggesting that both should have growth promoting effects. Indeed, angiotensin II increases VSMC protein and volume (hypertrophy), but does not increase cell number (hyperplasia). In the present work we investigated whether alterations in the steady state levels of Na+/H+ antiporter mRNA might differentiate these VSMC growth responses. Differences in function of the Na+/H+ antiporter appeared likely because exposure of growth-arrested VSMC for 24 h to 100 nM angiotensin II decreased intracellular pH from 7.08 to 6.99, while exposure to 10% calf serum caused an increase to 7.18. Simultaneous measurement of Na+/H+ antiporter mRNA levels, using the human c28 cDNA, revealed a 25-fold increase in response to serum (as well as to platelet-derived and fibroblast growth factors), but no change in response to angiotensin II. All agonists increased mRNA levels of the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase approximately 3-fold. The increase in Na+/H+ antiporter mRNA induced by serum was first apparent within 2 h and peaked 24 h after treatment. These results demonstrate that expression of Na+/H+ antiporter mRNA in VSMC is dependent on growth state: hyperplastic agonists (serum, platelet-derived and fibroblast growth factor) increase the steady state levels of Na+/H+ antiporter mRNA while a hypertrophic agonist (angiotensin II) does not.  相似文献   

18.
We have previously hypothesized that the development of severe angioproliferative pulmonary hypertension is associated with not only initial endothelial cell (EC) apoptosis followed by the emergence of apoptosis-resistant proliferating EC but also with proliferation of vascular smooth muscle cells (VSMC). We have demonstrated that EC death results in the selection of an apoptosis-resistant, proliferating, and phenotypically altered EC phenotype. We postulate here that the initial apoptosis of EC induces the release of mediators that cause VSMC proliferation. We cultured EC in an artificial capillary CellMax system designed to simulate the highly efficient functions of the human capillary system. We induced apoptosis of microvascular EC using shear stress and the combined VEGF receptor (VEGFR-1 and -2) inhibitor SU-5416. Flow cytometry for the proliferation marker bromodeoxyuridine showed that serum-free medium conditioned by apoptosed EC induced proliferation of VSMC, whereas serum-free medium conditioned by nonapoptosed EC did not. We also show that medium conditioned by apoptosed EC is characterized by increased concentrations of transforming growth factor (TGF)-beta1 and VEGF compared with medium conditioned by nonapoptosed EC and that TGF-beta1 blockade prevented the proliferation of cultured VSMC. In conclusion, EC death induced by high shear stress and VEGFR blockade leads to the production of factors, in particular TGF-beta1, that activate VSMC proliferation.  相似文献   

19.
Mitogens and vasoconstrictors stimulate many of the same early intracellular signals (e.g. phospholipase C and protein kinase C activation) in vascular smooth muscle cells (VSMC). Despite these shared signals, angiotensin II is not mitogenic for cultured VSMC. The nonmitogenic effect of angiotensin II suggests that other intracellular signals associated with growth should differ between mitogens and vasoconstrictors. Because of the importance of intracellular pH (pHi) in growth, we compared the effects of 10% calf serum, 10 ng/ml platelet-derived growth factor, and 100 nM angiotensin II on pHi and Na+/H+ exchange. All agonists stimulated a rapid (less than 1 min) rise in pHi mediated by Na+/H+ exchange. However, exposure of growth-arrested VSMC to these agonists for 24 h caused significant differences in pHi: 7.18 (10% serum), 7.16 (platelet-derived growth factor), 6.99 (angiotensin II), and 7.08 (0.4% serum). Na+/H+ exchange activity was measured in acid-loaded cells by the ethyl isopropyl amiloride-sensitive influx of Na+ and efflux of H+. Both techniques showed that exposure to 10% serum caused approximately 45% decrease in Na+/H+ exchange activity without significant change in angiotensin II-treated cells. Thus, although the rapid changes in pHi and Na+/H+ exchange function are the same for angiotensin II and mitogens, the long term effects differ. The data suggest that differences in pHi regulatory mechanisms are important in determining whether an agonist causes VSMC hypertrophy or hyperplasia.  相似文献   

20.
To understand how vascular endothelial growth factor (VEGF) production is activated in malignant glioma cells, we employed protein tyrosine kinase (PTK) and protein kinase C (PKC) inhibitors to evaluate the extent to which these protein kinases were involved in signal transduction leading to VEGF production. PTK inhibitors blocked glioma proliferation and epidermal growth factor (EGF)-induced VEGF secretion, while H-7, a PKC inhibitor, inhibited both EGF-induced and baseline VEGF secretion. Phorbol 12-myristate 13-acetate (PMA), a non-specific activator of PKC, induced VEGF secretion by glioma cells, which was enhanced by calcium ionophore A23187, but completely blocked after prolonged treatment of cells with 1 microM PMA, by presumably depleting PKC. All inhibitors (genistein, AG18, AG213, H-7, prolonged PMA treatment) which inhibited EGF-induced VEGF secretion in glioma cells also inhibited cell proliferation at similar concentrations. However, PKC inhibition only blocked 50% of the VEGF secretion induced by growth factors (EGF, platelet-derived growth factor-BB, or basic fibroblast growth factor). This reserve capacity could be ascribed to a PKC-independent effect, or to PKC isoenzymes not down-regulated by PMA. These findings extend our previous assertion that VEGF secretion is tightly coupled with proliferation by suggesting that activation of convergent growth factor signaling pathways will lead to increased glioma VEGF secretion. Understanding of signal transduction of growth factor-induced VEGF secretion should provide a rational basis for the development of novel strategies for therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号