首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Breeding success in ground-nesting birds is primarily determined by nest survival, which may be density-dependent, but the generality of this pattern remains untested. In a replicated crossover experiment conducted on 30 wetlands, survival of simulated mallard nests was related to "biome" (n=14 mediterranean and 16 boreal wetlands), breeding "phenology" (early vs late nests), and "density" (2 vs 8 nests per 225 m shoreline). Local abundances of "waterfowl", "other waterbirds", and "avian predators" were used as covariates. We used an information-theoretic approach and Program MARK to select among competing models. Nest survival was lower in late nests compared with early ones, and it was lower in the mediterranean than in the boreal study region. High-density treatment nests suffered higher depredation rates than low-density nests during days 1–4 of each experimental period. Nest survival was negatively associated with local abundance of "waterfowl" in the boreal but not in the mediterranean biome. Effect estimates from the highest-ranked model showed that nest "density" (d 1–4) had the strongest impact on model fit; i.e. three times that of "biome" and 1.5 times that of "phenology". The latter's effect, in turn, was twice that of "biome". We argue that our study supports the idea that density-dependent nest predation may be temporally and spatially widespread in waterfowl. We also see an urgent need for research of how waterfowl nesting phenology is matched to that of prey and vegetation.  相似文献   

2.
When nest predation levels are very high or very low, the absolute range of observable nest success is constrained (a floor/ceiling effect), and it may be more difficult to detect density-dependent nest predation. Density-dependent nest predation may be more detectable in years with moderate predation rates, simply because there can be a greater absolute difference in nest success between sites. To test this, we replicated a predation experiment 10 years after the original study, using both natural and artificial nests, comparing a year when overall rates of nest predation were high (2000) to a year with moderate nest predation (2010). We found no evidence for density-dependent predation on artificial nests in either year, indicating that nest predation is not density-dependent at the spatial scale of our experimental replicates (1-ha patches). Using nearest-neighbor distances as a measure of nest dispersion, we also found little evidence for "dispersion-dependent" predation on artificial nests. However, when we tested for dispersion-dependent predation using natural nests, we found that nest survival increased with shorter nearest-neighbor distances, and that neighboring nests were more likely to share the same nest fate than non-adjacent nests. Thus, at small spatial scales, density-dependence appears to operate in the opposite direction as predicted: closer nearest neighbors are more likely to be successful. We suggest that local nest dispersion, rather than larger-scale measures of nest density per se, may play a more important role in density-dependent nest predation.  相似文献   

3.
Annual Finnish breeding duck surveys over the last 30 years show declining abundance among several species and greater declines on eutrophic waters than oligotrophic lakes. It has been suggested that habitat-related differences in the rate of increase in predation pressure is a potential explanation for contrasting duck population trajectories between habitats. We assessed potential duck nest predation risk and predator presence in various duck breeding habitats in Finland and Denmark by monitoring 333 artificial duck nests with wildlife cameras during 2017–2019. Predation rates differed between landscapes and habitats: nest predation rate and predator diversity were lowest in forested and highest in agricultural landscapes. Forest nests further from water bodies survived better than nests around shorelines of permanent lakes. Of the 16 different predator species detected, the most common were Eurasian magpie (Picapica), hooded crow (Corvus corone) and raccoon dog (Nyctereutes procyonoides). While predation by specific native predator species was typically associated with particular habitats and landscapes, the alien raccoon dog appeared to be a true habitat generalist, ubiquitous and common across all habitats and landscapes. Based on these results, the higher duck nest predation pressure along shorelines, especially in agricultural landscape lakes, due to increased diversity and abundance within the predator community, may contribute to the declining population trends of ducks.  相似文献   

4.
Identifying factors influencing nest survival among sympatric species is important for understanding and managing sources of variation in population dynamics of individual species. Three species of loons nest sympatrically in northern Alaska and differ in body size, life history characteristics, and population trends. We tested the effects of competition, nest site selection, and water level variations on nest survival of Pacific Gavia pacifica, yellow‐billed G. adamsii, and red‐throated loons G. stellata on the Arctic Coastal Plain in Alaska. Although overall nest survival rates did not differ between species, the factors influencing nest survival varied. Nest site selection influenced nest survival for Pacific and yellow‐billed loons, with both species having high nest survival when nesting on islands and peninsulas, likely due to a reduction in access by terrestrial predators. However, on mainland shorelines, Pacific loons had lower nest survival than yellow‐billed loons, and used a higher proportion of vegetation mats for nest sites suggesting that their smaller body size makes them less adept at nest defense. Nest site selection did not influence nest survival of red‐throated loons corresponding to our result of no nest site preferences by this species. Initiation date had a strong influence on nest survival for Pacific and yellow‐billed loons with nests laid earlier having higher survival. Pacific and yellow‐billed loon nests were susceptible to flooding due to precipitation, which contrasted with red‐throated loons that nest on smaller lakes with lower water level variations. Competition did not affect nest survival for any of the species likely due to most territorial encounters occurring prior to incubation. The only influence we found on red‐throated loon nest survival was differences among years. Our results indicate that loons chose nest sites based on predation risk and that factors influencing breeding success of closely related species may differ under similar breeding conditions.  相似文献   

5.
Nest survival is critical to breeding in birds and plays an important role in life‐history evolution and population dynamics. Studies evaluating the proximate factors involved in explaining nest survival and the resulting temporal patterns are biased in favor of temperate regions. Yet, such studies are especially pertinent to the tropics, where nest predation rates are typically high and environmental conditions often allow for year‐round breeding. To tease apart the effects of calendar month and year, population‐level breeding activity and environmental conditions, we studied nest survival over a 64‐month period in equatorial, year‐round breeding red‐capped larks Calandrella cinerea in Kenya. We show that daily nest survival rates varied with time, but not in a predictable seasonal fashion among months or consistently among years. We found negative influences of flying invertebrate biomass and rain on nest survival and higher survival of nests when nests were more abundant, which suggests that nest predation resulted from incidental predation. Although an increase in nest predation is often attributed to an increase in nest predators, we suggest that in our study, it may be caused by altered predator activity resulting from increased activity of the primary prey, invertebrates, rather than activity of the red‐capped larks. Our results emphasize the need to conduct more studies in Afro‐tropical regions because proximate mechanisms explaining nest predation can be different in the unpredictable and highly variable environments of the tropics compared with the relatively predictable seasonal changes found in temperate regions. Such studies will aid in better understanding of the environmental influences on life‐history variation and population dynamics in birds.  相似文献   

6.
ABSTRACT Methods for monitoring bird nests might influence rates of nest predation, but the effects of various methods (e.g., visual markers and observer visitation rates) are often separately investigated among disparate avian taxa and geographic regions. Few investigators have explored the potential effects observers might have on nest success of grassland birds, despite concerns regarding population declines of these species in North America. We examined the possible effects of three monitoring techniques on daily nest survival of Lark Sparrows (Chondestes grammacus): (1) presence or absence of visible markers near nests, (2) observer visitation frequency, and (3) presence or absence of data loggers in nests. We monitored 113 Lark Sparrow nests during the 2009 breeding season. Of these nests, 88.5% failed due to predation, abandonment, weather, or unknown causes, yielding an overall nest success estimate of 9.8% based on daily survival estimation. Main effects of each monitoring technique appeared in top (ΔAICc <2) logistic exposure models. However, 95% confidence intervals around parameter estimates for each technique included zero, indicating no significant effects on daily nest survival. Our results suggest that the nest‐monitoring techniques we used had no effect on Lark Sparrow nest success and, if true, nest survival of other songbirds in arid grasslands of the Great Plains may also be unaffected by cautious nest monitoring. However, we cannot rule out the possibility that any effects of the various techniques in our study were masked by locally intense nest predation. Therefore, additional study is needed to determine if there may be observable variation in nest survival among various nest‐monitoring treatments in other areas of the southern Great Plains where nest predation is less frequent.  相似文献   

7.
Abstract: Waterfowl nesting in annual croplands has remained a little-known aspect of waterfowl nesting ecology because of the inability of many studies to systematically search this habitat through the nesting season. Where searches have been conducted, they are generally restricted to the period prior to seeding, and many nests found are destroyed by the seeding operation. Consequently, fall-seeded crops have been promoted as an alternative cropping practice that could increase nest survival of waterfowl nesting in croplands. During 1996–1999, we conducted 3–4 complete nest searches on 4,274 ha of cropland, including spring-seeded wheat and barley, winter wheat, and fall rye in southern Saskatchewan, Canada. Using suites of predictive models, we tested hypotheses regarding relative nest abundance and nest survival among crop types and tested the influence of several landscape-scale covariates on these metrics. Apparent nest densities were higher in fall-seeded crops (winter wheat: 0.39 nests/ha, fall rye: 0.25 nests/ha) than in spring-seeded crops (0.03 nests/ha), and nest density in spring-seeded croplands increased with percent cropland and percent wetland habitat in the surrounding landscape. Nest survival was higher in winter wheat (38%) than in either fall rye (18%) or spring-seeded crops (12%), and nest survival in spring-seeded crops increased with relative nest initiation date. Nest survival was unaffected by surrounding landscape characteristics but tended to be higher in years of average wetness. Based on our findings, winter wheat and fall rye have the potential to provide productive nesting habitat for ≥7 species of upland nesting ducks and fall-seeded crops are a conservation tool well suited to highly cropped landscapes.  相似文献   

8.
When a habitat becomes fragmented and surrounded by another habitat this generally causes an increase in predation pressure at habitat transitions, often referred to as an edge effect. Edge effect in the form of enhanced nest predation intensities is one of the most cited explanations for bird population declines in fragmented landscapes. Here, we report results from a nest predation experiment conducted in a tropical montane forest landscape in the Uzungwa Mts., Tanzania. Using artificial nests with chicken eggs, we determined predation rates across a fragmentation gradient. The proportion of indigenous forest in four landscapes used in the study were 0.29, 0.58, 0.75 to 1.0. Nest predation intensities on artificial nests were about 19% higher inside intact forest than at edges in fragmented forest landscapes. Furthermore, predation intensities were relatively constant across a forest fragmentation gradient. Our results thus challenge the applicability and generality of the edge effect, derived from studies almost exclusively conducted in temperate regions rather than tropical forest ecosystems. Nest predation levels differences between tropical montane forest and that reported in other forest ecosystems are discussed.  相似文献   

9.
In avian systems, nest predation is one of the most significant influences on reproductive success. Selection for mechanisms and behaviours to minimise predation rates should be favoured. To avoid predation, breeding birds can often deter predators through active nest defence or by modifying behaviours around the nest (e.g. reducing feeding rates and vocalisations). Birds might also benefit from concealing nests or placing them in inaccessible locations. The relative importance of these strategies (behaviour vs. site selection) can be difficult to disentangle and may differ according to life history. Tropical birds are thought to experience higher rates of predation than temperate birds and invest less energy in nest defence. We monitored a population of crimson finches (Neochmia phaeton), in the Australian tropics, over two breeding seasons. We found no relationship between adult nest defence behaviour (towards a model reptile predator) and the likelihood of nest success. However, nest success was strongly related to the visibility of the nest and the structure of the vegetation. We found no evidence that adult nest building decisions were influenced by predation risk; individuals that re‐nested after a predation event did not build their nest in a more concealed location. Therefore, predator avoidance, and hence nest success, appears to be largely due to chance rather than due to the behaviour of the birds or their choice of nesting sites. To escape high predation pressures, multiple nesting attempts both within and between seasons may be necessary to increase reproductive success. Alternatively, birds may be limited in their nest‐site options; that is, high‐quality individuals dominate quality nest sites.  相似文献   

10.
For many animals, nest construction is a prerequisite for successfulbreeding. The choice of nesting materials is an important componentof nest construction, because material properties can influencenest design and, potentially, reproductive success. Common waxbillsare small African finches that select carnivore scat as a materialto include in, on, and around their nests. I investigated thehypothesis that scat functions to reduce predation risk by documentingits use in a wild population of common waxbills and by conductingan artificial nest experiment. Among natural nests, scat waspresent in every nest that hatched young, and parents continuedto add scat to nests throughout the nestling period. Among artificialnests, those that received experimental additions of carnivorescat survived at a significantly higher rate than did untreatednests, suggesting that scat functions to reduce predation risk.The mechanism by which nests are protected remains unclear,although it is likely that scat acts as an olfactory deterrentand/or camouflage. Researchers have long focused on the implicationsof nest site characteristics for avian life-history evolution.Results of the present study suggest that nest materials, similarto nest sites, may influence life histories of nest-buildinganimals by affecting predation risk.  相似文献   

11.
ABSTRACT Population growth for mallards (Anas platyrhynchos), and presumably other upland nesting ducks, in the Prairie Pothole Region of the United States and Canada is most sensitive to nest success, and nest success is most strongly influenced by predation. We evaluated the efficacy of reducing predator populations to improve nest success of upland nesting ducks on township-sized (93.2 km2) management units in eastern North Dakota, USA, during 2005–2007. We monitored 7,489 nests on 7 trapped and 5 nontrapped sites. Trappers annually removed an average of 245 predators per trapped site, and we found nest success to be 1.4–1.9 times greater on trapped sites than nontrapped sites, depending on year. Nest success was greater on both trapped and nontrapped sites when compared with a study conducted in the same areas in the mid-1990s, likely because of changes in red fox (Vulpes vulpes) and coyote (Canis latrans) population dynamics. Nests initiated midseason had higher daily survival rates (DSR) than those initiated earlier or later in the season. Daily survival rates for nests in the middle of the nesting cycle were higher than for nests that were early in laying or late in incubation. Nests near the periphery of trapped sites had slightly higher DSRs than nests in the center of trapped sites. Predator reduction at the township scale provides managers with an effective tool to improve nest success at large spatial scales.  相似文献   

12.
The effects of habitat edges on nest survival of shrubland birds, many of which have experienced significant declines in the eastern United States, have not been thoroughly studied. In 2007 and 2008, we collected data on nests of 5 shrubland passerine species in 12 early successional forest patches in North Carolina, USA. We used model selection methods to assess the effect of distance to cropland and mature forest edge on nest predation rates and additionally accounted for temporal trends, nest stage, vegetation structure, and landscape context. For nests of all species combined, nest predation decreased with increasing distance to cropland edge, by nearly 50% at 250 m from the cropland edge. Nest predation of all species combined also was higher in patches with taller saplings and less understory vegetation, especially in the second year of our study when trees were 4–6 m tall. Predation of field sparrow (Spizella pusilla) nests was lower in landscapes with higher agricultural landcover. Nest predation risk for shrubland birds appears to be greater near agricultural edges than mature forest edges, and natural forest succession may drive patterns of local extirpation of shrubland birds in early successional forest patches. Thus, we suggest that habitat patches managed for shrubland bird populations should be considerably large or wide (>250 m) when adjacent to crop fields and maintained in structurally diverse early seral stages. © 2011 The Wildlife Society.  相似文献   

13.
Avian nest success often varies seasonally and because predation is the primary cause of nest failure, seasonal variation in predator activity has been hypothesized to explain seasonal variation in nest success. Despite the fact that nest predator communities are often diverse, recent evidence from studies of snakes that are nest predators has lent some support to the link between snake activity and nest predation. However, the strength of the relationship has varied among studies. Explaining this variation is difficult, because none of these studies directly identified nest predators, the link between predator activity and nest survival was inferred. To address this knowledge gap, we examined seasonal variation in daily survival rates of 463 bird nests (of 17 bird species) and used cameras to document predator identity at 137 nests. We simultaneously quantified seasonal activity patterns of two local snake species (N = 30 individuals) using manual (2136 snake locations) and automated (89,165 movements detected) radiotelemetry. Rat snakes (Pantherophis obsoletus), the dominant snake predator at the site (~28% of observed nest predations), were most active in late May and early June, a pattern reported elsewhere for this species. When analyzing all monitored nests, we found no link between nest predation and seasonal activity of rat snakes. When analyzing only nests with known predator identities (filmed nests), however, we found that rat snakes were more likely to prey on nests during periods when they were moving the greatest distances. Similarly, analyses of all monitored nests indicated that nest survival was not linked to racer activity patterns, but racer‐specific predation (N = 17 nests) of filmed nests was higher when racers were moving the greatest distances. Our results suggest that the activity of predators may be associated with higher predation rates by those predators, but that those effects can be difficult to detect when nest predator communities are diverse and predator identities are not known. Additionally, our results suggest that hand‐tracking of snakes provides a reliable indicator of predator activity that may be more indicative of foraging behavior than movement frequency provided by automated telemetry systems.  相似文献   

14.
ABSTRACT Nest‐site selection and nest defense are strategies for reducing the costs of brood parasitism and nest predation, two selective forces that can influence avian nesting success and fitness. During 2001–2002, we analyzed the effect of nest‐site characteristics, nesting pattern, and parental activity on nest predation and brood parasitism by cowbirds (Molothrus spp.) in a population of Brown‐and‐yellow Marshbirds (Pseudoleistes virescens) in the Buenos Aires province, Argentina. We examined the possible effects of nest detectability, nest accessibility, and nest defense on rates of parasitism and nest predation. We also compared rates of parasitism and nest predation and nest survival time of marshbird nests during the egg stage (active nests) with those of the same nests artificially baited with passerine eggs after young fledged or nests failed (experimental nests). Most nests (45 of 48, or 94%) found during the building or laying stages were parasitized, and 79% suffered at least one egg‐predation event. Cowbirds were responsible for most egg predation, with 82 of 107 (77%) egg‐predation events corresponding to eggs punctured by cowbirds. Nests built in thistles had higher rates of parasitism and egg predation than nests in other plant, probably because cowbirds were most active in the area where thistles were almost the only available nesting substrate. Parasitism rates also tended to increase as the distance to conspecific nests increased, possibly due to cooperative mobbing and parental defense by marshbirds. The proportion of nests discovered by cowbirds was higher for active (95%) than for experimental (29%) nests, suggesting that cowbirds used host parental activity to locate nests. Despite active nest defense, parental activity did not affect either predation rates or nest‐survival time. Thus, although nest defense by Brown‐and‐yellow Marshbirds appears to be based on cooperative group defense, such behavior did not reduce the impact of brood parasites and predators.  相似文献   

15.
Density‐dependent population regulation is observed in many taxa, and understanding the mechanisms that generate density dependence is especially important for the conservation of heavily‐managed species. In one such system, North American waterfowl, density dependence is often observed at continental scales, and nest predation has long been implicated as a key factor driving this pattern. However, despite extensive research on this topic, it remains unclear if and how nest density influences predation rates. Part of this confusion may have arisen because previous studies have studied density‐dependent predation at relatively large spatial and temporal scales. Because the spatial distribution of nests changes throughout the season, which potentially influences predator behavior, nest survival may vary through time at relatively small spatial scales. As such, density‐dependent nest predation might be more detectable at a spatially‐ and temporally‐refined scale and this may provide new insights into nest site selection and predator foraging behavior. Here, we used three years of data on nest survival of two species of waterfowl, mallards and gadwall, to more fully explore the relationship between local nest clustering and nest survival. Throughout the season, we found that the distribution of nests was consistently clustered at small spatial scales (?50–400 m), especially for mallard nests, and that this pattern was robust to yearly variation in nest density and the intensity of predation. We demonstrated further that local nest clustering had positive fitness consequences – nests with closer nearest neighbors were more likely to be successful, a result that is counter to the general assumption that nest predation rates increase with nest density.  相似文献   

16.
Grassland managers often regard woody vegetation as hostile habitat that potentially reduces the abundance and fecundity of wildlife that use grasslands. We tested that assumption for waterfowl by examining patterns of nest success on study areas that differed in current extent and previous management of woody vegetation. We located and monitored 1,064 waterfowl nests on 33 federally owned Waterfowl Production Areas (WPAs) in western Minnesota during 2008–2010. Sites contained 0.3–15.1% woodland and also varied markedly in extent of shrubs and scattered trees. Average nest success was low (12.9%), but ranged from 1.5% to 38.7% among site-years. Nests were more likely to succeed when located in landscapes containing more grass (500-m scale) and fewer wetlands (100-m scale), but none of 8 variables measuring woody vegetation were negatively associated with nest survival and 1 variable (abundance of lone trees) was positively associated with nest survival. Our results indicate that management efforts focusing on removing woody vegetation are unlikely to provide improvements in nest survival rates for breeding waterfowl, except to the extent that such management is necessary to maintain large tracts of grassland. © 2012 The Wildlife Society.  相似文献   

17.
Periodic treatment of established stands of dense nesting cover (DNC) is a recommended practice to maintain cover quality, but little information exists on the magnitude and duration of treatment effects on nesting waterfowl. During 1998–2001, we examined the effect of management treatments on vegetative characteristics and waterfowl nest success and density in fields of DNC seeded to introduced and native grass and forb mixes in the parklands of Saskatchewan and Manitoba. We measured vegetation height–density and litter depth within fields and located and monitored 1,927 duck nests within 33–42 fields/yr ranging in size from 6 ha to 62 ha. We considered a series of models examining the influence of grass type and management treatment (GTMT) and years post-management (YPM) on vegetative characteristics, nest success, and nest density while including covariates potentially affecting these response variables. Visual obstruction and litter depth were lowest in native-burned fields and greatest in introduced-hayed fields. Visual obstruction was low the year following management, peaked 2–3 YPM, and remained at intermediate levels through ≥6 YPM. Litter depth remained low for the first 3 YPM and increased thereafter. Nest success and nest density varied little among GTMT. Nest success was high (14.3%) the year following a management treatment, low (6.5%) at 2 YPM, and moderate thereafter. Nest success decreased with percent cropland in the surrounding landscape. Nest density was 0.7 nests/ha the first year following management, increased to approximately 1.3 nests/ha in years 2–3, and declined back to approximately 0.7 nests/ha for ≥6 YPM. Nest density decreased with field size and increased with the area of small wetlands, percent cropland, and percent wetland within surrounding landscapes. Nest density tracked vegetation density as expected and our results indicate a possible trade-off between nest density and nest success. Given ancillary data on small mammal and insect prey in our study fields, and evidence from other studies, we speculate that DNC fields may act as prey reservoirs during years of peak vegetative density with a consequent reduction in nest survival. Therefore, management to increase waterfowl production based on our results needs to consider the interaction of treatment effects, competing habitats, and surrounding landscape composition. © 2011 The Wildlife Society.  相似文献   

18.
Fragmentation and other habitat disturbances are long known to negatively affect birds, in large part by decreasing nest success due to high nest predation rates. The factors, however, that cause this decrease in nest success are still poorly understood and may vary among regions or species. Here, we show that nest survival is also lower in a disturbed landscape versus a protected cerrado (savanna-like) Neotropical landscape. Also, we tested the importance of garbage in the nest, brood parasitism, microhabitat and bird family in nest survival, controlling for temporal effects. We monitored 144 birds’ nests in a disturbed landscape and 150 nests in a natural reserve of cerrado vegetation in central Brazil, between September and December 2006. We used Program MARK to estimate nest survival probabilities and evaluate the effect of covariates in nest success in the disturbed area. Nest daily survival rate (DSR) was higher in the reserve (survival probability = 29.4%) than in the disturbed landscape (survival probability = 16.6%). Nest daily survival rate (DSR) was smaller in nests with garbage (survival probability = 9.3%) than in nests without garbage (survival probability = 19.5%) in the disturbed landscape. Effects of habitat disturbance on nest survival differed among bird families, with finches and tanagers being more affected mostly due to high nest predation rates. Conservation and management of birds in disturbed landscapes should include actions to decrease nest predation. In poor rural or suburban areas in developing countries, such as Brazil, actions like better garbage treatment may help conserve birds in disturbed landscapes.  相似文献   

19.
The Common Pheasant Phasianus colchicus is currently the most abundant, widespread and economically important gamebird in Europe. The Game and Wildlife Conservation Trust has undertaken several recent studies of Pheasant breeding ecology to improve the management of this species. Although predation is often the most important cause of nest failure in declining ground-nesting birds in agricultural landscapes, the causes of predation and the identity of predators are often unknown. In this paper, we analyse data from approximately 450 nests of radiotagged hen Pheasants collected from six sites between 1990 and 2003 and present results on the fate and survival rates of Pheasant nests in relation to habitat, predation control and other covariates. Survival rates during the laying stage and incubation stage were 28 and 37%, respectively, and overall nest survival was 10%. Nest predation rates were significantly lower on two sites where intensive predation control was undertaken than on four sites with only low levels of predation control. Red Foxes Vulpes vulpes and corvids were the most important nest predators, accounting for at least half of all predation events. We assess these results in the context of other ground-nesting farmland birds.  相似文献   

20.
Capsule Lapwing nest predation was negatively correlated to nest density, while Lapwing alarm duration in response to foxes was positively correlated with the number of Lapwing broods present.

Aims To identify factors affecting Lapwing nest predation and Red Fox search effort.

Methods Lapwing nest success was monitored at four sites in 1996, seven sites in 1997 and six sites in 1998. In 1997 we mapped the position of all Lapwing nests in order to determine distances between nests, and the proximity of linear features and potential avian predator perches to each nest. From April to June 1998 we carried out 199 hours of nocturnal observations at six Lapwing nesting sites using night vision equipment.

Results The risk of nest predation was significantly higher for more isolated nests. Nocturnal observations showed that of all the nocturnal predators, foxes were the most active at Lapwing nesting sites. However, fox search effort in Lapwing colonies was relatively low, averaging 57 s/ha per visit. Foxes spent significantly longer foraging near breeding Lapwings (measured as duration of alarm calls) when more broods were present. Fox search effort (s/ha per hour of observation) tended to be greater in areas of high waterbird density.

Conclusion The lack of positive density-dependent nest predation, the relatively low search effort of foxes near Lapwing nesting sites and the high nest success sometimes achieved in areas with foxes all suggest that Lapwing nest predation by foxes is ‘incidental’. Lapwing chicks are probably more vulnerable to predation by foxes than clutches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号