首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
N. Okagami  Y. Esashi  M. Nagao 《Planta》1977,136(1):1-6
Gibberellic-acid (GA3) treatment, when applied within a period ranging from the start of short-day (SD) treatment until about 10 SD, GA3 strongly inhibited formation of aerial tubers in response to SD and brought about sprouting of developing aerial tubers. In contrast, when applied after about 10 SD or more, GA3 hastened the completion of the dormant state in the tubers and prolonged their dormancy. The dormancy-promoting effect of GA3 on detached tubers increased with their degree of maturation. Application of growth retardants N-dimethylaminosuccinamic acid (B-9), 2-isopropyl-4-dimethylamino-5-methylphenyl-1-piperidine carboxylate methyl chloride (AMO-1618) and 2-chloroethyltrimethylammonium chloride (CCC) to the cuttings delayed the onset of dormancy in the aerial tuber. When the retardants were applied to detached aerial tubers, however, such a delay of dormancy was not observed, and GA3 application did not inhibit sprouting in aerial tubers detached from CCC-treated cuttings.Abbreviations GA gibberellin - GA3 gibberellic acid - SD short day(s) - LD long day(s) - SDP short-day plant - LDP long-day plant - CCC 2-chloroethyltrimethylammonium chloride - B-9 N-dimethylaminosuccinamic acid - AMO-1618 2-isopropyl-4-dimethyl-amino-5-methylphenyl-1-piperidine carboxylate methyl chloride  相似文献   

2.
The effect of growth retarding compounds, (2-chloroethyl)trimethylammonium chloride (CCC), 2-isopropyl-4-dimethylamino-5-methylphenyl-1-piperidinecarboxylate methyl chloride (AMU-1618), tributyl-2,4-dichlorobenzylphosphonium chloride (Phosfon D) and N-dimethylamino succinamic acid (B-995) on α-amylase production in germinating barley seed was studied. Seeds were germinated in growth retardants in presence and absence of gibberellic acid (GA3). CCC, AMO-1618 and Phosfon D inhibitedα-amylase production in germinating seed and the effect was reversed by GA3 Phosfon D and AMO-1618 were stronger inhibitors of α-amylase production than CCC. CCC was by far the strongest inhibitor of all the other analogs tested. B-995 was comparatively only slightly inhibitory. The results reported here, when viewed in light of the results of other workers, provide good evidence that CCC, AMO-1618 and Phosfon D inhibit α-amylase production by inhibiting the synthesis of gibberellin or gibberellin-like hormone(s) during germination of barley seed. Consistent with other reports, B-995 possibly acts by other mechanism (s).  相似文献   

3.
The induction of -amylase by exogenously supplied gibberellin A1 (GA1) and GA4 in embryoless caryopses of Hordeum vulgare (cv. Himalaya) was determined indirectly by measuring reducing sugars released from the endosperm. The presence of the inhibitors of GA biosynthesis, 2-isopropyl-4-dimethylamino-5-methylphenyl-1-piperidinecarboxylate methyl chloride (Amo 1618), Ancymidol, 2-chloroethyl trimethyl ammonium chloride (CCC) or (R,S)-1-(4-chlorophenyl)-4,4-dimethyl-2-(1,2,3-triazolyl)pentan-3-ol (PP333) did not inhibit -amylase production by either GA1 or GA4.Abbreviations Amo-1618 2-isopropyl-4-dimethylamino-5-methylphenyl-1-piperidinecarboxylate methyl chloride - CCC 2-chloroethyl trimethyl ammonium chloride - cv. cultivar - GA gibberellin - GC gas chromatography - GC-MS combined gas chromatography-mass spectrometry - PP333 (R,S)-1-(4-chlorophenyl)-4,4-dimethyl-2-(1,2,3-triazolyl) pentan-3-01  相似文献   

4.
The physiological basis of dwarfism in a single-gene, recessive mutant of Silene armeria L. was investigated through comparison with a normal strain. Exposure of the normal strain to long days led to stem growth and flower formation while similar exposure of the dwarf strain led only to flowering, with very little stem growth. Application of gibberellin A3 or A4+7 in short days promoted stem elongation in the normal strain, but had a much lesser effect in the dwarf strain. Upon extraction and chromatographic fractionation of the endogenous gibberellins (GAs) in the normal strain of S. armeria, three zones of GA activity were found. An increase in one zone of activity was found in both strains after 1 long day. Neither the quality nor the quantity of the extractable GAs differed greatly between the dwarf and the normal strain. Vegetative dwarf scions, grafted onto fully induced, normal stocks formed flowers, but their growth habit was not changed. Thus, the lack of stem growth in response to long days in the dwarf strain appears to result from a lack of GA sensitivity in the stem tissue of these plants. However, during flower formation dwarf plants did exhibit elongation of the peduncles. This response was suppressed by the growth retardant 2-isopropyl-4-dimethylamino-5-methylphenyl-1-piperidine-carboxylate methyl chloride (AMO-1618), and applied GA3 could partially overcome this inhibition. Thus, peduncle elongation in the dwarf strain appears to be regulated by endogenous GAs.Abbreviations AMO-1618 2-isopropyl-4-dimethylamino-5-methylphenyl-1-piperidine-carboxylate methyl chloride - GA(s) gibberellin(s) - LD long day(s) - SD short day(s)  相似文献   

5.
The effects of growth retardants, 4-hydroxy-5-isopropyl-2-methylphenyltrimethylammonium chloride-1-piperidine carboxylate (AMO-1618 or AMO) and 2-chloroethyltrimethylammonium chloride (CCC), applied with and without gibberellic acid (GA3), on -[3H]alanine uptake and leakage from pea (Pisum sativum L.) and betacyanin efflux from beetroot (Beta vulgaris L.) tissue were examined. Both compounds decreased the amount of -[3H]alanine taken up into pea leaf discs, and increased the quantity of radioactive label that subsequently leaked out of this tissue. Efflux of betacyanin from slices of beetroot was also found to be promoted by treatment with CCC or AMO-1618. In no case were these effects reversed by application of GA3. It is concluded that the growth retardants may be altering tissue permeability by an interaction with the cell membranes, and this may account for some of the side effects of the retardants which cannot be explained on the basis of their inhibiting action on gibberellin synthesis.Abbreviations AMO-1618 4-hydroxy-5-isopropyl-2-methylphenyltrimethylammonium chloride-1-piperidine carboxylate - CCC 2-chloroethyltrimethylammonium chloride - GA3 gibberellic acid  相似文献   

6.
Agrostemma githago is a long-day rosette plant in which transfer from short days (SD) to long days (LD) results in rapid stem elongation, following a lag phase of 7–8 d. Application of gibberellin A20 (GA20) stimulated stem elongation in plants under SD, while 2-isopropyl-4-dimethylamino-5-methylphenyl-1-piperidine-carboxylate methyl chloride (AMO-1618, an inhibitor of GA biosynthesis) inhibited stem elongation in plants exposed to LD. This inhibition of stem elongation by AMO-1618 was overcome by simultaneous application of GA20, indicating that GAs play a role in the photoperiodic control of stem elongation in this species. Endogenous GA-like substances were analyzed using reverse-phase high-performance liquid chromatography and the d-5 corn (Zea mays L.) assay. Three zones with GA-like activity were detected and designated, in order of decreasing polarity, as A, B, and C. A transient, 10-fold increase in the activity of zone B occurred after 8–10 LD, coincident with the transition from lag phase to the phase of rapid stem elongation. After 16 LD the activity in this zone had returned to a level similar to that under SD, even though the plants were elongating rapidly by this time. However, when AMO-1618 was applied to plants after 11 LD, there was a rapid reduction in the rate of stem elongation, indicating that continued GA biosynthesis was necessary following the transient increase in activity of zone B, if stem elongation was to continue under LD. It was concluded that control of stem elongation in A. githago involves more than a simple qualitative or quantitative change in the levels of endogenous GAs, and that photoperiodic induction alters both the sensitivity to GAs and the rate of turnover of endogenous GAs.Abbreviations AMO-1618 2-isopropyl-4-dimethylamino-5-methylphenyl-1-piperidine-carboxylate methyl chloride - GA(s) gibberellin(s) - LD long day(s) - LDP long-day plant(s) - SD short day(s)  相似文献   

7.
M. J. Jaffe  Linda Thoma 《Planta》1973,113(4):283-291
Summary 4 min of red light increases the uptake of sodium acetate[1-14C] by excised, etiolated secondary roots of Phaseolus aureus Roxb. 4 min of far-red light reveres this effect. AMO-1618, which inhibits acetylcholinesterase activity, enhances the red-light effect, while d-tubocurarine, which blocks the animal acetylcholine receptor, inhibits it. Red light also increases basipetal translocation of the label. When the metabolic fate of the label was determined in dark-held roots, 36% of the label remained as acetate, 48% evolved as [14C]CO2, 3% partitioned with acetylcholine, and 3% effluxed from the roots. The rest of the label was associated with the coarse residue left after extraction. The major effect of red light was to increase the uptake of the label in the acetate fraction.We interpret these observations to mean that the phytochrome mechanism immediately causes an increase in uptake of the label during brief irradiation with red light. Because of our previous demonstration that both red light and acetylcholine increase respiration, it is probable that the increased absorption of the label is a process requiring respiratory energy. These data support the concept of phytochrome as a membrane-bound functional system that in bean roots is mediated by the acetylcholine mechanism.Abbreviations ACh Acetylcholine - AChE acetylcholinesterase - ATP adenosine triphosphate - AMO-1618 2-isopropyl-4-dimethylamino-5-methylphenyl-1-piperidine carboxylate methyl chloride - TPB tetraphenyl boron - D darkness - FR far-red - R red  相似文献   

8.
Moore TC 《Plant physiology》1967,42(5):677-684
The capacities of indole-3-acetic acid (IAA) and gibberellin A3 (GA3) to counteract the inhibitory effects of (2-chloroethyl) trimethylammonium chloride (CCC), 2-isopropyl-4-dimethylamino-5-methylphenyl-1-piperidinecarboxylate methyl chloride (Amo-1618), and N,N-dimethylaminosuccinamic acid (B-995) on hypocotyl elongation in light-grown cucumber (Cucumis sativus L.) seedlings were investigated. One μg of GA3 applied to the shoot tip was sufficient to completely nullify the effect of 10 μg of Amo-1618 or 25 μg of B-995 applied simultaneously to the shoot tip, and 10 μg of GA3 completely counteracted the effect of 10−3 m CCC added to the root medium. One μg of IAA counteracted the effect of 10−3 m CCC in the root medium, but IAA did not nullify the action of either Amo-1618 or B-995. Experiments were conducted using 2 growth retardants simultaneously, which indicated that Amo-1618 and CCC inhibit a common process, namely GA biosynthesis, essential to hypocotyl elongation. However, since the effect of CCC was overcome by applications of both GA and IAA, growth retardation resulting from treatment with CCC apparently is not due solely to inhibition of GA biosynthesis. B-995 did not interact additively with either Amo-1618 or CCC, which suggests that B-995 affects a process different from those affected by the other 2 retardants. Thus, while inhibition evoked by B-995 is reversible by applied GA, the action of B-995 does not appear to be inhibition of GA biosynthesis.  相似文献   

9.
The effects of gibberellic acid (GA3) and the growth retardant AMO-1618 on ovule formation in excised pistils of Nigella sativa L. were studied by sterile culture techniques. Gibberellic acid promoted pistil growth and inhibited ovule formation. The role of endogenous gibberellins in ovule formation and pistil growth was investigated by adding AMO to the basal medium. Both pistil lengths and ovule formation were reduced significantly with increasing concentrations of AMO. The addition of low concentrations of GA3 to the medium restored pistil growth but did not reverse the inhibitory effect of AMO on ovule formation. The addition of kinetin or indoleacetic acid (IAA) to the medium containing AMO had no effect on pistil lengths. However, with the addition of 10−7 m kinetin, the number of ovules in pistils was increased but not to the levels found in pistils grown in the absence of AMO.  相似文献   

10.
Senescence of shoot apices of Pisum sativum L. ‘Alaska’ as measured by cessation of stem elongation was delayed by removal of flowers and by treatment with gibberellin A3 and was hastened by treatment with AMO-1618 (2 isopropyl-4-dimethylamino-5-methylphenyl-1-piperi-dinecarboxylate methyl chloride). Ontogenetic changes in relative endogenous gibberellin levels and in capability of gibberellin biosynthesis in deflowered and control plants were determined indirectly by studying time-course changes in the sensitivity, as indicated by the growth response, of these plants to applied gibberellin and AMO-1618. The results of these experiments suggest that the endogenous gibberellin level varies directly with the growth rate. Analyses of total RNA and protein in shoot tips of deflowered and control plants revealed that the levels of these substances also vary directly with growth rate throughout ontogeny. It is concluded that decreases in endogenous gibberellin, RNA and protein are factors correlated with senescence of the shoot apex.  相似文献   

11.
Flower opening in Iris (Iris × hollandica) requires elongation of the pedicel and ovary. This moves the floral bud upwards, thereby allowing the tepals to move laterally. Flower opening is requires with elongation of the pedicel and ovary. In cv. Blue Magic, we investigated the possible role of hormones other than ethylene in pedicel and ovary elongation and flower opening. Exogenous salicylic acid (SA) and the cytokinins benzyladenine (N6-benzyladenine, BA) and zeatin did not affect opening. Jasmonic acid (JA) and abscisic acid (ABA) were slightly inhibitory, but an inhibitor of ABA synthesis (norflurazon) was without effect. Flower opening was promoted by gibberellic acid (GA3), but two inhibitors of gibberellin synthesis (4-hydroxy-5-isopropyl-2-methylphenyltrimethyl ammonium chloride-1-piperidine carboxylate, AMO-1618; ancymidol) did not change opening. The auxins indoleacetic acid (IAA) and naphthaleneacetic acid (NAA) strongly promoted elongation and opening. An inhibitor of auxin transport (2,3,5-triodobenzoic acid, TIBA) and an inhibitor of auxin effects [α-(p-chlorophenoxy)-isobutyric acid; PCIB] inhibited elongation and opening. The data suggest that endogenous auxins are among the regulators of the pedicel and ovary elongation and thus of flower opening in Iris.  相似文献   

12.
The following seven gibberellins (GAs) have been identified by gas chromatography-mass spectrometry in shoots and leaves of the long-day plant Agrostemma githago: GA53, GA44, GA19, GA17, GA20, GA1, and 3-epi-GA1. The levels of these compounds were measured, using selected ion monitoring, during photoperiodic induction. The levels of GA44, GA19, GA17, and GA20 all increased to a peak at eight long days (LD), followed by a decline, while the levels of GA1 and 3-epi-GA1 did not reach a peak until 12 LD. The level of GA53 remained steady over the first 10–12 LD. Later in the LD treatment the levels of GA53, GA44, GA19, and GA17 increased again. The rate of metabolism of all GAs except GA53 was higher after 12–16 LD than under short days. These data thus provide indirect evidence for an effect of photoperiodic induction on GA turnover in A. githago.Abbreviations AMO-1618 2-isopropyl-4-dimethylamino-5-methylphenyl-1-piperidine-carboxylate methyl chloride - GA(s) gibberellin(s) - GC-MS gas chromatography-mass spectrometry - HPLC high performance liquid chromatography - LD long day(s) - MeTMS trimethylsilylether of the methyl ester - SD short day(s) - SIM selected ion monitoring  相似文献   

13.
J. A. D. Zeevaart 《Planta》1985,166(2):276-279
The effects of the new growth retardant tetcyclacis (TCY) on stem growth and endogenous gibberellin (GA) levels were investigated in the long-day rosette plant Agrostemma githago. Application of TCY (10 ml of a 5·10-5M solution daily) to the soil suppressed stem elongation in Agrostemma grown under long-day conditions. A total of 10 g GA1 (1 g applied on alternate days) per plant overcame the growth retardation caused by TCY.Control plants and plants treated with TCY were analyzed for endogenous GAs after exposure to nine long days. The acidic extracts were fractionated by high-performance liquid chromatography. Part of each fraction was tested in the d-5 maize bioassay, while the remainder was analyzed by combined gas chromatography-selected ion monitoring. The bioassay results indicated that the GA content of plants treated with TCY was much lower than that of untreated plants. The data obtained by gas chromatography-selected ion monitoring confirmed that the levels of seven GAs present in Agrostemma were much reduced in TCY-treated plants when compared with the levels in control plants: GA53 (13%), GA44 (0%), GA19 (1%), GA17 (33%), GA20 (15%), GA1 (4%), and epi-GA1 (13%). These results provide evidence that TCY inhibits stem growth in Agrostemma by blocking GA biosynthesis and thus lowering the levels of endogenous GAs.Abbreviations AMO-1618 2-isopropyl-4-dimethylamino-5-methylphenyl-1-piperidine-carboxylate methyl chloride - GA(s) gibberellin(s) - HPLC high-performance liquid chromatography - TCY Tetcyclacis (5-[4-chlorophenyl]-3,4,5,9,10-pentaaza-tetracyclo-5,4,1,02,6,08,11-dodeca-3,9-diene)  相似文献   

14.
Corolla expansion inIpomoea nil appears to be triggered by changes in gibberellin concentration and ethylene production during development. We investigated the role of responsiveness to GA and ethylene in corolla expansion. The effects of growth regulators applied in vitro were measured as a change in area of corolla segments from younger (15–17 mm) and older (18–20 mm) whole corollas. Applied gibberellic acid (GA3) significantly (p < 0.05) promoted growth in the younger segments but was less effective in the older segments. Moreover, applications of the GA biosynthesis inhibitors, PP333 (paclobutrazol) AMO1618 (2-isopropyl-4-dimethylamino-5-methylphenyl-1-piperidinecarboxylate methyl chloride), chlorocholine chloride, and tetcyclasis had little effect on younger segments but inhibited growth of older segments. The older corollas have apparently synthesized and accumulated enough GA-like substances to become less responsive to additional applied GA3. The amount of growth induced by applied or endogenous GA depended on the amount of ethylene simultaneously produced in the tissue. The younger corollas rapidly produced ethylene from endogenous 1-aminocyclopropane-1-carboxylic acid (ACC) and did not respond to applied ACC whereas the older corollas naturally produced much less ethylene and were significantly (p < 0.05) inhibited by applied ACC. When ethylene production was inhibited by applying aminoethoxyvinylglycine (AVG), growth was promoted in all segments. However, only the growth of the younger segments was further stimulated by simultaneously applied AVG and GA3 over the GA3 control. Thus the differential responses of segments from 15- to 20-mm long corollas to applied growth regulators reflect developmental changes in responsiveness of the developing corolla. The change in responsiveness is attributed in part to the changes in production of endogenous growth regulators and to the effect of one endogenous plant growth regulator (PGR) on the responsiveness of the corolla to another PGR.  相似文献   

15.
P. Aducci  A. Ballio  M. Marra 《Planta》1986,167(1):129-132
Binding of fusicoccin (FC) to microsomal preparations of corn (Zea mays L.) coleoptiles is enhanced after incubation of the tissue with indole-3-acetic acid (IAA). Treatment of the kinetic data according to Scatchard shows that the enhancement is a consequence of an increase in the number of high-affinity FC-binding sites without changes of their KD. The minimal effective concentration of IAA is 10-7 M; above 10-5 M the effect declines. The stimulation is insensitive to protein-synthesis inhibitors (cycloheximide and puromycin). The same effect is observed with the synthetic auxins 2,4-dichlorophenoxyacetic acid and naphtalene-1-acetic acid while it is abolished by the auxin antagonists naphtalene-2-acetic acid and p-chlorophenoxyisobutyric acid. Since the above effect is only observed with intact tissue and not after incubation of IAA with microsomal preparations, a direct interaction of IAA with the FC-binding sites is ruled out and an alternative mechanism must be sought.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - FC fusicoccin - [3H]FC 3H-labeled dihydrofusicoccin - IAA indole-3-acetic acid - 1-NAA naphtalene-1-acetic acid - 2-NAA naphtalene-2-acetic acid - PCIB p-chlorophenoxyisobutyric acid  相似文献   

16.
Summary The plant growth retardant 2-isopropyl-4-dimethylamino-5-methylphenyl-1-piperidinecarboxylate methyl chloride (Amo-1618) and three analogs (Carvadan, XII, XIII) were tested for ability to inhibit gibberellin production in Fusarium moniliforme and to suppress stem elongation in three species of higher plants.Amo-1618 and compound XII were highly effective in suppressing GA production in Fusarium whereas Carvadan and XIII were inactive. These inactive analogs were not degraded to any appreciable extent by Fusarium cultures.All four compounds suppressed stem growth although the relative effectiveness varied with the species tested. Carvadan was most active in dwarfing Phaseolus vulgaris and Pharbitis nil; compound XII was most active in Helianthus annuus.The lack of correlation between the ability to inhibit gibberellin production in Fusarium and to cause dwarfed growth in higher plants is interpreted to indicate that enzymes involved in gibberellin biosynthesis in different organisms exhibit certain variations which make them more or less sensitive to inhibitors such as the four growth retardants tested.  相似文献   

17.
When gibberellic acid (GA3; 5-35 micrograms per milliliter) is sprayed on 9-day-old light-grown dwarf Progress pea (Pisum sativum) seedlings, it causes a marked increase in the activity of arginine decarboxylase (ADC; EC 4.1.1.9) in the fourth internodes. The titer of putrescine and spermidine, polyamines produced indirectly as a result of ADC action, also rises markedly, paralleling the effect of GA3 on internode growth. Ammonium (5-hydroxycarvacryl) trimethyl chloride piperidine carboxylate (AMO-1618; 100-200 micrograms per milliliter) causes changes in the reverse direction for enzyme activity, polyamine content, and growth. GA3 also reverses the red-light-induced inhibition of ADC activity in etiolated Alaska pea epicotyls; this is additional evidence for gibberellin-light interaction in the control of polyamine biosynthesis. The enzyme ornithine decarboxylase (ODC; EC 4.1.1.17), an alternate source of putrescine arising from arginine, is not increased by GA3 or by AMO-1618.  相似文献   

18.
Abstract

The influence of the growth retarding chemical « AMO-1618 » on the growth and alkaloid content in DATURA STRAMONIUM L. — AMO-1618 (4-hydroxy-5-isopropyl-2-methylphenyl trimethylammonium chloride, 1-piperidine carboxylate) in concentration of 100 and 500 p.p.m. was applied as an aqueous spray, every day for a fortnight period, to the leaves and tops of Datura stramonium L.

The treated plants showed a reduction in growth only at the beginning, they looked, however, expecially the ones receiving the treatment with the highest concentration of the compound, more compact, sturdier and with leaves darker green and more thickened than the control. The plants were harvested four weeks following treatment. Fresh and dry weight data of leaves and roots indicated no significant change in stramonium plants treated with 100 p.p.m., while the ones treated with 500 p.p.m. showed an appreciable increase in leaves weights accompanied by a decrease in roots weights.

No significant difference, between treated and untreated plants, was observed in the concentration of total alkaloids in the leaves and in the roots.  相似文献   

19.
The germination of Amaranthus paniculatus seeds was inhibited by applying paclobutrazol, a specific inhibitor of gibberellin biosynthesis. This inhibition was markedly counteracted by gibberellin A3 (GA3), suggesting that endogenous gibberellins are required for germination in this species. The inhibitory effect of paclobutrazol was also overcome by ethephon (2-chloroethylphosphonic acid) or the precursor of ethylene biosynthesis, ACC (1-aminocyclopropane-l-carboxylic acid). Thus the physiological effect of gibberellin can be mimicked by ethylene released from ethephon or synthesised from exogenous ACC. It is suggested, that endogenous gibberellins are involved in germination of Amaranthus paniculatus seeds and that action of GA3 can be substituted by ethylene.Abbreviations ACC 1-aminocyclopropane-l-carboxylic acid - AMO-1618 (2-isopropyl-5methyl-4-trimethylammoniumchloride)-phenyl-l-piperidinium-carboxylate - ancymidol -cyclopropyl--(4-methoxyphenyl)-5-pyrimidine methanol - chloromequat chloride (2-chloroethyl)trimethylammoniumchloride - ethephon 2-chloroethylphosphonic acid - GA gibberellin A3 - paclobutrazol (2RS, 3RS)-1-(4-chlorophenyl)-4,4-dimethyl-2-(1,2,4-triazol-lyl)pentan-3-ol - Phosphon D 2,4,dichlorobenzyl-tributhylphosphoniumchloride - tetcyclacis 5,(4-chlorophenyl)-3,4,5,9,10-pentaaza-tetracyclo)5,4,1,0,Z,6,08,11 dodeca-3,9-diene  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号