首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
Abstract. The expression of Ki-67 in tumour cells induced to apoptosis by tumour-necrosis-factor α (TNFα) and interferon γ (IFNγ) was studied. Ki-67 is known as a proliferation marker which is expressed in cycling cells, but not in resting quiescent or Go cells. In numerous studies, the proportion of tumours expressing Ki-67 was determined and related to tumour grade or prognosis. A high percentage of Ki-67 expressing cells and a low apoptotic index were regarded as an indication of a progressive tumour. This implied that Ki-67 expression and apoptosis were contrary traits. In this study, the level of Ki-67 expression in human tumour cells in culture was measured after induction of apoptosis. The Ki-67 level was determined by flow cytometry and apoptosis was measured by various methods including PARP degradation (western blot) in detached and floating cells. While the floating cells were all apoptotic, more than 80% of the attached cells showed no apoptotic signs. The Ki-67 level of apoptotic cells was elevated about 3-fold compared to viable attached control cells. However, the cytokine-treated attached cells also expressed Ki-67 at similar high levels to the apoptotic floating cells, depending on sensitivity. The plot of Ki-67 level vs. remaining cells after treatment revealed a strong correlation between the level of Ki-67 expression and the sensitivity to cytokine-induced apoptosis. This implies that proliferation pathways and apoptotic signal transduction are connected.  相似文献   

2.
d-galactose (GAL) causes aging-related changes and oxidative stress in the organism. We investigated the effect of carnosine (CAR) or taurine (TAU), having antioxidant effects, on hepatic injury and oxidative stress in GAL-treated rats. Rats received GAL (300 mg/kg; s.c.; 5 days/week) alone or together with CAR (250 mg/kg/daily; i.p.; 5 days/week) or TAU (2.5 % w/w; in rat chow) for 2 months. Serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities and hepatic malondialdehyde (MDA), protein carbonyl (PC) and glutathione (GSH) levels and superoxide dismutase (SOD), glutathione peroxidase (GSH-0050x), and glutathione transferase (GST) activities were determined. Hepatic expressions of B cell lymphoma-2 (Bcl-2), Bax and Ki-67 were evaluated. Serum ALT, AST, hepatic MDA, and PC levels were observed to increase in GAL-treated rats. Hepatic Bax expression, but not Bcl-2, increased, Ki-67 expression decreased. GAL treatment caused decreases in GSH levels, SOD and GSH-Px activities in the liver. Hepatic mRNA expressions of SOD, but not GSH-Px, also diminished. CAR or TAU treatments caused significant decreases in serum ALT and AST activities. These treatments decreased apoptosis and increased proliferation and ameliorated histopathological findings in the livers of GAL-treated rats. Both CAR and TAU reduced MDA and PC levels and elevated GSH levels, SOD and GSH-Px (non significant in TAU?+?GAL group) activities. These treatments did not alter hepatic mRNA expressions of SOD and GSH-Px enzymes. Our results indicate that CAR and TAU restored liver prooxidant status together with histopathological amelioration in GAL-induced liver damage.  相似文献   

3.
The phosphatidylinositol 3-kinase (PI3K) pathway is one of the critical signaling cascades playing important roles in the chemoresistance of human cancer cells, including ovarian cancer. In this study, we investigated the potential of targeting the PI3K p110β-isoform as a novel approach to overcome the chemoresistance in ovarian cancer. The effects on apoptosis, cell viability, proliferation and migration in chemoresistant ovarian cancer cell were determined following targeted p110β inhibition by small interfering RNA (siRNA). Seven paclitaxel (PTX)-resistant sublines (SKpacs and A2780pac) were produced from SKOV3 and A2780 ovarian cancer cell lines. We, first, evaluated the expression of PI3K p110 isoforms in chemosensitive and chemoresistant ovarian cancer cell lines and patient specimens, and found that p110β-isoform was significantly overexpressed both in a panel of ovarian cancer samples, and in PTX-resistant sublines compared with their parent cell lines. RNA interference-mediated p110β silencing augmented PTX-mediated apoptosis (31.15 ± 13.88 %) and reduced cell viability (67 %) in PTX-resistant cells, whereas targeting p110α did not show a significant change in cell viability and apoptosis. In addition, p110β silencing impaired cell proliferation (60 %) in PTX-resistant SKpac cells. We also found the combined treatment group with p110β siRNA and PTX showed a significant inhibition of tumor growth of SKpac cells compared to the PTX-only treated group in a xenograft nude mouse model. Thus, the siRNA-mediated silencing of PI3K p110β resensitizes PTX-resistant ovarian cancer cells, and may be a useful therapeutic strategy for PTX-resistant ovarian cancers.  相似文献   

4.
Transitional cell carcinoma (TCC) of the urinary bladder is the most common cancer of the urinary tract. Most of the TCC cases are of the superficial type and are treated with transurethral resection (TUR). However, the recurrence rate is high and the current treatments have the drawback of inducing strong systemic toxicity or cause painful cystitis. Therefore, it would be of therapeutic value to develop novel concepts and identify novel drugs for the treatment of bladder cancer. Ki-67 is a large nucleolar phosphoprotein whose expression is tightly linked to cell proliferation, and curcumin, a phytochemical derived from the rhizome Curcuma longa, has been shown to possess powerful anticancer properties. In this study, we evaluated the combined efficacy of curcumin and a siRNA against Ki-67 mRNA (Ki-67-7) in rat (AY-27) and human (T-24) bladder cancer cells. The anticancer effects were assessed by the determination of cell viability, apoptosis and cell cycle analysis. Ki-67-7 (10 nM) and curcumin (10 µM), when treated independently, were moderately effective. However, in their combined presence, proliferation of bladder cancer cells was profoundly (>85%) inhibited; the rate of apoptosis in the combined presence of curcumin and Ki-67-7 (36%) was greater than that due to Ki-67-7 (14%) or curcumin (13%) alone. A similar synergy between curcumin and Ki-67-7 in inducing cell cycle arrest was also observed. Western blot analysis suggested that pretreatment with Ki-67-7 sensitized bladder cancer cells to curcumin-mediated apoptosis and cell cycle arrest by p53- and p21-independent mechanisms. These data suggest that a combination of anti-Ki-67 siRNA and curcumin could be a viable treatment against the proliferation of bladder cancer cells.  相似文献   

5.
Apoptosis and proliferation are the common and essential events of reproductive function and development in the ovary, especially during follicular growth and atresia or luteal regression. Therefore, this study was set to investigate the influence of ghrelin treatment on apoptosis and proliferation specific indices in the rat ovary. Twenty-eight adult female Wistar rats were randomly allocated into control and treatment groups. Treatment group (n = 14) received 3 nmol of ghrelin as subcutaneous injection for 14 consecutive days or vehicle (normal saline) to the control rats. The animals from each group were equally sacrificed on days 9 and 14 after onset of ghrelin treatment and their ovaries were taken for immunohistochemical evaluation and caspase-3 assay. Accumulation of apoptosis-associated peptide Bax was significantly reduced following ghrelin treatment particularly in granulosa and luteal cells on day 14 (P < 0.01). In contrast, immunoreactivity against anti-apoptotic protein Bcl-2 was significantly elevated in ghrelin-exposed animals in granulosa, theca and luteal cells (P < 0.05). However, ghrelin administration was not able to change caspase-3 activity prominently, so that the means of enzyme activity were not statistically significant between groups (P > 0.05). Moreover, significant up-regulation of proliferation-associated peptide PCNA was also seen in the granulosa, theca and luteal cells of ghrelin-treated rats by day 14 (P < 0.05), but not on day 9. These findings indicate the first evidence of ghrelin involvement in the control of key gonadal functions, apoptosis and proliferation in the rat ovary, which is mainly mediated through decrease in Bax/Bcl-2 ratio consistent with upstream of PCNA level, however not depends on the reduction of caspase-3 activation. This may have potential implications that ghrelin can be considered as an apoptotic modulator of some ovarian disorders.  相似文献   

6.
The p53 protein is an important factor of many intra- and extracellular processes. This protein regulates the repair of cellular DNA and induces apoptosis. It is also responsible for the regulation of the senescence and the cell entering the subsequent stages of the cellular cycle. The protein p53 is also involved in inhibiting angiogenesis and the induction of oxidative shock. In our study, we examined the activity of p53 protein in the uterine epithelial cells in rats treated with cladribine. Its action is mainly based on apoptosis induction. We compared the activity of p53 protein in cells with a high apoptosis index and in cells with active repair mechanisms and high proliferation index. We observed stronger p53 protein expression in the epithelial cells of the materials taken 24 h after the last dose of 2-CdA associated with the active process of apoptosis and inhibition of proliferation. After 4 weeks from the last dose of cladribine, the stronger expression of p53 protein was associated with both the existing changes in the cell's genome, the effects of the ongoing repair mechanisms, as well as the high proliferation activity.  相似文献   

7.
Some anticonvulsant drugs are associated with cognitive ability in patients; Topiramate (TPM) is well known as an effective anticonvulsant agent applied in clinical settings. However, the effect of TPM on the cognitive function is rarely studied. In this study, we aimed to observe the effects of TPM on cell proliferation and neuronal differentiation in the dentate gyrus (DG) of the d-galactose-induced aging mice by Ki-67 and doublecortin (DCX) immunohistochemistry. The study is divided into four groups including control, d-galactose-treated group, 25 and 50 mg/kg TPM-treated plus d-galactose-treated groups. We found, 50 mg/kg (not 25 mg/kg) TPM treatment significantly increased the numbers of Ki-67+ cells and DCX immunoreactivity, and improved neuroblast injury induced by d-galactose treatment. In addition, we also found that decreased immunoreactivities and protein levels of antioxidants including superoxide dismutase and catalase induced by d-galactose treatment were significantly recovered by 50 mg/kg TPM treatment in the mice hippocampal DG (P < 0.05). In conclusion, our present results indicate that TPM can ameliorate neuroblast damage and promote cell proliferation and neuroblast differentiation in the hippocampal DG via increasing SODs and catalase levels in the d-galactose mice.  相似文献   

8.
Colon cancer remains one of the major worldwide causes of cancer-related morbidity and mortality in Western countries and is increasingly common in Asia. Ellagic acid (EA), a major component of polyphenol possesses attractive remedial features. The aim of this study is to divulge the potential effect of EA during 1,2-dimethyl hydrazine (DMH)-induced colon cancer in male Wistar albino rats. The rats were segregated into four groups: group I, control rats; group II, rats received EA (60 mg/kg b.wt./day, orally); rats in group III, induced with DMH (20 mg/kg b.wt.) subcutaneously for 15 weeks; DMH-induced group IV rats were initiated with EA treatment. Colon of the rats treated with DMH exhibited higher glycoconjugates and proliferation index such as elevated expressions of argyrophilic nucleolar organizing regions (AgNORs), proliferating cell nuclear antigen (PCNA), cyclin D1, matrix metalloproteins (MMP-2 and -9), and mast cells. DMH induction also increased phase I-metabolizing enzymes with simultaneous decrease in the phase II detoxifying enzymes. In contrast, dietary administration of EA significantly (p < 0.05) down regulated the proliferation index and restored back the levels of biotransformation enzymes. The carcinogenic insult also altered the expression of pro-apoptotic protein p53, whereas dietary EA administration significantly (p < 0.01) up regulates p53 expression to further induce apoptotic pathway. Ultrastructural changes in colon were also in accord with the above aberrations. Overall findings suggested that the suppression of colon cancer by EA in vivo involves inhibition of cell proliferation, activation of apoptosis, and efficient detoxification.  相似文献   

9.
Apripiprazole (APZ) is well known as an atypical antipsychotic and antidepressant. In the present study, we investigated effects of APZ on cell proliferation and neuronal differentiation in the dentate gyrus (DG) of the adolescent mouse using BruU, Ki-67 and doublecortin (DCX) immunohistochemistry. BruU, Ki-67 and DCX-positive (+) cells were easily detected in the subgranular zone of the DG in the vehicle- and APZ-treated group. We found that in the 8 mg/kg APZ-treated group numbers of Ki-67+, DCX+ and BrdU+/DCX+ cells were significantly increased compared with those in the vehicle-treated group. We also found that maturation and complexity of DCX+ dendrites in the 8 mg/kg APZ-treated group was well improved compared with those in the vehicle-treated group. In addition, markedly decreased lipid peroxidation and increased superoxide dismutase 2 (SOD2) level were observed in the DG of the 8 mg/kg APZ-treated group. Our present findings indicate that APZ can enhance cell proliferation and neuroblast differentiation, particularly maturation and complexity of neuroblast dendrites, in the DG via decreasing lipid peroxidation and increasing SOD2 level.  相似文献   

10.
Despite critical roles of the ovarian surface epithelium (OSE) in ovulation and post-ovulatory wound repair, little is known about the physiological mechanism regulating OSE proliferation. A role of follicles and corpora lutea in locally regulating the proliferative activity of OSE has been suggested. In this study, the effects of follicular and luteal products on proliferation of cultured OSE cells were tested using cells obtained from seasonally anoestrous ewes. Follicular fluid but not luteal extracts induced OSE cell proliferation (2.5-fold relative to untreated controls; P < 0.0001). The response of OSE cells was not affected by follicle size or previous charcoal-extraction of follicular fluid (P > 0.1). Treatment with IGF-1 (2.2-fold; P < 0.01), EGF (1.9-fold; P < 0.01) and, to a lesser extent, FSH (P < 0.05) also induced OSE cell proliferation. In contrast, oestradiol or progesterone did not induce cell proliferation or enhance the effects of FSH on proliferation (P > 0.1). It was concluded that follicular fluid can directly stimulate ovine OSE cell proliferation and that this effect is attributable to non-steroidal mitogens.  相似文献   

11.
Ski-interacting protein (SKIP) is a nuclear hormone receptor-interacting cofactor, interactions with the proto-oncogene Ski, appears to modulate a number of signalling pathways involved in control of cell proliferation and differentiation, and may play a critical role in oncogenesis. In the present study, to investigate the potential roles of SKIP in breast cancer, expression patterns, interaction and the correlation with clinical/prognostic factors of SKIP and Ki-67 were examined among patients with breast cancer. Immunohistochemistry and Western blot analysis were performed for SKIP in 85 breast carcinoma samples. The data were correlated with clinicopathological features. The univariate and multivariate survival analyses were also performed to determine their prognostic significance. We found that SKIP was over expressed in breast carcinoma as compared with the adjacent normal tissues. High expression of SKIP was positively associated with histological grade (P = 0.01) and Ki-67 (P = 0.004). Univariate analysis showed that SKIP expression was associated with a poor prognosis (P = 0.006). While in vitro, following release of breast cancer cell lines from serum starvation, the expression of SKIP was up-regulated, whereas p27 was down-regulated. In addition, we employed small interfering RNA (siRNA) technique to knock down SKIP expression and observed it effects on MDA-MB-231 cells growth. SKIP depletion by siRNA inhibited cell proliferation, blocked S phase and decreased cyclin A and cyclin B levels. On the basis of these results, we suggested that SKIP overexpression was involved in the pathogenesis of breast cancer, which might serve as a future target for breast cancer.  相似文献   

12.
13.
Cardiac hypertrophy leading to eventual heart failure is the most common cause of mortality throughout the world. The triggering mechanisms for cardiac hypertrophy are not clear but both apoptosis and cell proliferation have been reported in sections of failing hearts. In this study, we utilized both angiotensin II (AngII) treatment of cardiomyocytes and aortic ligation in rats (Rattus norvegicus, Wistar strain) for induction of hypertrophy to understand the cellular factors responsible for activation of apoptotic or anti-apoptotic pathway. Hypertrophy markers (ANF, β-MHC), apoptotic proteins (Bax, Bad, Fas, p53, caspase-3, PARP), and anti-apoptotic or cell proliferation marker proteins (Bcl2, NF-κB, Ki-67) were induced significantly during hypertrophy, both in vitro as well as in vivo. Co-localization of both active caspase-3 and Ki-67 was observed in hypertrophied myocytes. p53 and NF-κBp65 binding to co-activator p300 was also increased in AngII treated myocytes. Inhibition of p53 resulted in downregulation of apoptosis, NF-κB activation, and NF-κB-p300 binding; however, NF-κB inhibition did not inhibit apoptosis or p53-p300 binding. Blocking of either p53 or NF-κB by specific inhibitors resulted in decrease in cell proliferation and hypertrophy markers, suggesting that p53 initially binds to p300 and then this complex recruits NF-κB. Thus, these results indicate the crucial role of p53 in regulating both apoptotic and cell proliferation during hypertrophy.  相似文献   

14.
《Reproductive biology》2020,20(1):33-36
The objective of our study was to examine the direct effects of the medicinal plant Tribulus terrestris L. (puncturevine) on the basic functions of ovarian cells, including their proliferation, apoptosis, and response to the physiological hormonal stimulator ghrelin. In the first series of experiments, porcine ovarian granulosa cells were cultured with or without puncturevine extracts at concentrations of 0, 1, 10, or 100 μg/ml. In the second series of experiments, these cells were cultured with ghrelin at concentrations of 0, 1, 10, or 100 ng/ml, either alone or in combination with puncturevine (10 μg/ml). The expression levels of the proliferation marker PCNA and the apoptosis marker bax were analyzed via quantitative immunocytochemical methods. Puncturevine was found to stimulate the accumulation of both proliferation and apoptotic markers. Additionally, ghrelin alone could promote the proliferation and apoptosis of ovarian cells. The presence of puncturevine reversed ghrelin-stimulated apoptosis and instead induced apoptotic inhibition. However, puncturevine did not modify the proliferation-inducing effect of ghrelin. These observations demonstrated that (1) puncturevine directly promotes cell proliferation and apoptosis, turnover, of ovarian cells; (2) ghrelin is involved in the regulation of ovarian cell apoptosis and proliferation, consistent with existing evidence; (3) puncturevine antagonizes and even reverses the effects of the hormonal regulator, ghrelin, on ovarian cell apoptosis, but not proliferation; and (4) puncturevine affects not only the basic functions of ovarian cells but also their responses to upstream hormonal regulators.  相似文献   

15.
Radiotherapy is a major factor contributing to female infertility by inducing premature ovarian failure (POF). Therefore, the need for an effective radioprotective agent is evident. The present study investigated the mechanism of potential radioprotective effect of sodium selenite on radiation-induced ovarian failure and whether sodium selenite can stimulate in-vivo follicular development in experimental rats. Immature female Sprague-Dawely rats were either exposed to gamma-radiation (3.2 Gy, LD20), once and/or treated with sodium selenite (0.5 mg/kg), once daily for one week before irradiation. Follicular and oocyte development, apoptotic markers, proliferation marker as well as oxidative stress markers were assessed 24-h after irradiation. In addition, fertility assessment was performed after female rats became completely mature at two months of age. Sodium selenite significantly enhanced follicular development as compared to the irradiated group. Sodium selenite significantly reversed the oxidative stress effects of radiation that was evidenced by increasing in lipid peroxide level and decreasing in glutathione level, and glutathione peroxidase (GPx) activity. Assessment of apoptosis and cell proliferation markers revealed that caspase 3 and cytochrome c expressions markedly-increased, whereas, PCNA expression markedly-decreased in the irradiated group; in contrast, sodium selenite treatment prevented these alterations. Histopathological examination further confirmed the radioprotective efficacy of sodium selenite and its in-vivo effect on ovarian follicles’ maturation. In conclusion, sodium selenite showed a radioprotective effect and improved folliculogenesis through increasing ovarian granulosa cells proliferation, estradiol and FSH secretion, and GPx activity, whilst decreasing lipid peroxidation and oxidative stress, leading to inhibition of the apoptosis pathway through decreasing the expressions of caspase 3 and cytochrome c.  相似文献   

16.
Icariin is the major active ingredient in Herba epimedii which is a commonly used Chinese herbal medicine for the treatment of osteoporosis. The present study aims to evaluate the osteoprotective effect of Icariin in glucocorticoid-induced osteoporosis in vivo and investigate the effect of Icariin on glucocorticoid-induced osteocyte apoptosis in vitro. A total of 48 female Sprague–Dawley rats were used. Glucocorticoid-induced osteoporosis was induced by daily injections of dexamethasone (0.1 mg/kg, daily, s.c.) for 60 days, whereas sham animals were injected daily with vehicle. At the end of the osteoporosis development period, osteoporotic rats were randomized to receive: vehicle (n = 8), Icariin (5,125 mg/kg, i.g.; n = 8), or alendronate (0.03 mg/kg, s.c.; n = 8) for 12 weeks. Sham animals were treated with vehicle for 12 weeks. At the beginning and at the end of treatments, animals were examined for bone mineral density. Serum bone-alkaline phosphatase and carboxy-terminal collagen cross links were measured. Primary osteocytes were isolated, and apoptosis was determined by trypan-blue assay. Interaction between Icariin and estrogen receptor and prosurvival signaling pathways activated by Icariin were also investigated. Icariin showed a comparable efficacy with alendronate in increasing bone mass. Icariin significantly increased bone-alkaline phosphatase (bone formation marker) and reduced carboxy-terminal collagen cross links (bone resorption marker). In vitro studies demonstrated that Icariin significantly prevented GC-induced apoptosis in osteocytes by activating ERK signaling via estrogen receptor. Our results suggest that Icariin might exert osteoprotective effect by maintaining osteocyte viability, thereby, regulating bone remodeling. Furthermore, our study provides preclinical evidence for the efficacy of Icariin for management of Glucocorticoid-induced osteoporosis.  相似文献   

17.
MT1-MMP and TIMP-2 are well known for their roles in remodelling of extracellular matrix components. However, reports are emerging on the involvement of these molecules in cell kinetics. In the rat incisor tooth, a shortening treatment increases the eruption and cell proliferation rates. However, the role of MT1-MMP and TIMP-2 proteins in these processes is still to be evaluated. Male Wistar rats were divided in two groups. In the normofunctional group (NF) the lower teeth of the rats remained in a normal eruption process. In the hypofunctional group (HP) rats their lower left incisor tooth was shortened every 2 days during 12 days. The eruption rate was estimated during the shortening period and MT1-MMP, TIMP-2 and Ki-67 protein expression from the odontogenic region was measured after the treatment. In HP groups an increase in eruption rate, and in MT1-MMP/TIMP-2 and Ki-67 expression were observed. We conclude that there is a relationship between the increase in eruption rate, and in levels of MT1-MMP, TIMP-2 and Ki-67 in the HP group. This suggests that MT1-MMP and TIMP-2 may have some role in cell proliferation during the eruption of the rat incisor tooth.  相似文献   

18.
Survivin, as an anti-apoptotic protein and a cell cycle regulator, is recently gaining importance for its regenerative potential in salvaging injured hypoxic cells of vital organs such as heart. Different strategies are being employed to upregulate survivin expression in dying hypoxic cardiomyocytes. We investigated the cardioprotective potential of a cell permeable survivin mutant protein SurR9C84A, for the management of hypoxia mediated cardiomyocyte apoptosis, in a novel and clinically relevant model employing primary human cardiomyocytes (HCM). The aim of this research work was to study the efficacy and mechanism of SurR9C84A facilitated cardioprotection and regeneration in hypoxic HCM. To mimic hypoxic microenvironment in vitro, well characterized HCM were treated with 100 µm (48 h) cobalt chloride to induce hypoxia. Hypoxia induced (HI) HCM were further treated with SurR9C84A (1 µg/mL) in order to analyse its cardioprotective efficacy. Confocal microscopy showed rapid internalization of SurR9C84A and scanning electron microscopy revealed the reinstatement of cytoskeleton projections in HI HCM. SurR9C84A treatment increased cell viability, reduced cell death via, apoptosis (Annexin-V assay), and downregulated free cardiac troponin T and MMP-9 expression. SurR9C84A also upregulated the expression of proliferation markers (PCNA and Ki-67) and downregulated mitochondrial depolarization and ROS levels thereby, impeding cell death. Human Apoptosis Array further revealed that SurR9C84A downregulated expression of pro-apoptotic markers and augmented expression of HSPs and HTRA2/Omi. SurR9C84A treatment led to enhanced levels of survivin, VEGF, PI3K and pAkt. SurR9C84A proved non-toxic to normoxic HCM, as validated through unaltered cell proliferation and other marker levels. Its pre-treatment exhibited lesser susceptibility to hypoxia/damage. SurR9C84A holds a promising clinical potential for human cardiomyocyte survival and proliferation following hypoxic injury.  相似文献   

19.
Zheng JN  Ma TX  Cao JY  Sun XQ  Chen JC  Li W  Wen RM  Sun YF  Pei DS 《Life sciences》2006,78(7):724-729
To investigate the effect of small-interfering RNA (siRNA) targeted against Ki-67, which is an attractive molecular target for cancer therapy, on inhibiting Ki-67 expression and cell proliferation in human renal carcinoma cells (HRCCs), siRNAs were used to inhibit the expression of Ki-67 in HRCCs. Ki-67 mRNA levels were detected by RT-PCR and in situ hybridization analysis. Ki-67 protein levels were detected by Western blot and immunocytochemistry analysis. TUNEL assay was used to measure the apoptosis of carcinoma cells. Results of RT-PCR and in situ hybridization demonstrated reduction of Ki-67 mRNA expression in Ki-67 siRNAs treated 786-0 cells. Similar reduction in Ki-67 protein measured by Western blot and immunocytochemistry was observed in cells transfected with Ki-67 siRNA. Ki-67-siRNA treatment of HRCCs resulted in specific inhibition of proliferation and increased apoptotic cell death. From these findings we conclude that inhibition of Ki-67 expression by siRNA may be a reasonable approach in renal cancer therapy.  相似文献   

20.
The impact of physical activity on carcinogenesis has been demonstrated in many studies. Taking into account the discrepant results of physical exercise on the cell proliferation and apoptosis of breast cancer, we aimed to examine the impact of physical training on N-methyl-N-nitrosourea-(MNU)-induced mammary carcinogenesis. Fifty female rats were divided into four groups according to the intensity of physical activity they undertook. The number of developed tumors, tumor volume, and histopathological diagnoses were noted. Apoptosis and cell proliferation were studied by the number of TUNEL-positive and Ki-67-expressing cells. We demonstrated a statistically significant decrease in the tumor number between all trained groups and the control group. The results were most pronounced in the group with a moderate intensity of training. Moreover, we showed a decrease in tumor volume as training intensity increased, though the differences were not statistically significant. The mean number of TUNEL-positive cancer cells was significantly higher in the training groups than in the control group. These data suggest that physical training, especially of moderate intensity, may alleviate MNU-induced mammary carcinogenesis. The results could suggest that physical exercise-induced apoptosis may be a protective mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号