共查询到20条相似文献,搜索用时 9 毫秒
1.
Plastids are found across the tree of life in a tremendous diversity of life forms. Surprisingly they are not limited to photosynthetic organisms but also found in numerous predators and parasites. An important reason for the pervasiveness of plastids has been their ability to move laterally and to jump from one branch of the tree of life to the next through secondary endosymbiosis. Eukaryotic algae have entered endosymbiotic relationships with other eukaryotes on multiple independent occasions. The descendants of these endosymbiotic events now carry complex plastids, organelles that are bound by three or even four membranes. As in all endosymbiotic organelles most of the symbiont's genes have been transferred to the host and their protein products have to be imported into the organelle. As four membranes might suggest, this is a complex process. The emerging mechanisms display a series of translocons that mirror the divergent ancestry of the membranes they cross. This review is written from the viewpoint of a parasite biologist and seeks to provide a brief overview of plastid evolution in particular for readers not already familiar with plant and algal biology and then focuses on recent molecular discoveries using genetically tractable Apicomplexa and diatoms. 相似文献
2.
3.
4.
The photosynthetic chloroplast is the hallmark organelle of green plants. During the endosymbiotic evolution of chloroplasts, the vast majority of genes from the original cyanobacterial endosymbiont were transferred to the host cell nucleus. Chloroplast biogenesis therefore requires the import of nucleus-encoded proteins from their site of synthesis in the cytosol. The majority of proteins are imported by the activity of Toc and Tic complexes located within the chloroplast envelope. In addition to chloroplasts, plants have evolved additional, non-photosynthetic plastid types that are essential components of all cells. Recent studies indicate that the biogenesis of various plastid types relies on distinct but homologous Toc-Tic import pathways that have specialized in the import of specific classes of substrates. These different import pathways appear to be necessary to balance the essential physiological role of plastids in cellular metabolism with the demands of cellular differentiation and plant development. 相似文献
5.
Plastids of diatoms and other chromophytic algae have four surrounding membranes. In contrast to plastids of green algae, higher plants and red algae chromophytic cells are thought to have evolved by secondary endocytobiosis, i.e. by uptake of a eukaryotic photosynthetic organism by a eukaryotic host cell. This review gives a brief summary of the current views about the origin of diatom plastids and discusses possible mechanisms the cells might employ to transport nucleus-encoded plastid proteins into these organelles. 相似文献
6.
In vivo import of plastocyanin and a fusion protein into developmentally different plastids of transgenic plants 总被引:7,自引:2,他引:7 下载免费PDF全文
de Boer D Cremers F Teertstra R Smits L Hille J Smeekens S Weisbeek P 《The EMBO journal》1988,7(9):2631-2635
Transgenic tomato plants that constitutively express a foreign plastocyanin gene were used to study protein transport in different tissues. Normally expression of endogenous plastocyanin genes in plants is restricted to photosynthetic tissues only, whereas this foreign plastocyanin protein is found to be present in all tissues examined. The protein is transported into the local plastids in these tissues and it is processed to the mature size. We conclude that plastids of developmentally different tissues are capable of importing precursor proteins that are normally not found in these tissues. Most likely such plastids, though functionally and morphologically differentiated, have similar or identical protein import mechanisms when compared to the chloroplasts in green tissue. 相似文献
7.
Mitochondrial protein import: two membranes,three translocases 总被引:8,自引:0,他引:8
Most mitochondrial proteins are synthesised in the cytosol and must be translocated across one or two membranes to reach their functional destination inside mitochondria. Dynamic protein complexes in the outer and inner membranes function as specific machineries that recognise the various kinds of precursor proteins and promote their translocation through protein-conducting channels. At least three major translocase complexes with a high flexibility and versatility are needed to ensure the proper import of precursor proteins into mitochondria. 相似文献
8.
The protein import translocon at the inner envelope of chloroplasts (Tic complex) is a heteroligomeric multisubunit complex. Here, we describe Tic40 from pea as a new component of this complex. Tic40 from pea is a homologue of a protein described earlier from Brassica napus as Cim/Com44 or the Toc36 subunit of the translocon at the outer envelope of chloroplasts, respectively (Wu, C., Seibert, F. S., and Ko, K. (1994) J. Biol. Chem. 269, 32264-32271; Ko, K., Budd, D., Wu, C., Seibert, F., Kourtz, L., and Ko, Z. W. (1995) J. Biol. Chem. 270, 28601-28608; Pang, P., Meathrel, K., and Ko, K. (1997) J. Biol. Chem. 272, 25623-25627). Tic40 can be covalently connected to Tic110 by the formation of a disulfide bridge under oxidizing conditions, indicating its close physical proximity to an established translocon component. The Tic40 protein is synthesized in the cytosol as a precursor with an N-terminal cleavable chloroplast targeting signal and imported into the organelle via the general import pathway. Immunoblotting and immunogold-labeling studies exclusively confine Tic40 to the chloroplastic inner envelope, in which it is anchored by a single putative transmembrane span. 相似文献
9.
Protochlorophyllide-independent import of two NADPH:Pchlide oxidoreductase proteins (PORA and PORB) from barley into isolated plastids 总被引:3,自引:1,他引:3
Clas Dahlin Henrik Aronsson Jenny Almkvist Christer Sundqvist 《Physiologia plantarum》2000,109(3):298-303
The enzyme catalysing the reduction of protochlorophyllide (Pchlide) to chlorophyllide (Chlide), NADPH:Pchlide oxidoreductase (POR; EC 1.6.99.1), is a nuclear-encoded protein that is post-translationally imported to the plastid. In barley and Arabidopsis thaliana , the reduction of Pchlide is controlled by two different PORs, PORA and PORB. To characterise the possible Pchlide dependency for the import reaction, radiolabelled precursor proteins of barley PORA and PORB (pPORA and pPORB, respectively) were used for in vitro assays with isolated plastids of barley and pea with different contents of Pchlide. To obtain plastids with different endogenous levels of Pchlide, several methods were used. Barley plants were grown in darkness or in greenhouse conditions for 6 days. Alternatively, greenhouse-grown pea plants were incubated for 4 days in darkness before plastid isolation, or chloroplasts isolated from greenhouse-grown plants were incubated with Δ -aminolevulinic acid (ALA), an early precursor in the Chl biosynthesis resulting in elevated Pchlide contents in the plastids. Both barley pPORA and pPORB were effectively imported into barley and pea chloroplasts isolated from the differentially treated plants, including those isolated from greenhouse-grown plants. The absence or presence of Pchlide did not significantly affect the import capacity of barley pPORA or pPORB. Assays performed on stroma-enriched fractions from chloroplasts and etioplasts of barley indicated that no post-import degradation of the proteins occurred in the stroma, irrespective of whether the incubation was performed in darkness or in light. 相似文献
10.
11.
70-kD heat shock-related protein is one of at least two distinct cytosolic factors stimulating protein import into mitochondria 总被引:12,自引:8,他引:12 下载免费PDF全文
《The Journal of cell biology》1988,107(6):2051-2057
We have developed an in vitro system in which the posttranslational import of Put2 (delta-pyrroline-5-carboxylate dehydrogenase), into yeast mitochondria is dependent on the addition of yeast postribosomal supernatant (PRS). When mRNA for a nuclear-encoded yeast mitochondrial matrix protein, Put2, was translated in a wheat germ cell-free system, import into posttranslationally added yeast mitochondria was negligible. However, when a yeast PRS was added, significant import was observed. The import stimulating activity of the yeast PRS was shown to consist of at least two distinct factors. One of these is the recently purified 70-kD heat shock-related protein Ssalp/Ssa2p, two proteins that are 98% homologous. The other factor is an N-ethylmaleimide- sensitive protein(s). Both factors act synergistically. 相似文献
12.
A new chloroplast protein import intermediate reveals distinct translocation machineries in the two envelope membranes: energetics and mechanistic implications 总被引:7,自引:0,他引:7 下载免费PDF全文
《The Journal of cell biology》1996,132(1):63-75
Chloroplast protein import presents a complex membrane traversal problem: precursor proteins must cross two envelope membranes to reach the stromal compartment. This work characterizes a new chloroplast protein import intermediate which has completely traversed the outer envelope membrane but has not yet reached the stroma. The existence of this intermediate demonstrates that distinct protein transport machineries are present in both envelope membranes, and that they are able to operate independently of one another under certain conditions. Energetic characterization of this pathway led to the identification of three independent energy-requiring steps: binding of the precursor to the outer envelope membrane, outer membrane transport, and inner membrane transport. Localization of the sites of energy utilization for each of these steps, as well as their respective nucleotide specificities, suggest that three different ATPases mediate chloroplast envelope transport. 相似文献
13.
Anna Stengel J. Philipp Benz Jürgen Soll Bettina B?lter 《Plant signaling & behavior》2010,5(2):105-109
Redox signals play important roles in many developmental and metabolic processes, in particular in chloroplasts and mitochondria. Furthermore, redox reactions are crucial for protein folding via the formation of inter- or intramolecular disulfide bridges. Recently, redox signals were described to be additionally involved in regulation of protein import: in mitochondria, a disulfide relay system mediates retention of cystein-rich proteins in the intermembrane space by oxidizing them. Two essential proteins, the redox-activated receptor Mia40 and the sulfhydryl oxidase Erv1 participate in this pathway. In chloroplasts, it becomes apparent that protein import is affected by redox signals on both the outer and inner envelope: at the level of the Toc complex (translocon at the outer envelope of chloroplasts), the formation/reduction of disulfide bridges between the Toc components has a strong influence on import yield. Moreover, the stromal metabolic redox state seems to be sensed by the Tic complex (translocon at the inner envelope of chloroplasts) that is able to adjust translocation efficiency of a subgroup of redox-related preproteins accordingly. This review summarizes the current knowledge of these redox-regulatory pathways and focuses on similarities and differences between chloroplasts and mitochondria.Key words: protein import, chloroplasts, mitochondria, redox-regulation, disulfide bridges, NADP(H), Toc, Tic, Tom 相似文献
14.
15.
Arabidopsis tic110 is essential for the assembly and function of the protein import machinery of plastids 下载免费PDF全文
Inaba T Alvarez-Huerta M Li M Bauer J Ewers C Kessler F Schnell DJ 《The Plant cell》2005,17(5):1482-1496
The translocon at the inner envelope membrane of chloroplasts (Tic) plays a central role in plastid biogenesis by coordinating the sorting of nucleus-encoded preproteins across the inner membrane and coordinating the interactions of preproteins with the processing and folding machineries of the stroma. Despite these activities, the precise roles of known Tic proteins in translocation, sorting, and preprotein maturation have not been defined. In this report, we examine the in vivo function of a major Tic component, Tic110. We demonstrate that Arabidopsis thaliana Tic110 (atTic110) is essential for plastid biogenesis and plant viability. The downregulation of atTic110 expression results in the reduced accumulation of a wide variety of plastid proteins. The expression of dominant negative mutants of atTic110 disrupts assembly of Tic complexes and the translocation of preproteins across the inner envelope membrane. Together, these data suggest that Tic110 plays a general role in the import of nuclear-encoded preproteins as a common component of Tic complexes. 相似文献
16.
Moore MS 《Trends in cell biology》2003,13(2):61-64
Until very recently, the vertebrate protein Npap60/Nup50 was thought merely to be a component of the nuclear pore complex (NPC). This conclusion was based on the observations that Npap60/Nup50 localizes at the NPC by immunofluorescence and electron microscopy and also contains FG (Phe-Gly) repeats, a motif commonly found in nucleoporins but not in proteins located elsewhere. However, far from being a fixed structural component of the NPC, it now appears as though Npap60 can shuttle from one side of the NPC to the other. Most significantly, a recent paper shows that Npap60 enhances the nuclear import of a cargo possessing a basic nuclear localization sequence by associating directly with the import cargo-carrier complex and (presumably) moving through the NPC with it. Several NPC proteins have now been shown to be mobile in the NPC, and this new report might indicate that these 'mobile' nucleoporins play a more active role in the nuclear transport of cargo than was previously appreciated. 相似文献
17.
Three sets of translocation intermediates are formed during the early stage of protein import into chloroplasts 总被引:3,自引:0,他引:3
During the early stage of protein import into chloroplasts, precursor proteins synthesized in the cytosol irreversibly bind to chloroplasts to form the early translocation intermediate under stringent energy conditions. Many efforts have been made to identify the components involved in protein import by analyzing the early intermediate. However, the state of the precursor within the intermediate has not been well investigated so far. In this study, an attempt was made to evaluate the extent of translocation of the precursor by determining the state of the precursor in the early intermediate under various conditions and analyzing the fragments generated by limited proteolysis of the precursors docked to chloroplasts. Our results indicate that three different sets of early intermediate are formed based on temperature and the hydrolysis of GTP/ATP. These have been identified based on the size of proteolytic fragments of the precursor as "energy-dependent association," "insertion," and "penetration" states. These findings suggest two individual ATP-hydrolyzing steps during the early stage of protein import, one of which is temperature-sensitive. Our results also demonstrate that translocation through the outer envelope membrane is mainly dependent on internal ATP. 相似文献
18.
99% of all mitochondrial proteins are synthesized in the cytosol, from where they are imported into mitochondria. In contrast to matrix proteins, many proteins of the intermembrane space (IMS) lack presequences and are imported in an oxidation-driven reaction by the mitochondrial disulfide relay. Incoming polypeptides are recognized and oxidized by the IMS-located receptor Mia40. Reoxidation of Mia40 is facilitated by the sulfhydryl oxidase Erv1 and the respiratory chain. Although structurally unrelated, the mitochondrial disulfide relay functionally resembles the Dsb (disufide bond) system of the bacterial periplasm, the compartment from which the IMS was derived 2 billion years ago. 相似文献
19.
Plasmolysis: new insights into an old process 总被引:12,自引:2,他引:10
KARL J. OPARKA 《The New phytologist》1994,126(4):571-591
20.
Protein import into plant chloroplasts is a fascinating topic that is being investigated by many research groups. Since the majority of chloroplast proteins are synthesised as precursor proteins in the cytosol, they have to be posttranslationally imported into the organelle. For this purpose, most preproteins are synthesised with an N-terminal presequence, which is both necessary and sufficient for organelle recognition and translocation initiation. The import of preproteins is facilitated by two translocation machineries in the outer and inner envelope of chloroplasts, the Toc and Tic complexes, respectively. Translocation of precursor proteins across the envelope membrane has to be highly regulated to react to the metabolic requirements of the organelle. The aim of this review is to summarise the events that take place at the translocation machineries that are known so far. In addition, we focus in particular on alternative import pathways and the aspect of regulation of protein transport at the outer and inner envelope membrane. 相似文献