首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
We investigated the fertilization and developmental ability of superovulated eggs obtained from adult Wistar-Imamichi (WI) rats, by using pregnant mare serum gonadotropin (PMSG) and human chorionic gonadotropin (hCG) treatment. Female WI rats, 11–13 weeks of age, were divided into four groups by estrous stage (metestrus [ME], diestrus [DE], proestrus [PE], or estrus [E]). PMSG (150 IU/kg) and hCG (75 IU/kg) were injected at an interval of 48 or 55 h and the female rats were mated with mature male rats. The ovulated eggs were collected 20, 24, and 27 h after hCG injection. Regardless of the estrous stage at the time of PMSG injection, the treated rats mated and ovulated similar to the untreated spontaneously ovulated rats (S group). Although the proportion of fertilized eggs in the E- and PE-treated groups was less than the S group 20 h after hCG injection, the proportion was not different among all treated and S groups 24 h after hCG injection. The proportion of fertilized eggs using in vitro fertilization and the proportion of offspring obtained from 2-cell stage embryo transfer did not differ among the treated and S groups. In comparison with PMSG/hCG-treated immature rats, mating and ovulation rate of adult rats were significantly higher. The proportion of fertilized eggs obtained from mated rats did not differ between immature and adult rats. These results demonstrate that adult WI rats are good egg donors for reproductive biotechnological studies using unfertilized or fertilized eggs.  相似文献   

2.
In most strains of rats, the effects of treatment for the induction of superovulation show major strain differences and are strongly influenced by the stage of the estrous cycle. This study demonstrated, however, that superovulation was easily induced in Wistar strain Brl Han:WIST@Jcl(GALAS) rats by PMSG and hCG administration. To confirm the effects of such treatment, we studied age differences in egg collection efficiency. After superovulation was induced by intraperitoneal administration of 150 IU/kg PMSG and 75 IU/kg hCG given 48 h apart, the mean numbers of oocytes obtained from rats at 4, 8, 12, 20 and 28 weeks of age were 38.9, 33.5, 46.1, 26.9 and 21.3, respectively. No differences caused by the estrous stage at the PMSG administration were observed. In an embryo transfer experiment, fertilized eggs obtained from superovulated rats at each week of age showed equivalent viability until full-term to those from untreated rats. These results suggest that estrous stage-independent superovulation is effective not only in the pre-pubertal stage but also in adult rats.  相似文献   

3.
The present study aims to analyze in the mouse the effect of the stage of the estrous cycle at the time of pregnant mare's serum gonadotropin (PMSG) injection on fertilization of ovulated cumulus-enclosed oocytes and later embryo development in vitro to the blastocyst stage. Quality of blastocysts was evaluated by staining and counting of total number of nuclei, mitotic index, percentage of apoptotic nuclei, and cell allocation to the inner cell mass (ICM) and trophectoderm (TE) lineage. Superovulation of hybrid (C57Bl/6JIco female x CBA/JIco male) female mice of 4-6 weeks of age was induced by a priming injection of PMSG at different stages of the estrous cycle followed after a 48-hr interval by human chrorionic gonadotropin. Our data indicate that injection of PMSG at the estrus phase gives the best outcome whereas injection of PMSG at the diestrus-1 or diestrus-2 phase provides the worst results. In fact, (1) total number of oocytes ovulated, number of ovulated oocytes enclosed by cumulus cells, and number of TE cells in day-5 blastocysts were significantly lower in diestrus-1 females than in estrus, diestrus-2 and proestrus mice; (2) percentage of day-5 blastocysts and total number of cells in day-5 blastocysts were lower in diestrus-1 and diestrus-2 females than in estrus and proestrus mice; and (3) percentage of apoptotic nuclei in day-5 blastocysts was lower in estrus mice than in diestrus-1, diestrus-2, or proestrus females. These data endorse previous studies suggesting that administration of gonadotropins in mice should be synchronized with the innate estrous cycle of females.  相似文献   

4.
Mature female Chinese hamsters ovulate an average of 8.8 ± 1.0 (mean ± SD) eggs per female in each estrous cycle. Superovulation can be induced in both immature and mature females by subcutaneous or intraperitoneal injections of pregnant mare serum gonadotropin (PMSG) and either human chorionic gonadotropin (hCG) or pituitary luteinizing hormone (PLH). The best superovulation in immature females was induced by the administration of 15 IU of PMSG followed 72 hr later by injection of 15 IU of hCG (about 25 eggs per female) or 0.2 mg (200 IU) PLH (about 46 eggs per female). Ovulation started about 13–15 hr after administration of hCG (or PLH) and was completed during the next 5–6 hr. Superovulation in mature females could be induced by injecting PMSG any day of the estrous cycle, but the best superovulation (about 39 eggs per female) was induced by injecting 15 IU of PMSG on day 1 (day of ovulation) followed by the injection of 0.4 mg of PLH 72 hr later. When immature females treated with the best superovulatory protocol were mated on the evening of PLH injection, only 5% of the eggs were found fertilized 50 hr after PLH administration. On the other hand, about 60% of the eggs were found fertilized in mature females mated following treatment with the best superovulatory protocol. The majority (83–85%) of superovulated eggs obtained from both immature and mature females were normally fertilized in vitro.  相似文献   

5.
The present study was undertaken to evaluate the effects of hyperstimulation and aging on the number and proportion of oocytes in the metaphase II stage in female Wistar rats. It explored the validity of the hypothesis that a combination of hyperstimulation with pregnant mare serum gonadotrophins (PMSG) and age could compromise, to a greater extent, the oocyte quality as indicated by the proportion of ovulated oocytes in the metaphase II stage. Female Wistar rats were stimulated with varying doses of PMSG and human chorionic gonadotrophins (hCG) and the number and proportion of ovulated oocytes in the metaphase II stage were examined and compared between different groups of young adult (8-10 weeks old) and aging (30-32 weeks old) female rats. While spontaneous ovulation occurred in all young adult rats, only 50% of the aging rats did. The ovulation rate in aging rats was increased from 50 to 93% when non-PMSG-stimulated rats were given a dose of 10 IU of hCG at proestrus. The lower number of ovulated oocytes noted, even in those hyperstimulated with high doses of PMSG/hCG, also indicated a reduction in fertility in aging rats. Under the influence of high doses of PMSG, all aging rats ovulated, but as with the young adult rats, a higher dose of hCG was needed to achieve the maximum number of ovulated oocytes from the PMSG-induced expanded pool of preovulatory follicles. However, the average number of ovulated oocytes in aging rats was, nevertheless, still significantly lower than in young adult rats even when approximation of weight was considered. No consistent significant difference in proportion of normal oocytes was noted within groups and between young adult and aging rats. A lower proportion of ovulated oocytes was arrested at the metaphase II stages when rats, whether they were young adult or aging, were hyperstimulated with 40 IU of PMSG. However, this proportion was restored to normal (about 100%) when a higher dose of hCG, which is a signal responsible for initiating oocyte maturation, was used. Results of the present study showed that there appears to be an age-related reduction of sensitivity of the preovulatory follicles to the ovulation induction signal of hCG and thus higher doses of hCG were needed to ovulate the PMSG-induced expanded pool of dominant follicles. In older rats, apart from the obvious depletion of the pool of follicles, the evidence from the present study suggests that some of these older rats do have follicles, but that these were unable to develop to preovulatory follicles, probably because of the absence of sufficiently high levels of gonadotrophins essential for the initiation of folliculogenesis. PMSG-hyperstimulation can affect nuclear maturation; the proportion of ovulated oocytes not arrested at the metaphase II stage was higher. However, the proportion of ovulated oocytes at the metaphase II was restored to normal by increasing the dose of hCG use. Hence, meiotic aberration in rats is not age-dependent but rather dependent on the amplitude of the luteinizing hormone (LH)/hCG surge present. The results from this study nullified the hypothesis that hyperstimulation in combination with aging would lead to a higher proportion of abnormality in ovulated oocytes with respect to their being at inappropriate meiotic stages.  相似文献   

6.
The aim of this study was to examine the effects of gonadotrophin treatments on estrus synchronization and superovulation in young Sprague-Dawley (SD) rats that had not yet exhibited defined estrus cycles (5 to 7 weeks old), and to produce transgenic rats using these females as embryo donors and recipients. In Experiment 1, female rats were injected with PMSG and hCG (12.5, 25, 50 and 100 IU/kg each) and were mated with stud males. The reproductive performance of young rats were highest when PMSG and hCG at doses of 25 IU/kg each were injected (delivery rate 87.5%, nursing rate 92.9%). In Experiment 2, female rats were injected with PMSG and hCG (100, 150 and 300 IU/kg each) to induce superovulation. More eggs were recovered from the rats injected with PMSG and hCG at 150 and 300 IU/kg than from those treated with 100 IU/kg (33.4 and 41.3 vs. 13.3 eggs per female, respectively; p < 0.05). In Experiment 3, pronuclear-stage zygotes from 150 IU/kg PMSG/hCG-treated rats were used for microinjection of the fusion gene of bovine alpha S1-casein gene promoter and human growth hormone gene (2.8 kb), and the microinjected zygotes were transferred into the oviduct ampullae of the 25 IU/kg PMSG/hCG-treated rats. Seventeen transgenic rats were obtained from the 334 DNA-injected zygotes (5.1%). These results indicate that recipients and embryo donors for the production of transgenic rats can be prepared by the appropriate PMSG and hCG treatments of young SD rats, regardless of their estrus stages.  相似文献   

7.
Superovulation protocols using single injections of pregnant mare's serum gonadotropin (PMSG) or minipumps with follicle-stimulating hormone (FSH) were compared in immature Sprague-Dawley (SD) rats. We used the following criteria: total number of ova, rate of fertilization, in vitro embryo development, sensitivity of zygotes to the microinjection of foreign DNA into the pronucleus, and their in-vivo development after transplantation into the oviduct of a recipient. Female SD rats were stimulated with 15 IU PMSG or 10 mg FSH followed by the injection of human chorionic gonadotropin (hCG) at doses of 20 and 30 IU per female. After hCG administration, they were mated with males of the same strain and sacrificed on day 1 of pregnancy. The percentage of mated animals and the fertilization rate was similar in all groups. In rats given PMSG, the number of ovulated zygotes was hCG dose-dependent. In contrast, the dose of hCG did not influence the efficiency of superovulation in rats given FSH, which was equal to PMSG-treated rats at the optimal dose of hCG. The rates of in vitro blastocyst development (31.4 and 23.3%) and the resistance to microinjection into the pronucleus did also not differ significantly between zygotes of both studied groups. The proportion of offspring developing from microinjected zygotes after oviduct transfer (26.2 and 26.8%, respectively) and the rate of transgene integration per newborns (7.3 and 4.9%, respectively) was similar in both experimental groups. The results of this study demonstrate that superovulation of immature SD rats by PMSG is equally effective as FSH treatment and, thus, preferable for transgenic rat technology due to the lower costs and easier handling.  相似文献   

8.
This study was undertaken (1) to devise a method of inducing multiple follicular development and subsequent ovulation in the Djungarian or Siberian hamster (Phodopus sungorus) and (2) to assess the quality of ovulated oocytes collected from PMSG/hCG treated animals in comparison to naturally ovulating animals. Hamsters (4–5 weeks; n = 70) received 5 IU PMSG followed 50–52 hr later by 10 IU hCG. Ovulated oocytes were collected 14–20 hr after hCG injection. Ovulated oocytes were flushed from oviducts of cycling animals (7–12 weeks; n = 30) exhibiting two consecutive estrous cycles. Oocytes were fixed and subjected to triple fluorescence immunostaining using anti-tubulin antibodies, fluorescein phalloidin, and Hoechst 33258. The mean number of ovulated oocytes collected from cycling animals was 4.8 ± 0.4 (range 1–7). Ovulation occurred in 73% of the PMSG/hCG-stimulated animals. The mean number of oocytes ovulated from stimulated animals was 9.2 ± 0.8 (range 0–22). The ovaries of animals that did not ovulate or that ovulated few oocytes did respond to PMSG, as indicated by the presence of multiple follicular development and pre-ovulatory stigmata. There was no evidence of a polar body in ovulated oocytes collected from PMSG/hCG-treated or cycling animals, indicating that oocytes were arrested in meiosis I. In the majority (80%) of ovulated oocytes from PMSG/hCG-treated and cycling animals, cortically placed chromosomes were aligned on a metaphase plate equidistant from a bipolar spindle. Sparse f-actin staining was observed in the region of the ooplasm surrounding the chromosomes. As the interval between hCG injection and the time of collection increased, chromosomes lost their proper alignment and migrated away from the cortex of the oocyte concomitant with a disruption of spindle integrity. This collapse of proper chromosome alignment and disruption of spindle architecture also characterized aging oocytes collected from cycling animals. These data show that in the Djungarian or Siberian hamster (Phodopus sungorus), (1) there is individual animal variation in responsiveness to hCG following PMSG treatment, (2) there are no cytological differences in the quality of oocytes collected from hormonally treated animals when compared to cycling animals, and (3) oocytes are ovulated in meiosis I. © 1995 Wiley-Liss, Inc.  相似文献   

9.
The present study aims to analyze the effect of the stage of the estrous cycle at the time of pregnant mare's serum gonadotropin (PMSG) injection on number and quality of mouse oocytes retrieved from oviducts after exogenous ovarian stimulation. Cellular and morphological traits of ovulated oocytes from hybrid (C57Bl/6JIco female X CBA/JIco male) female mice of 12, 40-42, 50-52 or 57-62 weeks of age were analyzed. Superovulation was induced by a priming injection of PMSG at different stages of the estrous cycle followed after a 48-hr interval by human chrorionic gonadotropin. Injection of PMSG at diestrus-1 was associated with: (1) increased percentage of cumulus-free oocytes; (2) raised total percentage of oocytes without polar body; (3) increased total percentage of oocytes with intracytoplasmic mitochondrial aggregates; (4) decreased percentage of oocytes with a normal distribution of chromosomes in the metaphase II plate; and (5) raised percentage of oocytes with chromosome scattering when compared to injection at estrus, diestrus-2, and proestrus stage. On the contrary, estrus females displayed the highest percentage of oocytes with a normal distribution of chromosomes in the metaphase II plate and the lowest percentage of oocytes denuded of cumulus cells, without polar body, with intracytoplasmic mitochondrial aggregates and/or with chromosome scattering. These data suggest that administration of gonadotropins in mice should be synchronized with the innate estrous cycle of females to optimize the quality of oocytes collected from oviducts.  相似文献   

10.
The involvement of androgens in the control of ovulation has been assessed by administration of the androgen antagonist, hydroxyflutamide, to prepubertal rats treated with pregnant mare's serum gonadotropin (PMSG) to induce first estrus and ovulation. Without human chorionic gonadotropin (hCG) injection, only 46% of rats that received six 5-mg, s.c. injections of hydroxyflutamide at 12-h intervals, beginning an hour before s.c. injection of 4 IU PMSG on Day-2 (Day 0 = the day of proestrus), had ovulated a mean of 1.3 +/- 0.4 oocytes per rat when killed on the morning of Day 1, whereas 92% of sesame oil-treated controls had ovulated a mean of 6.9 +/- 0.6 oocytes. After i.p. injection of hCG at 1600 h on Day 0, 92% of hydroxyflutamide-treated rats ovulated a mean of 8.3 +/- 1.2 oocytes compared to 100% of controls, which ovulated 7.3 +/- 0.4 oocytes per rat: these groups were not significantly different from each other, nor from control rats that received no hCG. Thus, exogenous hCG completely overcame the inhibitory effect of hydroxyflutamide on ovulation. Rats treated with PMSG and hydroxyflutamide without hCG were killed either on the morning of Day 0 to determine serum and ovarian steroid levels or on the afternoon of Day 0 to determine serum LH levels. Serum levels of estradiol-17 beta and testosterone in hydroxyflutamide-treated rats were significantly higher (178% and 75%, respectively; p less than 0.01) than levels observed in controls on the morning of Day 0. Ovarian concentrations of the steroids were also elevated in hydroxyflutamide-treated rats (p less than 0.01 for testosterone only).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Petr J  Míka J  Jílek F 《Theriogenology》1990,33(5):1151-1155
Superovulation was induced in 56 dairy cows to evaluate the effect of two different regimens using pregnant mare serum gonadotropin (PMSG). Thirty-two cows (controls) were superovulated between Days 9 and 12 of the estrous cycle with a single dose of PMSG (2 800 IU), while remaining 24 cows (PMSG-primed) received 200 IU of PMSG on Day 4 of the estrous cycle and subsequently a single dose of PMSG (2 800 IU) between Days 8 and 12. The cows in both treatments were each given 0,5 mg of cloprostenol at 48 h after the superovulatory PMSG treatment. They were then artifically inseminated twice, 48 h and 72 h later. Embryos were recovered at sloughter between Days 2 and 5 of the cycle and morphologically evaluated. The number of corpora lutea (CL) in the ovaries of the cows was recorded. The mean number of CL (7.2 vs 17.8) was significantly higher (P 0.01) for PMSG-primed cows. The percentage of recovered ova (60.5 vs 70.2 %) and good embryos (79.3 vs 70.7%) were not significantly different between groups. The percentage of fertilized ova (91.4 vs 83.8%) was significantly (P 0.025) greater for the controls. Results of the study indicate that PMSG-priming increased the ovulation rate in the cows superovulated with PMSG.  相似文献   

12.
Crossbred gilts and sows (n=116) were used for the collection of 1-cell zygotes for DNA microinjection and transfer. Retrospectively, estrus synchronization and superovulation schemes were evaluated to assess practicality for zygote collection. Four synchronization and superovulation procedures were used: 1) sows were observed for natural estrous behavior; 1000 IU human chorionic gonadotrophin (hCG) was administered at the onset of estrus (NAT); 2) cyclic gilts were synchronized with 17.6 mg altrenogest (ALT)/day for 15 to 19 days followed by superovulation with 1500 IU pregnant mares serum gonadotropin (PMSG) and 500 IU hCG (LALT); 3) gilts between 11 and 16 days of the estrous cycle received 17.6 mg ALT for 5 to 9 days and PMSG and hCG were used to induce superovulation (SALT); and 4) precocious ovulation was induced in prepubertal gilts with PMSG and hCG (PRE). A total of 505 DNA microinjected embryos transferred into 17 recipients produced 7 litters and 50 piglets, of which 8 were transgenic. The NAT sows had less (P < 0.05) ovarian activity than gilts synchronized and superovulated by all the other procedures. Synchronization treatments with PMSG did not differ (P > 0.05) in the number of corpora hemorrhagica or unovulated follicles, but SALT and PRE treaments had higher ovulation rates than LALT (24.7 +/- 2.9, 24.3 +/- 1.8 vs 11.6 +/- 2.7 ovulations; X +/- SEM). The SALT and PRE treatments yielded 12.3 +/- 2.6 and 17.7 +/- 1.7 zygotes. Successful transgenesis was accomplished with SALT and PRE procedures for estrus synchronization and superovulation.  相似文献   

13.
An ability of Pregnant Mare's Serum Gonadotropin (PMSG) to induce superovulation was investigated in guinea pigs with synchronized estrous cycle caused by the treatment for 21 days of progesterone tubing. On day 6 later following the removal of progesterone treatment, every animal given saline injection had synchronously ovulated. When compared with saline control, a significant increase of ova ovulated was induced by an injection of PMSG 8 hours before the removal of progesterone tubing, but not by the other PMSG treatment schedule. Present study indicates that PMSG injection given at a fixed stage of synchronized estrous cycle induced superovulation in guinea pigs treated with long-term implantation of progesterone tubing.  相似文献   

14.
Prepubertal gilts given 750 IU pregnant mares′ serum gonadotropin (PMSG) followed 72 h later by 500 IU human chorionic gonadotropin (hCG) to induce follicular growth and ovulation fail to ovulate when 10 mg/kg indomethacin (INDO) is injected 24 h after hCG administration. This study examines the effects of administration of exogenous prostaglandins F and E2 (PGF and PGE2) alone or in combination, and at various times prior to the expected time of ovulation, on the INDO blockade of ovulation in PMSG/hCG-treated gilts. Occurrence of ovulation was determined by visual observation at laparotomy 48 h after hCG. When 5 mg or 10 mg PGF was injected at each of 38, 40 and 42 h after hCG injection, 63% and 79%, respectively, of preovulatory follicles ovulated. In contrast, injection of 5 mg PGE2 or 5 mg PGE2 plus 5 mg PGF induced ovulation in 0% and 24% of preovulatory follicles, respectively. In control groups, 100% of folicles in PMSG/hCG-treated gilts ovulated whereas none did so in PMSG/hCG/INDO-treated animals. These results indicate that administration of PGF can induce ovulation in the PMSG/hCG/INDO-treated prepubertal gilt and suggest that PGE2 is ineffective and may be antagonistic to PGF in overcoming the ovulation blocking effect of INDO.  相似文献   

15.
The present study was designed to examine mechanism(s) of the anti-ovulatory action of the anti-androgen, hydroxyflutamide (OH-F). Prepubertal rats were treated with 4 IU pregnant mare's serum gonadotropin (PMSG) (day -2) to induce first estrus and ovulation. They received OH-F in sesame oil or oil alone at 08:00 and 20:00 h on day 0 (the day of proestrus) and ovulations were assessed on the morning of day 1. Eighty-three percent of control animals ovulated with a mean of 7.7 +/- 1.1 corpora lutea per rat. Hydroxyflutamide blocked ovulation in all but 2 of the 12 rats receiving this drug alone. All of OH-F treated rats that received 5 and 25 IU human chorionic gonadotropin (hCG) ovulated with means +/- SEM of 9.1 +/- 0.1 and 7.3 +/- 1.4 corpora lutea per rat, respectively. The dose of 0.2 IU hCG was essentially ineffective, while the effect of 1.0 IU hCG was intermediate. At the dose of 20 ng and above (100 and 500 ng) luteining hormone-releasing hormone (LHRH) completely overcame the ovulation blockade in the OH-F treated animals, while a 4-ng dose was ineffective. At 18:00 h on the day of proestrus, serum LH levels in control animals were 17.56 +/- 2.60 ng/mL, which were 920% above basal levels (1.90 +/- 0.13) indicating a spontaneous LH surge. This surge was suppressed in OH-F treated rats. Injection of LHRH, at the dose of 20 ng and above, reinstated the LH release in OH-F treated animals. Thus, the anti-androgen, OH-F, inhibits ovulation in PMSG-treated immature rats through its interference with the preovulatory LH surge; the inhibition can be reversed by hCG or LHRH. Hydroxyflutamide does not appear to interfere at the level of the pituitary, but may have direct action at the hypothalamic and (or) extrahypothalamic sites involved in the generation of positive feedback signals that control LH release.  相似文献   

16.
Prepuberal gilts were treated with 750 IU pregnant mare serum gonadotropin (PMSG) followed 72 h later by 500 IU human chorionic gonadotropin (hCG) to induce follicular growth and ovulation. In this model, ovulation occurred at 42 +/- 2 h post hCG treatment. When 500 mug of cloprostenol was injected at 34 and of 36 h after hCG injection, 78% of the preovulatory follicles ovulated by 38 h compared with 0% in the control gilts. In addition, plasma progesterone concentrations were significantly higher in the cloprostenol-treated group than in the control group (P<0.01) at 38 h, indicating luteinization along with premature ovulation. These results suggest that prostaglandin F(2)alpha (PGF(2)alpha) or an analog can be used to advance, synchronize or induce ovulation in gilts.  相似文献   

17.
The purpose of this work was to investigate the effects of gonadotropin on the production capacity of ovarian 13,14-dihydro-prostaglandin F2-alpha (13,14H2-PGF2 alpha) and whether or not this capacity had any relation to the process of ovulation in rat. To induce the first ovulation, immature rats were injected subcutaneously with PMSG (5 IU/rat) at 8:00 at 26 days of age and some of these rats were followed by an intraperitoneal injection of hCG (10 IU/rat) at 57 hrs after PMSG treatment. The 13,14H2-PGF2 alpha production capacity was unchanged as compared with vehicle control until 57 hrs after PMSG treatment. However, the capacity showed a striking increase at 60 hrs after PMSG treatment. A maximal increase of about 7 fold was observed at 9 hrs after hCG injection just before ovulation. The production capacity of the Graafian follicle (GF) and the part (WO-GF) of the whole ovary (WO) from which the GF is removed at 2:00 on day 29 and the capacity of early corpus luteum at 8:00 on day 29 was greater than that of GF and WO-GF at 0:00 on day 29. These results suggest that the 13,14H2-PGF2 alpha production capacity in rat ovary is regulated by gonadotropin and is closely associated with the process of ovulation.  相似文献   

18.
Genetic engineering of miniature pigs has facilitated the development of numerous biomedical applications, such as xenotransplantation and animal models for human diseases. Manipulation of the estrus is one of the essential techniques for the generation of transgenic offspring. The purpose of the present study was to establish a useful method for induction of the estrus in miniature gilts. A total of 38 pubertal miniature gilts derived from 4 different strains were treated with exogenous gonadotropins. Estrus and ovulatory response were examined after treatment with pregnant mare serum gonadotropin (PMSG) and human chorionic gonadotropin (hCG) as 200 IU PMSG and 100 IU hCG, 300 IU PMSG and 150 IU hCG, or 1,500 IU PMSG only, followed by 100, 150 or 750 IU hCG 72 h later, respectively. The optimal protocol was determined to be the combination treatment of 200 IU PMSG and 100 IU hCG followed by 100 IU hCG. The administration of 200 IU PMSG and 100 IU hCG was effective in inducing estrus regardless of the strain, although there was a strain difference in the ovulatory response. These results indicate that treatment with a low-dose combination of PMSG and hCG provides one of the simplest methods for induction of estrus and ovulation in pubertal miniature pigs.  相似文献   

19.
Summary The observation that tissue-type plasminogen activator (tPA) activity increased dramatically in preovulatory follicles has led to the hypothesis that plasminogen activation is causally related to follicle rupture. With immunohistochemistry, we have studied the appearance of tPA in ovaries of immature rats induced to ovulate and in adult cycling rats. Treatment of immature female rats with a single dose of pregnant mare serum gonadotropin (PMSG) induced follicular maturation. A subsequent human chorionic gonadotropin (hCG) injection resulted in follicle rupture 12–14 h later. PMSG treatment alone did not induce appearance of tPA-immunoreactive cells in any ovarian compartment. After hCG stimulation, however, theca cells, granulosa cells, and oocytes of pre- and postovulatory follicles displayed distinct tPA immunoreactivity. Fibroblastlike cells in the theca layers and tunica albuginea of the follicle apex also demonstrated localized cytoplasmic tPA reactivity. In addition to tPA synthesis in preovulatory follicles, hCG also induced tPA staining in the theca (but not granulosa) layers of non-ovulatory follicles. At 24 h after hCG treatment, there was a marked tPA staining in developing corpora lutea, ovulated ova, and oviductal epithelium. Ovaries from regularly cycling adult rats displayed a similar ovulation-related pattern of tPA immunostaining. The appearance of tPA in different cell types of the preovulatory follicle and in the fibroblast-like cells at the follicle apex, strengthens the hypothesis of a direct involvement of tPA in follicle rupture. Presence of tPA in postovulatory oocytes, cumulus cells, and surrounding oviductal epithelium may also indicate a role for tPA in the transfer of eggs in the oviduct.This work was supported by NIH Research Grants HD-14084; 12303  相似文献   

20.
In rats, it is now possible to produce genetically engineered strains, not only as transgenic animals but also using gene knockout techniques. Reproductive technologies have been used as indispensable tools to produce and maintain these novel valuable strains. Although studies for collecting and cryopreserving embryos have been reported using outbred rats, efficient methods have not been established in inbred strains. The F344 inbred strain is important in rat breeding and has been used for the production of transgenic/knockout strains and for genome sequencing. Here we studied the optimal conditions for oocyte collection by induction of superovulation, and the development of embryos after cryopreservation in F344 rats. The response to pregnant mare serum gonadotropin (PMSG) and human chorionic gonadotropin (hCG) was examined by injection of 150 IU/kg PMSG + 75 IU/kg hCG or 300 IU/kg PMSG + 300 IU/kg hCG. Superovulation was achieved at high efficiency by an injection of 150 IU/kg PMSG + 75 IU/kg hCG. Furthermore, superovulation in this strain showed similar high response as Wistar rats. Of 2-cell embryos cryopreserved by vitrification in a solution containing 10% propylene glycol, 30% ethylene glycol, 20% Percoll and 0.3 M sucrose, more than 90% survived after warming and 32% developed to offspring. However, the freezability of pronuclear stage embryos was extremely low. This study demonstrated that sufficient unfertilized oocytes and embryos can be collected from F344 rats by the induction of superovulation with 150 IU/kg PMSG + 75 IU/kg hCG. Furthermore, cryopreservation of 2-cell embryos using this vitrification protocol can now be applied to maintaining valuable rat strains derived from the F344 inbred strain as genetic resources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号