首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
Three types of membranes were separated from the cyanobacterium Synechocystis PCC 6714 by mechanical disruption and density gradient centrifugation. Orange-colored membranes contained xanthophylls but little -carotene or chlorophyll a, green-colored membranes contained chlorophyll a, -carotene and xanthophylls, and another type of orange-colored membranes contained unknown xanthophylls. These membrane preparations were similar to those from Anacystis nidulans in pigmentation and buoyant density and were identified as purified preparations of the cytoplasmic membranes, thylakoid membranes and cell walls of Synechocystis PCC 6714, respectively.Abbreviations SDS sodium dodecyl sulfate - Tes N-tris[hydroxymethyl]methyl-2-aminoethanesulfonic acid - TLC thin-layer chromatography  相似文献   

2.
During adaptation of photoautotrophically growing fresh water cyanobacterium Anacystis nidulans to high salinity the cells showed a pronounced increase of proton-sodium antiporter activity, and of cytochrome c oxidase in isolated and purified plasma membrane. At the same time the concentrations of plasma membrane-bound EDTA-resistant copper and iron (determined by inductively coupled plasma atomic emission spectrometry) rose proportionately, accompanied by an increase in whole cell respiration. In plasma membranes from salt adapted cells lipid/protein ratios were markedly higher than in control cells, levels of esterified saturated and long-chain fatty acids being significantly higher than the respective levels of unsaturated and short-chain fatty acids which explains the higher lipid-phase transition temperatures derived from Arrhenius plots. Immunoblotting of the membrane proteins with antisera raised against the cytochrome c oxidases from Paracoccus denitrificans and A. nidulans gave two cross-reacting bands with apparent molecular weights around 50000 and 30000 (subunits I and II, respectively) which were more pronounced in plasma membranes from salt adapted cells when compared to control cells. The protein pattern of plasma membranes from salt adapted cells also showed the appearance of bands at apparent molecular weights of 44000–48000 and 54000–56000 which might stem from the proton/sodium-antiporter in this membrane.Abbreviations CM cytoplasmic or plasma membrane - ICM intracytoplasmic or thylakoid membrane - cyt cytochrome - DCCD N,N-dicyclohexylcarbodiimide - Hepes N-2-hydroxyethylpiperazine-N-2-ethanesulfonate - ICP-AES inductively coupled plasma atomic emission spectrometry - SDS-PAGE sodium dodecylsulfate polyacrylamide gel electrophoresis - EPR electron paramagnetic resonance spectrometry  相似文献   

3.
Photoautotrophically growing cultures of the freshwater cyanobacterium Anacystis nidulans (Synechococcus sp.) became adapted to the presence of 0.4-0.5 M NaCl in the growth medium (about seawater level) with a lag phase of 2 days after which time the growth rate resumed at 80-90% of the control. Major changes in structure and function of the plasma membranes (and, to a much lesser extent, of the thylakoid membranes) were found to accompany the adaptation process. Plasma and thylakoid membranes were separated from crude cell-free extracts of French pressure cell-treated Anacystis by discontinuous sucrose density gradient centrifugation and purified by repeated recentrifugation on fresh gradients. Concentrations of copper, iron, calcium, and magnesium ions were determined by inductively coupled plasma atomic emission spectrometry with EDTA-washed and dialyzed membrane preparations; salt adaptation was found to increase (decrease) the concentration of membrane-bound calcium in plasma (thylakoid) membranes, qualitatively reciprocal results being obtained for magnesium. Levels of plasma membrane-bound copper and iron roughly tripled during the adaptation process; by contrast, corresponding effects on thylakoid membranes were negligible. The size of the membrane vesicles was measured by quasi-elastic laser light-scattering and the electric surface charge of the membranes was measured by laser Doppler velocimetry. Salt adaptation decreased the mean diameter of plasma membrane vesicles to a much higher extent than that of thylakoid membrane vesicles. Overall surface charge densities of resting vesicles were only slightly affected by the salt treatment as was also seen from titration of the electrophoretic mobility of the vesicles with electrolytes. Yet, induction of (photosynthetic or respiratory) electron transport provoked a charge separation across the membrane which was easily measurable in terms of electrophoretic mobility. The results will be discussed with particular emphasis on the stimulated cytochrome c oxidase activity of plasma (but not thylakoid) membranes from salt-adapted cells compared to control cells and also with respect to the decreased ion permeability of the plasma membrane of salt grown cells.  相似文献   

4.
Dieter Volkmann 《Planta》1981,151(2):180-188
The peripheral secretion tissue of the root cap of Lepidium sativum L. was investigated by electronmicroscopy and freeze-fracturing in order to study structural changes of membranes involved in the secretion process of polysaccharide slime. Exocytosis of slime-transporting vesicles occurs chiefly in the distal region of the anticlinal cell walls. The protoplasmic fracture face (PF) of the plasmalemma of this region is characterized by a high number of homogenously distributed intramembranous particles (IMPs) interrupted by areas nearly free of IMPs. Near such areas slime-transporting vesicles are found to be underlying the plasma membrane. It can be concluded that areas poor in particles are prospective sites for membrane fusion. During the formation of slime-transporting vesicles, the number of IMPs undergoes a striking change in the PF of dictyosome membranes and their derivatives. It is high in dictyosome cisternae and remarkably lower in the budding region at the periphery of the cisternae. Slime-transporting vesicles are as poor in IMPs as the areas of the plasmalemma. Microvesicles rich in IMPs are observed in the surroundings of dictyosomes. The results indicate that in the plasmalemma and in membranes of the Golgi apparatus special classes of proteins — recognizable as IMPs — are displaced laterally into adjacent membrane regions. Since the exoplasmic fracture face (EF) of these membranes is principally poor in particles, it can be concluded that membrane fusion occurs in areas characterized by a high quantity of lipid molecules. It is obvious that the Golgi apparatus regulates the molecular composition of the plasma membrane by selection of specific membrane components. The drastic membrane transformation during the formation of slime-transporting vesicles in the Golgi apparatus causes the enrichment of dictyosome membranes by IMPs, whereas the plasma membrane probably is enriched by lipids. The structural differentiations in both the plasma membrane and in Golgi membranes are discussed in relation to membrane transformation, membrane flow, membrane fusion, and recycling of membrane constituents.Abbreviations PF protoplasmic fracture face - EF exoplasmic fracture face - IMP intramembranous particle  相似文献   

5.
Freeze-fracture electron microscopy of the cortical cytoplasm of unfixed, uncryoprotected, ultrarapidly frozen embryos of the marine brown algaPelvetia fastigiata has demonstrated the presence of numerous 0.5-m diameter, disc-shaped vesicles lying adjacent and nearly parallel to the plasma membrane. Some vesicles are fused with the plasma membrane through a narrow connection; this however appears to be a reversible attachment rather than an intermediate stage in the incorporation of the vesicle into the plasma membrane. The distribution of these connections in the plane of the membrane is not uniform; they tend to occur in patches. The fraction of vesicles that is fused with the plasma membrane at any one time appears to be related to a cell's perception of a stressful hypotonic imbalance between the internal and external concentrations of osmotically active compounds. Thus, a sudden 5% decrease in osmolarity of the artificial seawater medium just before freezing leads to a 38% increase in connections per unit membrane area, while a 20% decrease in osmolarity leads to a 75% increase in connections per unit area. Based on these findings and the corresponding ion-transport studies of R. Nuccitelli and L.F. Jaffe (1976, Planta131, 315–320), we postulate that the disc-shaped vesicles mediate short-term osmoregulation inPelvetia embryos by reversibly inserting chloride channels into the plasma membrane.Abbreviations ASW artificial sea water - IMP intramembrane particle - EF fracture face of a freeze-fractured exoplasmic membrane leaflet - PF fracture face of a protoplasmic membrane leaflet  相似文献   

6.
Abstract Anacystis nidulans ( Synechococcus PCC6301) and Synechocystis PCC6803 were grown photoautotrophically in a turbido-statically operated chemostat at a constant cell concentration of 2.0±0.3 μ l packed cell mass per ml in the presence of elevated NaCl concentrations up to 0.5 M ('salt stress'). The impact of salt stress on ccytochrome- c oxidase (EC 1.9.3.1) was` studied on isolated and purified membranes, and by immuno-gold labeling of thin-sectioned whole cells ATPase activities of membranes isolated and separated from cells under varying salt stress were also measured. Anacystis and Synechocystis adapted to the presence of 0.5 M NaCl in the medium with lag phases of 2 days and 2 hours, respectively. Both isolated plasma and thylakoid membranes from salt adapted Synechocystis displayed 5- to 8-times enhanced cytcytochrome- c oxidase activities while in Anacystis the effect was restricted to the plasma membrane. In either case less than proportionately increased counts of immuno-gold labeled cytochrome- c oxidase molecules in the respective membranes were obtained, the additional increment being attributed to the increased lipid content of the membranes from salt-adapted cells, leading to increased specific activities of the enzyme compared to control cells. ATPase activity of plasma membranes from Synechocystis was far more increased than of those from Anacystis while in thylakoid membranes the differentiating effect was less pronounced. Our results are discussed in terms of distinct strategies for salt adaptation in the two cyanobacterial species whereby in Anacystis the plasma membrane-bound respiratory chain and in Synechocystis the plasma membrane-bound ATPase(s) play the major role for plasma membrane energization which, in turn, is necessary for the active exclusion of sodium from the cell interior.  相似文献   

7.
The ultrastructural organization and the photosynthesis reactions of chloroplast membranes were studied in three lethal mutants of Pisum sativum, Chl-1, Chl-19 and Chl-5, all lacking the capacity to evolve oxygen. The rates of 2,6-dichloroindophenol reduction, delayed fluorescence and electron-spin-resonance signal 1 indicate that Chl-1 and Chl-19 have an impaired activity in photosystem II (PS II), while in Chl-5 the electron transport is blocked between PS I and the reactions of CO2 fixation. Ultrathin sectioning demonstrates the presence of giant grana in the chloroplasts of Chl-1 and Chl-19, while the chloroplast structure of the Chl-5 is very similar to that of the wild-type. The grana of the Chl-19 mutant contain large multilamellar regions of tightly packed membranes. When the chloroplast membranes were studied by freeze-fracture, the exoplasmic and protoplasmic fracture faces (EF and PF, respectively) in both stacked and unstacked membranes were found to show large differences in particle concentrations and relative population area (per m2), and also in particle size distribution, between all mutant chloroplast membranes and the wild-type. A close correlation between increasing kmt (ratio of particle concentrations on PF/EF) and PS II activity was observed. The differences in particle concentrations on both fracture faces in different regions of the intact chloroplast membranes of the wild-type are the consequence of a rearrangement of existing membrane components by lateral particle movements since quantitative measurements demonstrate almost complete conservation of intramembrane particles in number and size during the stacking of stroma thylakoid membranes. The results indicating particle movements strongly support the concept that the chloroplast membranes have a highly dynamic structure.Abbreviations DPIP 2,6-dichloroindophenol - EF and PF exoplasmic and protoplasmic fracture faces, respectively - PS I and PS II photosystems I and II, respectively  相似文献   

8.
R. S. Pearce 《Planta》1985,166(1):1-14
Seedlings of Triticum aestivum L. cv. Neepawa were slowly drought-stressed by witholding water after sowing in pots. Leaf extension stopped during development of the third leaf. Damage was assessed by rewatering the pots and measuring regrowth; 1–5 d after growth stopped, rewatering induced significant regrowth within several hours; 6–13 d after growth stopped, regrowth was delayed; from 14 d after growth stopped, no regrowth occurred after rewatering. Leaf bases were excised from the drought-stressed seedlings during this period of increasing damage, and were freeze-etched.Intramembranous particles (IMP) were evenly scattered in the plasma membrane in those plants which regrew immediately after rewatering. In the plants which regrew after a delay or which did not regrow on rewatering, there were patches without IMP in plasma membrane, nuclear envelope, and other membranes. Plasma membrane, nuclear envelope and possibly other membranes were sometimes partly replaced by vesicles, possibly formed from the original membrane. Such vesiculation occurred in a few cells in plants which survived the stress with a delayed regrowth, and was commoner in the plants which did not recover. The results support the idea that slow drought induces IMP-free patches in membranes including the plasma membrane, this induces membrane reorganisation including vesiculation of membranes and coagulation of protoplasm, and that these are expressed as delayed or failed regrowth. Some IMP-free patches in the plasma membrane had a faint ordered sub-structure, possibly a hexagonal lipid phase. Such patches were infrequent and IMP sometimes occurred in areas of plasma membrane having an apparently similar sub-structure. Thus the IMP-free patches could not be explained by a lamellar-hexagonal phase transition. As the stress became damaging, vesicles and endoplasmic reticulum accumulated immediately next to the plasma membrane. Mainly during the early period of damaging stress (6–10 d after growth stopped), depressions, invaginations, and rarer lesions occurred in the plasma membrane, sometimes associated with some of the IMP-free patches. In the same period, many nuclear envelopes had exceptionally large nuclear pores.Abbreviations E exoplasmic - IMP intramembranous particles - P protoplasmic  相似文献   

9.
Summary Dry (7–10% water content) leaves of the spikemossSelaginella lepidophylla (resurrection plant) and of the desiccationtolerant moss,Tortula ruralis were examined by freeze fracture electron microscopy. As has been described for dry seeds, the cells of these dehydrated leaves were shrunken, with highly convoluted walls and membranes. The membranes of all samples had a lipid bilayer organization with dispersed intramembranous particles (IMPs). Lipid droplets were very closely associated with the plasmamembrane. Chloroplasts were surrounded by a double membrane envelope and contained well-organized grana. Mitochondria were irregular in outline, and endoplasmic reticulum and cytoplasmic vesicles were present.Abbreviations ABA abscisic acid - EF exoplasmic fracture - FTIR Fourier transform infrared analysis - HII hexagonal II - IMPs intramembranous particles - MGDG monogalactosyl diacylglycerol - NMR nuclear magnetic resonance - PE phosphatidylethanolamine - PF protoplasmic fracture - PS I photosystem I - PS II photosystem II  相似文献   

10.
The outer membrane of Prochlorothrix hollandica is covered with a network of fine fibrils on its surface and separated from the cytoplasmic membrane by an electrondense peptidoglycan layer (8 to 20 nm thick). The thylakoid membranes are arranged in stacked and unstacked regions which present four characteristic fracture faces with different numbers and sizes of intramembrane particles. Cell inclusions such as polyhedral bodies (carboxysomes), ribosomes, and polyphosphate granules were found in Prochlorothrix hollandica. Another type of cell inclusions was identified by its characteristic shape (a cylindre with conical caps) and a regular striation as gas vesicles. It is concluded that the organism is in its morphological structure similar to the cyanobacteria.Abbreviations C carboxysome - CM cytoplasmic membrane - EFs, EFu exoplasmic fracture face of stacked and unstacked membrane area, respectively - ES exoplasmic surface - PFs, PFu plasmic fracture face of stacked and unstacked membrane area, respectively - PG peptidoglycan layer - TM thylakoid membrane Dedicated to Prof. Dr. D. Peters, Hamburg, on the occasion of his 75th birthday  相似文献   

11.
Intact spheroplasts of the cyanobacterium Anacystis nidulans were found to oxidize reduced c-type cytochromes derived from horse heart, tuna, Saccharomyces oviformis, Candida krusei, Rhodocyclus purpureus, Rhodopseudomonas plustris and Paracoccus denitrificans with characteristics similar to those observed with isolated membranes. Rates of cytochrome c oxidation by the spheroplasts were only 10% of those measured with isolated membranes in which thylakoid-bound cytochrome oxidase contributes to the overall rates. Small amounts of an endogenous c-type cytochrome were released upon lysozyme treatment of the cells. The results appear to indicate the presence of cytochrome oxidase in the cytoplasmic membrane of A. nidulans.Abbreviations CCCP carbonyl cyanide m-chlorophenylhydrazone - DCCD N,N-dicyclohexyl carbodiimide - cyt cytochrome(s)  相似文献   

12.
Cytoplasmic membranes (plasma membranes), thylakoid membranesand cell walls prepared from the cyanobacterium, Anacystis nidulans,were compared for UDP-glucose: l,2-diacylglycerol glucosyltransferaseactivity. When 1,2-dipalmitoylglycerol was added as a glucosylacceptor, both cytoplasmic membranes and thylakoid membranesincorporated glucose from UDP-glucose into monoglucosyl diacylglycerol,but the cell walls containing the outer membranes did not. Thecytoplasmic membranes incorporated about twice as much glucoseas the thylakoid membranes on a protein basis. These observationssuggest that in A. nidulans the UDP-glucose: 1,2-diacylglycerolglucosyltransferase participating in glucolipid biosynthesisis located in both cytoplasmic and thylakoid membranes, butnot in the outer membrane. 1Solar Energy Research Group, The Institute of Physical andChemical Research (RIKEN), Wako-shi, Saitama 351-01, Japan. (Received November 21, 1985; Accepted January 27, 1986)  相似文献   

13.
Vincent Girard  Michel Fèvre 《Planta》1984,160(5):400-406
Cytoplasmic membranes from mycelium or protoplasts of Saprolegnia monoica (a cellulosic cell-wall fungus) were separated by continuous sucrose-density-gradient centrifugation. Glucan synthases assayed at low (micromolar uridine 5-diphosphate (UDP) glucose for -1-4-glucan synthase) and high (millimolar UDP glucose for -1-3-glucan synthase) substrate concentrations were associated with membranes exhibiting vanadate-sensitive, oligomycin-insensitive ATPase and equilibrating at density 1.16 g cm-3. Synthase activities were also bound to membranes of lower density (1.10 and 1.145 g cm-3). Plasma membranes were stabilized by coating protoplasts with concanavalin A. After lysis of the protoplasts, plasma membranes recovered by low centrifugal forces were isolated in continuous isopycinic gradients. Both synthase activities peaked with [3H]concanavalin A and Na-vanadate ATPase indicating that the synthetases are located at the plasma membrane. Treatments of intact protoplasts with cold glutaraldehyde or proteases before disruption lead to a diminution of glucan-synthase activities indicating that at least part of the enzymes of plasma membrane face the outside of the cell.Abbreviations ConA concanavalin A - ER endoplasmic reticulum - GSI -1,4-glucan synthase - GSH -1,3-glucan synthase - UDP uridine 5-diphosphate  相似文献   

14.
Summary Rosettes of six particles have been visualized by freeze-fracture in the protoplasmic fracture (PF) faces of: a) the plasma membrane, b) Golgi cisternae, and c) Golgi-derived vesicles in mesophyll cells ofZinnia elegans that had been induced to differentiate synchronously into tracheary elements in suspension culture. These rosettes have been observed previously in the PF face of the plasma membranes of a variety of cellulose-synthesizing cells and are thought to be important in cellulose synthesis. InZinnia tracheary elements, the rosettes are localized in the membrane over regions of secondary wall thickening and are absent between thickenings. The observation of rosettes in the Golgi cisternae and vesicles suggests that the Golgi apparatus is responsible for the selective transport and exocytosis of rosettes in higher plants, as has been previously indicated in the algaMicrasterias (Giddings et al. 1980). The data presented indicate that the Golgi apparatus has a critical role in the control of cell wall deposition because it is involved not only in the synthesis and export of matrix components but also in the export of an important component of the cellulose synthesizing apparatus. The rosettes are present in the plasma membrane and Golgi vesicles throughout the enlargement of the secondary thickening, suggesting that new rosettes must be continually inserted into the membrane to achieve complete cell wall thickening.Abbreviations EF Golgi vesicles, exoplasmic fracture; the plasma membrane, extracellular fracture - PF protoplasmic fracture  相似文献   

15.
Temperature dependent changes in absorbance and fluorescence of chlorophyll a (Chl a) were analyzed in membrane fragments and in a Chl-protein complex reconstituted with lipids isolated from the cyanobacterium Anacystis nidulans. Absorbance versus temperature curves measured at 656 nm showed an inflection point at 23–24°C and at 14–16°C in the membrane fragments prepared from A. nidulans cells, grown at 39° and 25°C, respectively. Temperature-induced absorbance changes measured at 680 and 696 nm did not show clear break points. The presence of lipids was essential in order to see a clear maximum in the fluorescence versus temperature curve of Chl a in a Chl-protein complex. It is suggested that a specific form of Chl a may be associated with lipids in the thylakoid membranes and that this form of Chl a may be responsible for temperature-induced absorbance and fluorescence yield changes in this cyanobacterium.Abbreviations Chl chlorophyll - DCMU 3-(3, 4-dichlorophenyl)-1, 1-dimethylurea - SDS sodium dodecyl sulphate DPB-CIW No. 802.  相似文献   

16.
Plasma membranes were isolated and separated from thylakoid membranes by discontinuous sucrose density gradient centrifugation of crude membranes prepared by French pressure cell extrusion of lysozyme-treated Anacystis nidulans. Two distinct populations of chlorophyll-free plasma membrane vesicles were obtained exhibiting buoyant densities of 1.087 and 1.100 g/cm3 as opposed to a uniform density of 1.192 g/cm3 for thylakoid membranes. Plasma and thylakoid membranes were characteristically different also with respect to fatty acid and protein composition, cytochrome oxidase activity, and pigment content as analyzed by spectrophotometry, spectrofluorimetry, and high performance liquid chromatography. Apart from carotenoids, chlorophyll a was the only major photosynthetic pigment detected in thylakoid membranes while plasma membranes contained virtually no chlorophyll a but (besides large amounts of carotenoids) protochlorophyllide a and chlorophyllide a as revealed by solvent partition (between n-hexane and acetone or methanol), room and low temperature fluorescence emission and excitation spectra, and analytical separation and identification by high performance liquid chromatography and comparison with authentic standards. The protochlorophyllide in the plasma membrane could be transformed into chlorophyllide in the dark in vitro by incubating the membrane preparation with NADPH; NADP+ effected the reverse transition.  相似文献   

17.
Summary YoungFunaria protonemata were treated with Monensin (10–6 M) and Cytochalasin (CB) (2×10–5 M). The influence of the inhibitors on a) elongation growth, b) cell fine structure and c) particle rosettes within the plasma membrane after freeze fracture was observed. Monensin stopped cell growth, caused swelling of the mitochondria and plastids and inhibited the secretory activity of the Golgi apparatus within about 15 minutes. The number of rosettes in the PF of the plasma membrane was distinctly reduced after 4–5 minutes and decreased further to only very few after 30 minutes. The tip to base gradient in distribution was maintained for a long time. The effects were reversible, regeneration occurred within 3 hours. CB treatment showed no effect on elongation growth and cell fine structure. The number of rosettes, however, was strongly reduced within 3 minutes exposure time and their distribution was nearly uniform then. Number and tip to base gradient increased again after 6 minutes intoxication. The results are discussed in regard to the turn over of the rosettes.Abbreviations CB Cytochalasin B - PF protoplasmic fracture face - F-vesicle flat vesicle - F-Actin filamentous actin - G-Ac-tin globular actin  相似文献   

18.
Summary Isolated plasma membrane vesicles purified by aqueous polymer two-phase partitioning were used as a model system for studies on the membrane-associated (cortical) cytoskeleton in plants. Actin, as identified by immunoblotting, was found to be specifically attached to plasma membrane vesicles from cauliflower (Brassica oleracea L.). The actin was not washed off as the vesicles were turned inside-out, indicative of a fairly strong attachment. Triton X-100 extraction of plasma membrane vesicles resulted in an insoluble and hence pelletable fraction where actin could be found together with several other proteins. Our results show that the cortical cytoskeleton is to some extent co-purified with the plasma membrane, and we believe that well defined, inside-out and right-side-out plasma membrane vesicles can be used to study the structure and dynamics of the plant cortical cytoskeleton.Abbreviations ATP adenosine 5-triphosphate - BCIP 5-bromo-4-chloro-3-indolyl phosphate - BSA bovine serum albumin - CCD counter-current distribution - DTT dithiothreitol - EDTA ethylene-diamine-tetraacetic acid - EGTA ethylene glycol-bis(-aminoethyl ether) - GSII 1,3--glucan synthase - HEPES N-[2-hydroxyethyl]-piperazine-N-[2-ethane sulfonic acid] - MES 2-(N-morpholino)ethane sulfonic acid - NBT p-nitro blue tetrazolium chloride - IDP inosine 5-diphosphate - PAGE polyacrylamide gel electrophoresis - PBS phosphate buffered saline - PIPES piperazine-N,N-bis(2-ethane-sulfonic acid) - PPB potassium phosphate buffer - PM plasma membrane - PMSF phenylmethylsulfonyl fluoride - PVDF polyvinylidene difluoride - PVPP polyvinylpolypyrrolidone - SDS sodium dodecyl sulfate - TBS Tris-buffered saline - TTBS Tris-buffered saline with Tween 20 - Tris tris(hydroxymethyl) aminomethane  相似文献   

19.
Specific binding of the calcium antagonist [3H]verapamil to a microsomal fraction, a presumptive plasma membrane fraction and an intracellular membrane fraction of the phototactic unicellular green alga Chlamydomonas reinhardtii has been demonstrated. The specific activity of the plasma membrane marker enzyme K+-stimulated, Mg2+-dependent ATPase was severalfold higher in the upper (polyethylene glycol-rich) than in the lower (dextran-rich) phase, and the reverse was established for the marker enzymes of intracellular membranes such as cytochrome c oxidase for mitochondria and antimycin Aresistant NADPH-cytochrome c reductase for endoplasmic reticulum. Chlorophyll as a marker for thylakoid fragments was exclusively found in the lower phase. In the microsomal fraction two specific binding sites of [3H]verapamil were found at 22°C, one with higher and a second with lower affinity to [3H]verapamil. Separation of plasma membranes from intracellular membranes revealed that the highaffinity binding site is attributed to the plasma membrane fraction whereas the low-affinity binding site can be attributed to the intracellular membrane fraction. Specific binding to both separated membrane fractions is saturable and reversible. [3H]Verapamil binding to plasma membranes was not inhibited by the calcium channel blockers diltiazem and nifedipine. However, in the intracellular membrane fraction [3H]verapamil could be displaced by diltiazem but not by nifedipine. Increasing concentrations of calcium chloride inhibited [3H]verapamil binding in both fractions.Abbreviations Bmax maximum density of binding sites - BSA bovine serum albumin - Cyt.c cytochrome c - DTT dithiothreitol - EDTA ethylenediaminetetraacetic acid - EGTA ethyleneglycol-bis(2-amino-ethylether)N,N-tetraacetic acid - HEPES N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid - IC50 concentration causing 50% inhibition - Mes [N-morpholino]ethanesulfonic acid - PEG polyethylene glycol - PMSF phenylmethylsulfonylfluoride - PVPP polyvinylpolypyrrolidone - TCA trichloroacetic acid  相似文献   

20.
Cell-free extracts ofAnacystis nidulans were fractionated by discontinuous sucrose density gradient centrifugation resulting in the separation of two distinct types of membranes, the heavier one containing the chlorophyll and the lighter one devoid of chlorophyll. Identity of the latter with plasma membrane was confirmed by labeling of intact cells with impermeant marker,35S-diazobenzenesulfonate, prior to cell disruption. Both membrane fractions were purified individually by repeated recentrifugation on identical gradients. Purified membranes were subjected to dissociating polyacrylamide gel electrophoresis, either type of membranes yielding a distinct polypeptide pattern. After transfer of the polypeptides to nitrocellulose by Western blotting, two of the proteins, with molecular weights of approximately 55,000 and 32,000, respectively, gave strong and specifically complementary cross-reactions with antibodies raised against subunits I and II of the aa3-type cytochrome oxidase fromParacoccus denitrificans. The findings will be discussed in terms of the presence of aa3-type cytochrome oxidase in both plasma and thylakoid membranes ofAnacystis nidulans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号