首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bacillus thuringiensis subsp.israelensis andB. sphaericus strains 2362 and 1593 were grown in media based on defatted mustard-seed meal (MSM). The meal contains 40% (w/w) protein, with glutamic acid and arginine as the major amino acids. The toxic potencies of the final bacterial powders towardsCulex pipens quinquefasciatus Say, compared with those of the respective international reference standards, were 46% forB. thuringiensis subsp.israelensis, 62% forB. sphaericus 2362 and 88% forB. sphaericus 1593 when 2% (w/v) MSM was used for growth. With 4% (w/v) MSM,B. thuringiensis subsp.israelensis grew better but had undetectable larvicidal activity, whereas theB. sphaericus strains not only grew better but gave a higher degree of sporulation and toxicity. The potencies ofB. sphaericus in medium with 4% MSM were comparable with those of international reference standards.The authors are with the Department of Life Sciences, University of Bombay, Bombay 400 098, India.  相似文献   

2.
The cry4Ba gene from Bacillus thuringiensis subsp. israelensis and the binary toxin gene from B. sphaericus C3-41 were cloned together into a shuttle vector and expressed in an acrystalliferous strain of B. thuringiensis subsp. israelensis 4Q7. Transformed strain Bt-BW611, expressing both Cry4Ba protein and binary toxin protein, was more than 40-fold more toxic to Culex pipiens larvae resistant to B. sphaericus than the transformed strains expressing Cry4Ba protein or binary toxin protein independently. This result showed that the coexpression of cry4Ba of B. thuringiensis subsp. israelensis with B. sphaericus binary toxin gene partly suppressed more than 10,000-fold resistance of C. pipiens larvae to the binary toxin. It was suggested that production of Cry4Ba protein and binary toxin protein interacted synergistically, thereby increasing their mosquito-larvicidal toxicity.  相似文献   

3.
Mosquito larvicides like Bacillus sphaericus and Bacillus thuringiensis serovar. israelensis have been widely and effectively used in mosquito control programs, but the industrial production of these bacilli is expensive. Here we have attempted to develop three cost-effective media, based on cheap sources, potato, common sugar and bengalgram. Growth and production of the insecticidal proteins from these bacteria were satisfactory. Bioassay studies with different mosquito larvae showed considerable toxicity. Therefore the investigation suggests that potato-based culture media are more economical for the industrial production of B. sphaericus and B. thuringiensis serovar. israelensis.  相似文献   

4.
Strains of Bacillus sphaericus exhibit varying levels of virulence against mosquito larvae. The most potent strain, B. sphaericus 2362, which is the active ingredient in the commercial product VectoLex®, together with another well-known larvicide Bacillus thuringiensis subsp. israelensis, is used to control vector and nuisance mosquito larvae in many regions of the world. Although not all strains of B. sphaericus are mosquitocidal, lethal strains produce one or two combinations of three different types of toxins. These are (1) the binary toxin (Bin) composed of two proteins of 42 kDa (BinA) and 51 kDa (BinB), which are synthesized during sporulation and co-crystallize, (2) the soluble mosquitocidal toxins (Mtx1, Mtx2 and Mtx3) produced during vegetative growth, and (3) the two-component crystal toxin (Cry48Aa1/Cry49Aa1). Non-mosquitocidal toxins are also produced by certain strains of B. sphaericus, for example sphaericolysin, a novel insecticidal protein toxic to cockroaches. Larvicides based on B. sphaericus-based have the advantage of longer persistence in treated habitats compared to B. thuringiensis subsp. israelensis. However, resistance is a much greater threat, and has already emerged at significant levels in field populations in China and Thailand treated with B. sphaericus. This likely occurred because toxicity depends principally on Bin rather than various combinations of crystal (Cry) and cytolytic (Cyt) toxins present in B. thuringiensis subsp. israelensis. Here we review both the general characteristics of B. sphaericus, particularly as they relate to larvicidal isolates, and strategies or considerations for engineering more potent strains of this bacterium that contain built-in mechanisms that delay or overcome resistance to Bin in natural mosquito populations.  相似文献   

5.
A novel recombinant Bacillus thuringiensis subsp. israelensis strain that produces the B. sphaericus binary toxin, Cyt1Aa, and Cry11Ba is described. The toxicity of this strain (50% lethal concentration [LC50] = 1.7 ng/ml) against fourth-instar Culex quinquefasciatus was higher than that of B. thuringiensis subsp. israelensis IPS-82 (LC50 = 7.9 ng/ml) or B. sphaericus 2362 (LC50 = 12.6 ng/ml).  相似文献   

6.
Fermenter-produced Bacillus sphaericus 2362 was formulated into a thick, dark flowable liquid concentrate containing 4.8×109 c.f.u./ml and charcoal as protector against ultraviolet light. The potencies of the formulation against L4 Culex pipiens quinquefasciatus before and after storage for 2 years were 5714 and 5862 International Toxic Units (ITU), respectively, when compared with a standardized B. sphaericus from the WHO at 1000 ITU. In field trials, treatment at 1.01/ha gave 96 to 100% control of mosquito larvae. B. sphaericus could be re-isolated in 5% of the samples 9 months after application.The authors are at the Department of Applied Microbiology & Brewing, Anambra State University of Technology, P.M.B. 5025, Awka, Nigeria.  相似文献   

7.
Summary A novel strain of Bacillus thuringiensis was isolated from soybean grain dust from Kansas and found to be toxic to larvae of Leptinotarsa decemlineata (Colorado potato bectle). The strain (EG2158) synthesized two parasporal crystals: a rhomboid crystal composed of a 73115 dalton protein and a flat, diamond-shaped crystal composed of a protein of approximately 30 kDa. Plasmid transfer and gene cloning experiments demonstrated that the 73 kDa protein was encoded on an 88 MDa plasmid and that the protein was toxic to the larvae of Colorado potato beetle (CPB). The sequence of the 73 kDa protein, as deduced from the sequence of its gene (cryC), was found to have regions of similarity with several B. thuringiensis crystal proteins: the lepidopteran-toxic P1 proteins of var. kurstaki and berliner, the lepidopteran- and dipteran-toxic P2 (or CRYB1) protein of var. kurstaki, and the dipteran-toxic 130 kDa protein of var. israelensis. While B. megaterium cells harboring the cryC gene from EG2158 synthesized significant amounts of the 73 kDa CRYC protein, Escherichia coli cells did not. The cryC-containing B. megaterium cells produced rhomboid crystals that were toxic to CPB larvae.  相似文献   

8.
Summary The crystalline parasporal inclusions (crystals) of Bacillus thuringiensis israelensis (Bti), which are specifically toxic to mosquito and black fly larvae, contain three main polypeptides of 28 kDa, 68 kDa and 130 kDa. The genes encoding the 28 kDa protein and the 130 kDa protein have been cloned from a large plasmid of Bti. Escherichiacoli recombinant clones containing the 130 kDa protein gene were highly active against larvae of Aedes aegypti and Culex pipiens, while B. subtilis recombinant cells containing the 28 kDa protein gene were haemolytic for sheep red blood cells. A fragment of the Bti plasmid which is partially homologous to the 130 kDa protein gene was also isolated; it probably corresponds to part of a second type of mosquitocidal toxin gene. Furthermore, restriction enzyme analysis suggested that the 130 kDa protein gene is located on the same Bti EcoRI fragment as another kind of Bti mosquitocidal protein gene cloned by Thorne et al. (1986). Hybridization experiments conducted with the 28 kDa protein gene and the 230 kDa protein gene showed that these two Bti genes are probably present in the plasmid DNA of B. thuringiensis subsp. morrisoni (PG14), which is also highly active against mosquito larvae.  相似文献   

9.
A small cryptic plasmid of Bacillus thuringiensis subsp. israelensis was labelled in vitro with two genetic markers. One of the recombinant plasmids was mapped and transformed in Escherichia coli, Bacillus subtilis and Bacillus thuringiensis. This and similar shuttle plasmids could be very useful as vectors for the investigation of the toxin genes in their own host.Abbreviations BTI Bacillus thuringiensis subsp. israelensis - MDal megadaltons  相似文献   

10.
11.
Two novel mosquitocidal bacteria, VB17 and VB24, identified as new Bacillus species were isolated from dead mosquito larvae obtained in Florida aquatic habitats. Gas chromatographic analysis of fatty acid methyl esters (GC-FAME) and 16S rRNA sequencing indicated that VB24 is closely related to Bacillus sphaericus whereas VB17 does not have a close relationship with either Bacillus thuringiensis or B. sphaericus. Both isolates were significantly more active than B. sphaericus 2362 against Aedes taeniorhynchus, Anopheles quadrimaculatus, Culex quinquefasciatus larvae, and as active as B. sphaericus 2362 against Anopheles gambiae. Interestingly, however, both were not active against Aedes aegypti larvae, indicating some level of insecticidal specificity.  相似文献   

12.
Two field-collected Culex quinquefasciatus colonies were subjected to selection pressure by three strains of Bacillus sphaericus, C3-41, 2362, and IAB59, under laboratory conditions. After 13 and 18 generations of exposure to high concentrations of C3-41 and IAB59, a field-collected low-level-resistant colony developed >144,000- and 46.3-fold resistance to strains C3-41 and IAB59, respectively. A field-collected susceptible colony was selected with 2362 and IAB59 for 46 and 12 generations and attained >162,000- and 5.7-fold resistance to the two agents, respectively. The pattern of resistance evolution in mosquitoes depended on continuous selection pressure, and the stronger the selection pressure, the more quickly resistance developed. The resistant colonies obtained after selection with B. sphaericus C3-41 and 2362 showed very high levels of cross-resistance to B. sphaericus 2362 and C3-41, respectively, but they displayed only low-level cross-resistance to IAB59. On the other hand, the IAB59-selected colonies had high cross-resistance to both strains C3-41 and 2362. Additionally, the slower evolution of resistance against strain IAB59 may be explained by the presence of another larvicidal factor. This is in agreement with the nontoxicity of the cloned and purified binary toxin (Bin1) of IAB59 for 2362-resistant larvae. We also verified that all the B. sphaericus-selected colonies showed no cross-resistance to Bacillus thuringiensis subsp. israelensis, suggesting that it would be a promising alternative in managing resistance to B. sphaericus in C. quinquefasciatus larvae.  相似文献   

13.
Two insecticidal bacteria are used as larvicides to control larvae of nuisance and vector mosquitoes in many countries, Bacillus thuringiensis ssp. israelensis and B. sphaericus. Field studies show both are effective, but serious resistance, as high as 50 000‐fold, has evolved where B. sphaericus is used against Culex mosquitoes. To improve efficacy and deal with even greater potential problems of resistance, we previously developed several recombinant larvicidal bacteria that combine the best mosquitocidal proteins of these bacteria. In the present study, we report laboratory selection studies using our best recombinant strain against larvae of Culex quinquefasciatus. This recombinant, Bti/BsBin, is a strain of B. thuringiensis ssp. israelensis engineered to produce a large amount of the B. sphaericus binary (Bin) toxin, which makes it more than 10‐fold as mosquitocidal as the its parental strains. Here we show that larvae exposed to Bti/BsBin failed to develop significant resistance after 30 successive generations of heavy selection pressure. The highest level of resistance obtained at the LC95 level was 5.2‐fold, but declined to less than two‐fold at the 35th generation. Testing the selected populations against B. sphaericus alone showed resistance to Bin evolved, but was masked by combination with B. thuringiensis ssp. israelensis. These results suggest that recombinant bacterial strains have improved mosquito and vector management properties compared with the wild‐type strains used in current commercial formulations, and should prove useful in controlling important human diseases such as malaria and filariasis on a long‐term basis, even when used intensively under field conditions.  相似文献   

14.
Two newly developed media, H4 and H7, were found to be highly suitable for culturing Bacillus thuringiensis subsp. israelensis and B. sphaericus, respectively. These media contained 0.05% K2HPO4 and 4% HDL (H4 medium) or 0.05% K2HPO4 and 7% HDL (H7 medium); HDL is the by-product from a monosodium glutamate factory. Tests to compare endospore formation and toxicity values of B. thuringiensis subsp. israelensis in H4 medium and nutrient broth supplemented with salts and glucose (NBSG) medium were carried out in a 3-liter fermentor. The viable cell count and LC50 value of B. thuringiensis subsp. israelensis in H4 medium at 48 hr were 2.5 × 108 cells/ml and 10?7.2 (dilution), respectively, while those in NBSG medium were 1.6 × 108 cells/ml and 10?6.5, respectively. In the case of B. sphaericus grown in H7 medium, the number of cells and LC50 value were found to be 1.4 × 109 cells/ml and 10?7.8, respectively. B. sphaericus grown in nutrient broth supplemented with salt and yeast extract (NBSY) were found to produce 6.4 × 108 cells/ml and an LC50 value of 10?6.8. The toxicity of B. thuringiensis subsp. israelensis was tested against Aedes aegypti larvae, while that of B. sphaericus was tested against Culex quinquefasciatus. The cost of 10 liters of medium for production of B. thuringiensis subsp. israelensis and in B. sphaericus and H4 and H7 was $0.02 and $0.03, respectively. The cost of these newly developed media was much less than that of NBSG medium ($7.05 per 10 liters) for cultivation of B. thuringiensis subsp. israelensis and NBSY medium ($11.67 per 10 liters) for cultivation of B. sphaericus.  相似文献   

15.
Toxins from Bacillus thuringiensis have beenused as pest management tools for more than 50 years. The effect of these toxins depends on the quantityof Bacillus thuringiensis (Bt) toxins ingestedby susceptible insects. Food ingestion is affected byCO2 concentration; plants grown in elevatedCO2 often have increased carbon/nitrogen ratios(C/N), resulting in greater leaf area consumption. Therefore, we hypothesized that elevated CO2would improve the efficacy of foliar applications ofB. thuringiensis. Cotton plants were grown ateither ambient (360–380 l/l) or elevated CO2(900 l/l). Groups of plants in both CO2treatments were exposed to low (30 mg/kg soil/week) orhigh (130 mg/kg soil/week) nitrogen (N) fertilizationlevels in a split plot design. The resulting plantswere assessed for N and carbon (C) contents. Leafdisks from the same plants were dipped in a Btsolution and then fed to Spodoptera exigua(Hübner), an insect species of considerableeconomic importance. Elevated CO2 significantlyreduced total N, and increased the C/N. Nitrogenfertilization significantly affected consumption byearly stadia larvae, larval weight gain, and relativegrowth rate (RGR). Interactions between CO2concentration and N fertilization level significantlyimpacted late stadia larval food consumption, andthrough differential Bt toxin intake, affectedduration of larval stage and mortality to the adultstage. We conclude that the elevated atmosphericCO2 concentrations expected in the next centurywill interact with commercial fertilization practicesto enhance the efficacy of B. thuringiensisformulations applied topically to crops. Theimplications for improved control are discussed.  相似文献   

16.
Two colorimetric methods were compared for assaying the cell toxicity of soluble crystal proteins from five mosquitocidal serovarieties of Bacillus thuringiensis: israelensis, jegathesan, medellin, darmstadiensis and fukuokaensis. In mosquitoes cell lines from Culex quinquefasciatus, Aedes aegypti and Anopheles gambiae, all the crystal proteins were equally toxic. Both colorimetric methods MTT (tetrazolium salt) and Alamar Blue gave similar results, but the Alamar Blue method was simpler, faster, cheaper, and could be used to take readings from the same cell population at various time points. The most active crystal proteins were those of B. thuringiensis israelensis, followed by those of B. thuringiensis jegathesan, and B. thuringiensis medellin, which were much less active.  相似文献   

17.
Three-year-long investigation of the microflora in the soil of nut-fruit forests in the south of Kyrgyzstan showed a wide distribution of spore-forming bacteria Bacillus subtilis, B. cereus, B. idosus, and B. megaterium. In the complex of these bacteria, crystal-forming bacteria B. thuringiensis are abundant. The occurrence of B. thuringiensis in mountain-forest black-brown soils reaches 80% of soil samples. Dominating subspecies are tohokuensis (H17), israelensis (H14), and toguchini (H31). Abundance of B. thuringiensis was insignificant and accounted for only 1% of spore-forming bacteria. The abundance B. thuringiensis in oozy biocenoses on the shores of water bodies within the Sary-Chelek Biosphere Reserve reaches 12.6–18.0% of soil-forming bacteria. Thus, it is possible to assume that B. thuringiensis not only are conserved in soils but also can reproduce.  相似文献   

18.
Chlorine, chlorine dioxide (ClO2), and a commercial raw fruit and vegetable sanitizer (Fit powder) were evaluated for their effectiveness in killing vegetative cells and spores of Bacillus cereus and spores of Bacillus thuringiensis. The ultimate goal was to use one or both species as a potential surrogate(s) for Bacillus anthracis in studies that focus on determining the efficacy of sanitizers in killing the pathogen on food contact surfaces and foods. Treatment with alkaline (pH 10.5–11.0) ClO2 (200 mg/mL) produced by electrochemical technologies reduced populations of a five-strain mixture of vegetative cells and a five-strain mixture of spores of B. cereus by more than 5.4 and more than 6.4 log cfu/mL, respectively, within 5 min. This finding compares with respective reductions of 4.5 and 1.8 log cfu/mL resulting from treatment with 200 mg/mL chlorine. Treatment with a 1.5% acidified (pH 3.0) solution of Fit powder product was less effective, causing 2.5-log and 0.4-log cfu/mL reductions in the number of B. cereus cells and spores, respectively. Treatment with alkaline ClO2 (85 mg/mL), acidified (pH 3.4) ClO2 (85 mg/mL), and a mixture of ClO2 (85 mg/mL) and Fit powder product (0.5%) (pH 3.5) caused reductions in vegetative cell/spore populations of more than 5.3/5.6, 5.3/5.7, and 5.3/6.0 log cfu/mL, respectively. Treatment of B. cereus and B. thuringiensis spores in a medium (3.4 mg/mL organic and inorganic solids) in which cells had grown and produced spores with an equal volume of alkaline (pH 12.1) ClO2 (400 mg/mL) for 30 min reduced populations by 4.6 and 5.2 log cfu/mL, respectively, indicating high lethality in the presence of materials other than spores that would potentially react with and neutralize the sporicidal activity of ClO2.Published by permission of the International Association for Food Protection: Journal of Food Protection (2004) 60:1702–1708This revised version was published online in April 2005 with corrections to the text and the section heading.In section Preparation of treatment solutions the phrase 22-28°C was replaced by 22±2°C.  相似文献   

19.
Both Bacillus sphaericus and Bacillus thuringiensis subsp. israelensis produce mosquitocidal toxins during sporulation and are extensively used in the field for control of mosquito populations. All the known toxins of the latter organism are known to be encoded on a large plasmid, pBtoxis. In an attempt to combine the best properties of the two bacteria, an erythromycin resistance-marked pBtoxis plasmid was transferred to B. sphaericus by a mating technique. The resulting transconjugant bacteria were significantly more toxic to Aedes aegypti mosquitoes and were able to overcome resistance to B. sphaericus in a resistant colony of Culex quinquefasciatus, apparently due to the production of Cry11A but not Cry4A or Cry4B. The stability of the plasmid in the B. sphaericus host was moderate during vegetative growth, but segregational instability was observed, which led to substantial rates of plasmid loss during sporulation.  相似文献   

20.
To investigate the distribution of the hemolysin II determinant among strains of Bacillus cereus and Bacillus thuringiensis, thirteen strains of B. cereus and fourteen strains of B. thuringiensis strains were tested for hybridization of their chromosomal DNAs with a DNA probe containing the B. cereus hemolysin II gene. In addition, the production of hemolysin II, whose activity is not inhibited by cholesterol, was tested. The presence (absence) of the hybridization response in the microorganism's genome correlated with the presence (absence) of cholesterol-unaffected hemolysin production. Only four out of thirteen B. cereus strains were found to give a positive response in hybridization experiments, whereas thirteen out of fourteen B. thuringiensis strains responded positively. DNAs from ten B. thuringiensis strains contained a 3.5 kb EcoRV fragment, which hybridized with the B. cereus hemolysin II gene probe. The 3.5 kb EcoRV DNA fragment from one of these strains (B. thuringiensis VKM-B1555) was cloned and expressed in Escherichia coli cells. The hemolysin encoded by the cloned DNA fragment was not inhibited by cholesterol and possessed all other properties of B. cereus hemolysin II. The obtained data clearly show limited distribution of hemolysin II among B. cereus strains and demonstrate that hemolysin II is more characteristic of B. thuringiensis than B. cereus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号