首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 170 毫秒
1.
Inbreeding is known to have adverse effects on fitness-related traits in a range of insect species. A series of theoretical and experimental studies have suggested that polyandrous insects could avoid the cost of inbreeding via pre-copulatory mate choice and/or post-copulatory mechanisms. We looked for evidence of pre-copulatory inbreeding avoidance using female mate preference trials, in which females were given the choice of mating with either of two males, a sibling and a non-sibling. We also tested for evidence of post-copulatory inbreeding avoidance by conducting double mating experiments, in which four sibling females were mated with two males sequentially, either two siblings, two non-siblings or a sibling and a non-sibling in either order. We identified substantial inbreeding depression: offspring of females mated to full siblings had lower hatching success, slower development time from egg to adult, lower survival of larval and pupal stages, and lower adult body mass than the offspring of females mated to non-sibling males. We also found evidence of pre-copulatory inbreeding avoidance, as females preferred to mate with non-sibling males. However, we did not find any evidence of post-copulatory inbreeding avoidance: egg hatching success of females mating to both sibling and non-sibling males were consistent with sperm being used without bias in relation to mate relatedness. Our results suggest that this cabbage beetle has evolved a pre-copulatory mechanism to avoid matings between close relative, but that polyandry is apparently not an inbreeding avoidance mechanism in C. bowringi.  相似文献   

2.
In polygynous species, mate choice is an integrated part of sexual selection. However, whether mate choice occurs independently of the genetic relatedness among mating pairs has received little attention, although inbreeding may have fitness consequences. We studied whether genetic relatedness influenced females' choice of partner in a highly polygynous ungulate--the reindeer (Rangifer tarandus)--in an experimental herd during two consecutive rutting seasons; the herd consisting of 75 females in 1999 and 74 females in 2000 was exposed to three 4.5-year-old adults and three 1.5-year-old young males, respectively. The females' distribution during peak rut was not influenced by their genetic relatedness with the dominant males of the mating groups. Further, genetic relatedness did not influence the actual choice of mating partner. We conclude that inbreeding avoidance through mating group choice as well as choice of mating partner, two interconnected processes of female mate choice operating at two different scales in space and time, in such a highly female-biased reindeer populations with low level of inbreeding may not occur.  相似文献   

3.
Why do females of many species mate with more than one male? One of the main hypotheses suggests that female promiscuity is an insurance mechanism against the potential detrimental effects of inbreeding. Accordingly, females should preferably mate with less related males in multiple or extrapair mating. Here we analyse paternity, relatedness among mating partners, and relatedness between parents and offspring, in the socially monogamous North American barn swallow (Hirundo rustica erythrogaster). In contrast to the inbreeding avoidance hypothesis, we found that extrapair mating partners were more related than expected by random choice, and tended to be more related than social partners. Furthermore, extrapair mating resulted in genetic parents being more related to their extrapair young than to their withinpair young. We propose a new hypothesis for extrapair mating based on kin selection theory as a possible explanation to these findings.  相似文献   

4.
Pitcher TE  Rodd FH  Rowe L 《Genetica》2008,134(1):137-146
Several studies suggest that females may offset the costs of genetic incompatibility by exercising pre-copulatory or post-copulatory mate choice to bias paternity toward more compatible males. One source of genetic incompatibility is the degree of relatedness among mates; unrelated males are expected to be genetically more compatible with a female than her relatives. To address this idea, we investigated the potential for inbreeding depression and paternity biasing mechanisms (pre- and post-copulatory) of inbreeding avoidance in the guppy, Poecilia reticulata. Inbreeding resulted in a reduction in offspring number and quality. Females mated to siblings gave birth to significantly fewer offspring compared to females mated to non-siblings and inbred male offspring took longer to reach sexual maturity. There was no evidence of inbreeding avoidance in pre-copulatory behaviors of females or males. Sexual responsiveness of females to courting males and the number of sexual behaviors males directed at females did not decrease as a function of the relatedness of the two individuals. We also tested whether female guppies can use post-copulatory mechanisms to bias sperm usage toward unrelated males by comparing the number of offspring produced by females mated to two of their siblings (SS), two males unrelated to the female (NN), or to one unrelated male and a sibling male (NS). We found that NS females produced a number of offspring not significantly different than what would be expected if fertilization success were halfway between completely outbreeding (NN) and completely inbreeding (SS) females. This suggests that there is no significant improvement in the number of offspring produced by females mating to both related and unrelated males, relative to that which would be expected if sperm from both males were used equally. Our results suggest that female guppies do not discriminate against closely related males or their sperm.  相似文献   

5.
The literature is full of examples of inbreeding avoidance, while recent mathematical models predict that inbreeding tolerance or even inbreeding preference should be expected under several realistic conditions like e.g. polygyny. We investigated male and female mate preferences with respect to relatedness in the fruit fly D. melanogaster. Experiments offered the choice between a first order relative (full-sibling or parent) and an unrelated individual with the same age and mating history. We found that females significantly preferred mating with their brothers, thus supporting inbreeding preference. Moreover, females did not avoid mating with their fathers, and males did not avoid mating with their sisters, thus supporting inbreeding tolerance. Our experiments therefore add empirical evidence for inbreeding preference, which strengthens the prediction that inbreeding tolerance and preference can evolve under specific circumstances through the positive effects on inclusive fitness.  相似文献   

6.
Mating preferences for genetic compatibility strictly depend on the interplay of the genotypes of potential partners and are therein fundamentally different from directional preferences for ornamental secondary sexual traits. Thus, the most compatible partner is on average not the one with most pronounced ornaments and vice versa. Hence, mating preferences may often conflict. Here, we present a solution to this problem while investigating the interplay of mating preferences for relatedness (a compatibility criterion) and large body size (an ornamental or quality trait). In previous experiments, both sexes of Pelvicachromis taeniatus, a cichlid fish with mutual mate choice, showed preferences for kin and large partners when these criteria were tested separately. In the present study, test fish were given a conflicting choice between two potential mating partners differing in relatedness as well as in body size in such a way that preferences for both criteria could not simultaneously be satisfied. We show that a sex-specific trade-off occurs between mating preferences for body size and relatedness. For females, relatedness gained greater importance than body size, whereas the opposite was true for males. We discuss the potential role of the interplay between mating preferences for relatedness and body size for the evolution of inbreeding preference.  相似文献   

7.
Inbreeding and inbreeding avoidance are key factors in the evolution of animal societies, influencing dispersal and reproductive strategies which can affect relatedness structure and helping behaviours. In cooperative breeding systems, individuals typically avoid inbreeding through reproductive restraint and/or dispersing to breed outside their natal group. However, where groups contain multiple potential mates of varying relatedness, strategies of kin recognition and mate choice may be favoured. Here, we investigate male mate choice and female control of paternity in the banded mongoose (Mungos mungo), a cooperatively breeding mammal where both sexes are often philopatric and mating between relatives is known to occur. We find evidence suggestive of inbreeding depression in banded mongooses, indicating a benefit to avoiding breeding with relatives. Successfully breeding pairs were less related than expected under random mating, which appeared to be driven by both male choice and female control of paternity. Male banded mongooses actively guard females to gain access to mating opportunities, and this guarding behaviour is preferentially directed towards less closely related females. Guard–female relatedness did not affect the guard's probability of gaining reproductive success. However, where mate‐guards are unsuccessful, they lose paternity to males that are less related to the females than themselves. Together, our results suggest that both sexes of banded mongoose use kin discrimination to avoid inbreeding. Although this strategy appears to be rare among cooperative breeders, it may be more prominent in species where relatedness to potential mates is variable, and/or where opportunities for dispersal and mating outside of the group are limited.  相似文献   

8.
Wang C  Lu X 《Molecular ecology》2011,20(13):2851-2863
Socially monogamous female birds routinely mate with males outside the pair bond. Three alternative hypotheses consider genetic benefits as the major driver behind the female strategy. The inbreeding avoidance hypothesis predicts that females paired with closely related males should seek copulations with distantly related extra-pair partners to avoid fitness loss from inbreeding depression; the outbreeding avoidance hypothesis predicts the opposite; the kin-selection hypothesis suggests that regardless of social mate relatedness, females should give related males extra-pair fertilization opportunities to gain inclusive fitness if the costs from inbreeding are minor. We test these hypotheses with a facultative cooperative breeder, the ground tit (Parus humilis). Social pairs of ground tits formed randomly with respect to genetic relatedness. In both bi-parental and cooperative groups, a female's engaging in extra-pair mating was independent of relatedness to her social mate; however, females preferred extra-pair sires to which they were more related than to their social mates. Moreover, females had higher relatedness with either their extra-group extra-pair sires in both bi-parental and cooperative groups, or within-group helper sires in cooperative groups, than expected by chance. When more than one potential extra-pair partner was available around a female's nest, she tended to select a relative. There was no indication of fitness reduction from extra-pair mating, which occurred at an intermediate level of inbreeding. These data support the kin-selection hypothesis, although there might be alternative nongenetic reasons associated with the extra-pair mating preference. Our finding offers a new explanation for why female birds pursue extra-pair mating. It also may broaden our understanding of the role of kin-selection in the evolution of cooperative society.  相似文献   

9.
Although inbreeding depression and mechanisms for kin recognition have been described in natural bird populations, inbreeding avoidance through mate choice has rarely been reported suggesting that sex‐biased dispersal is the main mechanism reducing the risks of inbreeding. However, a full understanding of the effect of dispersal on the occurrence of inbred matings requires estimating the inbreeding risks prior to dispersal. Combining pairwise relatedness measures and kinship assignments, we investigated in black grouse whether the observed occurrence of inbred matings was explained by active kin discrimination or by female‐biased dispersal. In this large continuous population, copulations between close relatives were rare. As female mate choice was random for relatedness, females with more relatives in the local flock tended to mate with genetically more similar males. To quantify the initial risks of inbreeding, we measured the relatedness to the males of females captured in their parental flock and virtually translocated female hatchlings in their parental and to more distant flocks. These tests indicated that dispersal decreased the likelihood of mating with relatives and that philopatric females had higher inbreeding risks than the actual breeding females. As females do not discriminate against relatives, the few inbred matings were probably due to the variance in female dispersal propensity and dispersal distance. Our results support the view that kin discrimination mate choice is of little value if dispersal effectively reduces the risks of inbreeding.  相似文献   

10.
Since inbreeding in Tetranychus urticae can reduce offspring fitness, sexual selection may favour disassortative mate choice with respect to relatedness of the mating partners. We tested whether T. urticae shows this preference for mating with unrelated partners. We chose an experimental set-up with high potential for female choosiness, since females only mate once and are therefore expected to be the choosier gender. An adult virgin female was placed together with two adult males from the same population. One male was unrelated and the other male was related—a brother with whom she had grown up. Significantly more copulations (64%) took place with the unrelated male. Time to mating did not depend on the female-to-male relatedness. The remaining (non-copulating) male tried to interfere with the ongoing mating in the majority of cases, but this interference did not depend on the female-to-male relatedness. These results imply that T. urticae (a) can recognize kin (via genetic and/or environmental similarity) and (b) has the potential to avoid inbreeding through mate choice.  相似文献   

11.
Although relatedness between mates is of considerable evolutionary and ecological significance, the way in which the level of relatedness is determined by different behavioural processes remains largely unknown. We investigated the role of behaviour in predicting mate relatedness in great tits using genotypic markers and detailed observations. We studied how mate relatedness is influenced by natal dispersal, inbreeding/outbreeding avoidance after natal dispersal and a behaviour not previously considered that influences membership to social aggregations, namely family escorting behaviour by parents. Among locally born individuals, the level of mate relatedness decreased with natal dispersal distance for females, but not for males. In contrast, mate relatedness was negatively related to the extent of family movements for males, but not for females. However, family movements did not predict dispersal distance for either sex. Local recruits were more related to their mates than immigrants, but this was only significant for females. No evidence was found for inbreeding/outbreeding avoidance after dispersal. Our results suggest that, in highly mobile species, mating options are spatially and/or socially limited, and that parents influence mating options of their offspring before dispersal.  相似文献   

12.
Recent evidence shows that females exert a post‐copulatory fertilization bias in favour of unrelated males to avoid the genetic incompatibilities derived from inbreeding. One of the mechanisms suggested for fertilization biases in insects is female control over transport of sperm to the sperm‐storage organs. We investigated post‐copulatory inbreeding‐avoidance mechanisms in females of the cricket Teleogryllus oceanicus. We assessed the relative contribution of related and unrelated males to the sperm stores of double‐mated females. To demonstrate unequivocally that biased sperm storage results from female control rather than cryptic male choice, we manipulated the relatedness of mated males and of males performing post‐copulatory mate guarding. Our results show that when guarded by a related male, females store less sperm from their actual mate, irrespective of the relatedness of the mating male. Our data support the notion that inhibition of sperm storage by female crickets can act as a form of cryptic female choice to avoid the severe negative effects of inbreeding.  相似文献   

13.
Inbreeding depression, as commonly found in natural populations, should favour the evolution of inbreeding avoidance mechanisms. If natal dispersal, the first and probably most effective mechanism, does not lead to a complete separation of males and females from a common origin, a small-scale genetic population structure may result and other mechanisms to avoid inbreeding may exist. We studied the genetic population structure and individual mating patterns in blue tits (Parus caeruleus). The population showed a local genetic structure in two out of four years: genetic relatedness between individuals (estimated from microsatellite markers) decreased with distance. This pattern was mainly caused by immigrants to the study area; these, if paired with fellow immigrants, were more related than expected by chance. Since blue tits did not avoid inbreeding with their social partner, we examined if individuals preferred less related partners at later stages of the mate choice process. We found no evidence that females or males avoided inbreeding through extra-pair copulations or through mate desertion and postbreeding dispersal. Although the small-scale genetic population structure suggests that blue tits could use a simple rule of thumb to select less related mates, females did not generally prefer more distantly breeding extra-pair partners. However, the proportion of young fathered by an extra-pair male in mixed paternity broods depended on the genetic relatedness with the female. This suggests that there is a fertilization bias towards less related copulation partners and that blue tits are able to reduce the costs of inbreeding through a postcopulatory process.  相似文献   

14.
Inbreeding avoidance reduces the probability that an individual will mate with a related partner, thereby lowering the risk that it produces inbred offspring suffering from inbreeding depression. Inbreeding avoidance can occur through several mechanisms, including active mate choice, polyandry and sex‐biased dispersal. Here, we focus on the role of active mate choice as a mechanism for inbreeding avoidance. Recent evidence suggests that the experimental design used in mate choice experiments (i.e. simultaneous versus sequential choice) can have a strong impact on the strength of the reported mating preferences. In this study, we examine whether similar effects of experimental design also apply in the context of inbreeding avoidance. To this end, we designed two experiments on the burying beetle Nicrophorus vespilloides that matched two different contexts under which females encounter potential mates in the wild; that is, when females encounter males simultaneously and sequentially. We found that females were as likely to mate with related and unrelated males regardless of whether they encountered male partners simultaneously or sequentially. Thus, our study provides no evidence for inbreeding avoidance in this species, and suggests that the number of mates present did not influence the degree of inbreeding avoidance. We discuss potential explanations for the lack of inbreeding avoidance through mate choice, including lack of mechanisms for recognizing close relatives, low costs and/or low risks of inbreeding and the presence of other inbreeding avoidance mechanisms, such as sex‐biased dispersal and polyandry coupled with post‐copulatory mate choice.  相似文献   

15.
Genetic diversity is a key factor that can influence mate choice in many species. We experimentally determined the influence of this factor on mate preference in the crustacean terrestrial isopod Armadillidium vulgare. This biological model is gregarious which could increase the risk of inbreeding by mating with closely related partners. Mechanisms of inbreeding avoidance during mate choice can thus be expected. Moreover, previous studies predict that males would be the choosy sex. We performed Y‐choice tests giving males the choice between two females presenting different levels of heterozygosity and genetic similarity to the male. Our results show potential inbreeding avoidance according to the genetic characteristics of females presented to males. The higher the variation in genetic similarity to the male between females is, the higher the preference of the male towards the most dissimilar female is. Hence, male preferences may only be detectable when the difference between females’ genetic characteristics is large enough. If heterozygosity is associated with fitness in A. vulgare (as in many organisms), the patterns of mate preference we observe may be adaptive.  相似文献   

16.
Under haplodiploidy, a characteristic trait of all Hymenoptera, females develop from fertilised eggs, and males from unfertilised ones. Males are therefore typically haploid. Yet, inbreeding can lead to the production of diploid males that often fail in development, are sterile or are of lower fertility. In most Hymenoptera, inbreeding is avoided by dispersal flights of one or both sexes, leading to low diploid male loads. We investigated causes for the production of diploid males and their performance in a highly inbred social Hymenopteran species. In the ant Hypoponera opacior, inbreeding occurs between wingless sexuals, which mate within the mother nest, whereas winged sexuals outbreed during mating flights earlier in the season. Wingless males mate with queen pupae and guard their mating partners. We found that they mated randomly with respect to relatedness, indicating that males do not avoid mating with close kin. These frequent sib‐matings lead to the production of diploid males, which are able to sire sterile triploid offspring. We compared mating activity and lifespan of haploid and diploid wingless males. As sexual selection acts on the time of emergence and body size in this species, we also investigated these traits. Diploid males resembled haploid ones in all investigated traits. Hence, albeit diploid males cannot produce fertile offspring, they keep up with haploid males in their lifetime mating success. Moreover, by fathering viable triploid workers, they contribute to the colonies' work force. In conclusion, the lack of inbreeding avoidance led to frequent sib‐matings of wingless sexuals, which in turn resulted in the regular production of diploid males. However, in contrast to many other Hymenopteran species, diploid males exhibit normal sexual behaviour and sire viable, albeit sterile daughters.  相似文献   

17.
Indirect benefits of mate choice result from increased offspring genetic quality and may be important drivers of female behaviour. ‘Good‐genes‐for‐viability’ models predict that females prefer mates of high additive genetic value, such that offspring survival should correlate with male attractiveness. Mate choice may also vary with genetic diversity (e.g. heterozygosity) or compatibility (e.g. relatedness), where the female's genotype influences choice. The relative importance of these nonexclusive hypotheses remains unclear. Leks offer an excellent opportunity to test their predictions, because lekking males provide no material benefits and choice is relatively unconstrained by social limitations. Using 12 years of data on lekking lance‐tailed manakins, Chiroxiphia lanceolata, we tested whether offspring survival correlated with patterns of mate choice. Offspring recruitment weakly increased with father attractiveness (measured as reproductive success, RS), suggesting attractive males provide, if anything, only minor benefits via offspring viability. Both male RS and offspring survival until fledging increased with male heterozygosity. However, despite parent–offspring correlation in heterozygosity, offspring survival was unrelated to its own or maternal heterozygosity or to parental relatedness, suggesting survival was not enhanced by heterozygosity per se. Instead, offspring survival benefits may reflect inheritance of specific alleles or nongenetic effects. Although inbreeding depression in male RS should select for inbreeding avoidance, mates were not less related than expected under random mating. Although mate heterozygosity and relatedness were correlated, selection on mate choice for heterozygosity appeared stronger than that for relatedness and may be the primary mechanism maintaining genetic variation in this system despite directional sexual selection.  相似文献   

18.
Although the variability and complexity of chimpanzee behaviour frustrates generalization, it is widely believed that social evolution in this species occurs in the context of the recognizable social group or community. We used a combination of field observations and noninvasive genotyping to study the genetic structure of a habituated community of 55 wild chimpanzees, Pan troglodytes verus, in the Ta? Forest, C?te d'Ivoire. Pedigree relationships in that community show that female mate choice strategies are more variable than previously supposed and that the observed social groups are not the exclusive reproductive units. Genetic evidence based on nuclear microsatellite markers and behavioural obser-vations reveal that females in the Ta? forest actively seek mating partners outside their social unit; noncommunity males accounted for half the paternities over 5 years. This female mating strategy increases male gene flow between communities despite male philopatry, and negates the predicted higher relatedness among community males. Kin selection seems unlikely to explain the frequent cooperation and sharing observed among group males in this population. Similarly, inbreeding avoidance is probably not the sole cause of permanent adolescent female dispersal as a combination of extragroup mating and avoidance of incest with home group males would allow females to avoid inbreeding without the hazards associated with immigration into a new community. Extragroup mating as part of chimpanzee females' reproductive strategy may allow them to choose from a wider variety and number of males, without losing the resources and support provided by their male social group partners. Copyright 1999 The Association for the Study of Animal Behaviour.  相似文献   

19.
Avoiding inbreeding, and therefore avoiding inbreeding depression in offspring fitness, is widely assumed to be adaptive in systems with biparental reproduction. However, inbreeding can also confer an inclusive fitness benefit stemming from increased relatedness between parents and inbred offspring. Whether or not inbreeding or avoiding inbreeding is adaptive therefore depends on a balance between inbreeding depression and increased parent-offspring relatedness. Existing models of biparental inbreeding predict threshold values of inbreeding depression above which males and females should avoid inbreeding, and predict sexual conflict over inbreeding because these thresholds diverge. However, these models implicitly assume that if a focal individual avoids inbreeding, then both it and its rejected relative will subsequently outbreed. We show that relaxing this assumption of reciprocal outbreeding, and the assumption that focal individuals are themselves outbred, can substantially alter the predicted thresholds for inbreeding avoidance for focal males. Specifically, the magnitude of inbreeding depression below which inbreeding increases a focal male’s inclusive fitness increases with increasing depression in the offspring of a focal female and her alternative mate, and it decreases with increasing relatedness between a focal male and a focal female’s alternative mate, thereby altering the predicted zone of sexual conflict. Furthermore, a focal male’s inclusive fitness gain from avoiding inbreeding is reduced by indirect opportunity costs if his rejected relative breeds with another relative of his. By demonstrating that variation in relatedness and inbreeding can affect intra- and inter-sexual conflict over inbreeding, our models lead to novel predictions for family dynamics. Specifically, parent-offspring conflict over inbreeding might depend on the alternative mates of rejected relatives, and male-male competition over inbreeding might lead to mixed inbreeding strategies. Making testable quantitative predictions regarding inbreeding strategies occurring in nature will therefore require new models that explicitly capture variation in relatedness and inbreeding among interacting population members.  相似文献   

20.
The differential allocation hypothesis predicts increased investment in offspring when females mate with high-quality males. Few studies have tested whether investment varies with mate relatedness, despite evidence that non-additive gene action influences mate and offspring genetic quality. We tested whether female lekking lance-tailed manakins (Chiroxiphia lanceolata) adjust offspring sex and egg volume in response to mate attractiveness (annual reproductive success, ARS), heterozygosity and relatedness. Across 968 offspring, the probability of being male decreased with increasing parental relatedness but not father ARS or heterozygosity. This correlation tended to diminish with increasing lay-date. Across 162 offspring, egg volume correlated negatively with parental relatedness and varied with lay-date, but was unrelated to father ARS or heterozygosity. Offspring sex and egg size were unrelated to maternal age. Comparisons of maternal half-siblings in broods with no mortality produced similar results, indicating differential allocation rather than covariation between female quality and relatedness or sex-specific inbreeding depression in survival. As males suffer greater inbreeding depression, overproducing females after mating with related males may reduce fitness costs of inbreeding in a system with no inbreeding avoidance, while biasing the sex of outbred offspring towards males may maximize fitness via increased mating success of outbred sons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号