首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The molecular mechanisms of the mammalian gustatory system have been examined in many studies using rodents as model organisms. In this study, we examined the mRNA expression of molecules involved in taste signal transduction in the fungiform papillae (FuP) and circumvallate papillae (CvP) of the rhesus macaque, Macaca mulatta, using in situ hybridization. TAS1R1, TAS1R2, TAS2Rs, and PKD1L3 were exclusively expressed in different subsets of taste receptor cells (TRCs) in the FuP and CvP. This finding suggests that TRCs sensing different basic taste modalities are mutually segregated in macaque taste buds. Individual TAS2Rs exhibited a variety of expression patterns in terms of the apparent level of expression and the number of TRCs expressing these genes, as in the case of human TAS2Rs. GNAT3, but not GNA14, was expressed in TRCs of FuP, whereas GNA14 was expressed in a small population of TRCs of CvP, which were distinct from GNAT3- or TAS1R2-positive TRCs. These results demonstrate similarities and differences between primates and rodents in the expression profiles of genes involved in taste signal transduction.  相似文献   

2.
In order to understand differences in taste sensitivities of taste bud cells between the anterior and posterior part of tongue, it is important to analyze the regional expression patterns of genes related to taste signal transduction on the tongue. Here we examined the expression pattern of a taste receptor family, the T1r family, and gustducin in circumvallate and fungiform papillae of the mouse tongue using double-labeled in situ hybridization. Each member of the T1r family was expressed in both circumvallate and fungiform papillae with some differences in their expression patterns. The most striking difference between fungiform and circumvallate papillae was observed in their co-expression patterns of T1r2, T1r3, and gustducin. T1r2-positive cells in fungiform papillae co-expressed T1r3 and gustducin, whereas T1r2 and T1r3 double-positive cells in circumvallate papillae merely expressed gustducin. These results suggested that in fungiform papillae, gustducin might play a role in the sweet taste signal transduction cascade mediated by a sweet receptor based on the T1r2 and T1r3 combination, in fungiform papillae.  相似文献   

3.
The adult fungiform taste papilla is a complex of specialized cell types residing in the stratified squamous tongue epithelium. This unique sensory organ includes taste buds, papilla epithelium and lateral walls that extend into underlying connective tissue to surround a core of lamina propria cells. Fungiform papillae must contain long-lived, sustaining or stem cells and short-lived, maintaining or transit amplifying cells that support the papilla and specialized taste buds. Shh signaling has established roles in supporting fungiform induction, development and patterning. However, for a full understanding of how Shh transduced signals act in tongue, papilla and taste bud formation and maintenance, it is necessary to know where and when the Shh ligand and pathway components are positioned. We used immunostaining, in situ hybridization and mouse reporter strains for Shh, Ptch1, Gli1 and Gli2-expression and proliferation markers to identify cells that participate in hedgehog signaling. Whereas there is a progressive restriction in location of Shh ligand-expressing cells, from placode and apical papilla cells to taste bud cells only, a surrounding population of Ptch1 and Gli1 responding cells is maintained in signaling centers throughout papilla and taste bud development and differentiation. The Shh signaling targets are in regions of active cell proliferation. Using genetic-inducible lineage tracing for Gli1-expression, we found that Shh-responding cells contribute not only to maintenance of filiform and fungiform papillae, but also to taste buds. A requirement for normal Shh signaling in fungiform papilla, taste bud and filiform papilla maintenance was shown by Gli2 constitutive activation. We identified proliferation niches where Shh signaling is active and suggest that epithelial and mesenchymal compartments harbor potential stem and/or progenitor cell zones. In all, we report a set of hedgehog signaling centers that regulate development and maintenance of taste organs, the fungiform papilla and taste bud, and surrounding lingual cells. Shh signaling has roles in forming and maintaining fungiform papillae and taste buds, most likely via stage-specific autocrine and/or paracrine mechanisms, and by engaging epithelial/mesenchymal interactions.  相似文献   

4.
Taste receptor family 1 member 3, TAS1R3, is shown to be involved in sweet and umami tastes in mouse, and the nucleotide sequence of the gene has been reported in rat, gorilla, and human. Pigs are frequently used as models for human diseases, and are also considered to be source animals for xenotransplantation to humans due to their anatomical and physiological similarities to humans. Therefore, in the present study, the genomic structure of the swine TAS1R3 gene was determined, and TAS1R3 expression was studied in various swine tissues. The gene was shown to reside on swine chromosome 6q22-->q23, from which three types of mRNAs were generated: 3,752 bp derived from six exons in tongue, 3,704 bp from six exons and 3,630 bp from seven exons in testis. The 6 exons/5 introns were structurally similar to those of humans and mice, but the 7 exons/6 introns structure of TAS1R3 was first observed in swine. High expressions of TAS1R3 were revealed in tongue, kidney, and testis by real-time PCR. The expression profile of the tissues except for kidney was similar to that of mouse. When in situ hybridization using an RNA probe for TAS1R3 was performed on swine tongue and testis tissues, TAS1R3 expressions were revealed in tongue circumvallate papillae, fungiform papillae, mucosal epithelium, follicular B lymphocytes, lymphocytes in submucosal tissues of lingual tonsil, and spermatogenic cells. Using peripheral mature B lymphocytes, the expression of TAS1R3 in B lymphocytes was further confirmed by real-time PCR and sequencing of the real-time PCR product.  相似文献   

5.
In mammals, taste buds develop in different regions of the oral cavity. Small epithelial protrusions form fungiform papillae on the ectoderm-derived dorsum of the tongue and contain one or few taste buds, while taste buds in the soft palate develop without distinct papilla structures. In contrast, the endoderm-derived circumvallate and foliate papillae located at the back of the tongue contain a large number of taste buds. These taste buds cluster in deep epithelial trenches, which are generated by intercalating a period of epithelial growth between initial placode formation and conversion of epithelial cells into sensory cells. How epithelial trench formation is genetically regulated during development is largely unknown. Here we show that Pax9 acts upstream of Pax1 and Sox9 in the expanding taste progenitor field of the mouse circumvallate papilla. While a reduced number of taste buds develop in a growth-retarded circumvallate papilla of Pax1 mutant mice, its development arrests completely in Pax9-deficient mice. In addition, the Pax9 mutant circumvallate papilla trenches lack expression of K8 and Prox1 in the taste bud progenitor cells, and gradually differentiate into an epidermal-like epithelium. We also demonstrate that taste placodes of the soft palate develop through a Pax9-dependent induction. Unexpectedly, Pax9 is dispensable for patterning, morphogenesis and maintenance of taste buds that develop in ectoderm-derived fungiform papillae. Collectively, our data reveal an endoderm-specific developmental program for the formation of taste buds and their associated papilla structures. In this pathway, Pax9 is essential to generate a pool of taste bud progenitors and to maintain their competence towards prosensory cell fate induction.  相似文献   

6.
Gurmarin (Gur) is a peptide that selectively suppresses sweet taste responses in rodents. The inhibitory effect of Gur differs among tongue regions and mouse strains. Recent studies demonstrated that co-expression levels of genes controlling sweet receptors (T1r2/T1r3 heterodimer) versus Gα-protein, gustducin, are much lower in Gur-insensitive posterior circumvallate papillae than in Gur-sensitive anterior fungiform papillae. Here, we investigated the potential link of Gur-sensitivity with the co-expression for T1r2/T1r3 receptors and gustducin by comparing those of taste tissues of Gur-sensitive (B6, dpa congenic strains) and Gur-weakly-sensitive (BALB) strains. The results indicated that co-expression ratios among T1r2, T1r3, and gustducin in the fungiform papillae were significantly lower in Gur-weakly-sensitive BALB mice than in Gur-sensitive B6 and dpa congenic mice. This linkage between Gur-sensitivity and co-expression for T1r2/T1r3 receptors versus gustducin suggests that gustducin may be a key molecule involved in the pathway for Gur-sensitive sweet responses.  相似文献   

7.
8.
We have earlier shown that the taste-bud-bearing fungiform papillaeform a stable pattern on the tongue of rats. In this study theeffect of removal of the fungiform papillae in rats was investigated.The fungiform papillae on a 10 x 5-mm area on one side of thetongue were removed after mapping of both sides under an operatingmicroscope. Serial sections of five rat tongues within 1 dayof biopsy showed that all but one papilla were gone. After 4,6 and 12 months an average of seven papillae with taste-budswere found in the operated area, compared to 20, 26 and 23 inthe controls. Comparison of tongue maps before and after theseperiods showed that papillae had not migrated from areas outsidethe area of the biopsies. To test the assumption that the extentof biopsy determined the amount of regeneration, only the upperpart of the papillae with their taste buds were removed in 15rats. Complete regeneration of papillae and taste buds was obtainedwithin 14 days. The function of the regenerated taste buds wastested by bilateral recording from the chorda tympani propernerves. No difference in response amplitudes was observed betweenthe sides. When, however, the whole papilla including its basewas removed, neither the papilla nor the taste-bud regenerated.The results show that the ability of the fungiform papilla andthe taste-bud to regenerate after removal of the papilla isrelated to the extent of the biopsy. If the entire papilla includingits base is removed, it will not regenerate. If only the upperpart is removed, complete regeneration of both papilla and itstaste-bud will occur.  相似文献   

9.
Umami taste (corresponds to savory in English) is elicited by L-glutamate, typically as its Na salt (monosodium glutamate: MSG), and is one of five basic taste qualities that plays a key role in intake of amino acids. A particular property of umami is the synergistic potentiation of glutamate by purine nucleotide monophosphates (IMP, GMP). A heterodimer of a G protein coupled receptor, TAS1R1 and TAS1R3, is proposed to function as its receptor. However, little is known about genetic variation of TAS1R1 and TAS1R3 and its potential links with individual differences in umami sensitivity. Here we investigated the association between recognition thresholds for umami substances and genetic variations in human TAS1R1 and TAS1R3, and the functions of TAS1R1/TAS1R3 variants using a heterologous expression system. Our study demonstrated that the TAS1R1-372T creates a more sensitive umami receptor than -372A, while TAS1R3-757C creates a less sensitive one than -757R for MSG and MSG plus IMP, and showed a strong correlation between the recognition thresholds and in vitro dose - response relationships. These results in human studies support the propositions that a TAS1R1/TAS1R3 heterodimer acts as an umami receptor, and that genetic variation in this heterodimer directly affects umami taste sensitivity.  相似文献   

10.
Brain-derived neurotrophic factor (BDNF) and Neurotrophin 3 (NT-3) are members of the neurotrophin family and are expressed in the developing and adult tongue papillae. BDNF null-mutated mice exhibit specific impairments related to innervation and development of the gustatory system while NT-3 null mice have deficits in their lingual somatosensory innervation. To further evaluate the functional specificity of these neurotrophins in the peripheral gustatory system, we generated double BDNF/NT-3 knockout mice and compared the phenotype to BDNF?/? and wild-type mice. Taste papillae morphology was severely distorted in BDNF?/?xNT-3?/? mice compared to single BDNF?/? and wild-type mice. The deficits were found throughout the tongue and all gustatory papillae. There was a significant loss of fungiform papillae and the papillae were smaller in size compared to BDNF?/? and wild-type mice. Circumvallate papillae in the double knockouts were smaller and did not contain any intraepithelial nerve fibers. BDNF?/?xNT-3?/? mice exhibited additive losses in both somatosensory and gustatory innervation indicating that BDNF and NT-3 exert specific roles in the innervation of the tongue. However, the additional loss of fungiform papillae and taste buds in BDNF?/?xNT-3?/? mice compared to single BDNF knockout mice indicate a synergistic functional role for both BDNF-dependent gustatory and NT-3-dependent somatosensory innervations in taste bud and taste papillae innervation and development.  相似文献   

11.
Three sweet receptor genes are clustered in human Chromosome 1   总被引:3,自引:0,他引:3  
Liao  Jiayu  Schultz  Peter G. 《Mammalian genome》2003,14(5):291-301
A search of the human genome database led us to identify three human candidate taste receptors, hT1R1, hT1R2, and hT1R3, which contain seven transmembrane domains. All three genes map to a small region of Chromosome (Chr) 1. This region is syntenous to the distal end of Chr 4 in mouse, which contains the Sac (saccharin preference) locus that is involved in detecting sweet tastants. A genetic marker, DVL1, which is linked to the Sac locus, is within 1700 bp of human T1R3. Recently, the murine T1Rs and its human ortholog have been independently identified in combination as sweet and umami receptors near the Sac locus. All three hT1Rs genes are expressed selectively in human taste receptor cells in the fungiform papillae, consistent with their role in taste perception.  相似文献   

12.
Type III IP3 receptor (IP3R3) is one of the common critical calcium-signaling molecules for sweet, umami, and bitter signal transduction in taste cells, and the total IP3R3-expressing cell population represents all cells mediating these taste modalities in the taste buds. Although gustducin, a taste cell-specific G-protein, is also involved in sweet, umami, and bitter signal transduction, the expression of gustducin is restricted to different subsets of IP3R3-expressing cells by location in the tongue. Based on the expression patterns of gustducin and taste receptors in the tongue, the function of gustducin has been implicated primarily in bitter taste in the circumvallate (CV) papillae and in sweet taste in the fungiform (FF) papillae. However, in the soft palate (SP), the expression pattern of gustducin remains unclear and little is known about its function. In the present paper, the expression patterns of gustducin and IP3R3 in taste buds of the SP and tongue papillae in the rat were examined by double-color whole-mount immunohistochemistry. Gustducin was expressed in almost all (96.7%) IP3R3-expressing cells in taste buds of the SP, whereas gustducin-positive cells were 42.4% and 60.1% of IP3R3-expressing cells in FF and CV, respectively. Our data suggest that gustducin is involved in signal transduction of all the tastes of sweet, umami, and bitter in the SP, in contrast to its limited function in the tongue.  相似文献   

13.
Polymorphisms in the TAS2R38 gene provide insight to phenotypes long associated 6-n-propylthiouracil (PROP) and phenylthiocarbamide bitterness. We tested relationships between TAS2R38 genotype, taste phenotype, and fungiform papillae (FP) number in 139 females and 59 males (age range 21-60 years), primarily of European ancestry. DNA was analyzed for 3 polymorphic sites, identifying common (alanine-valine-isoleucine [AVI/AVI], heterozygotes, proline-alanine-valine [PAV/PAV]) and rare (proline-valine-isoleucine, alanine-alanine-valine, AAI) forms. Individuals with PROP threshold >0.15 mM were almost exclusively AVI/AVI; those with threshold <0.1 mM could have any genotype. PAV/PAVs were more difficult to identify with PROP taste measures, although perceived bitterness of moderate PROP concentrations (0.32, 1 mM) had better correspondence with genotype than did threshold. For AVI/AVIs, increases in bitterness from 1 to 3.2 mM PROP nearly paralleled those of TAS2R38 heterozygotes and PAV/PAVs. Some bitterness gains were related to FP number sampled from a standard area on the tongue tip, yet the PROP bitterness-FP relationship differed across genotype. Among homozygotes, FP was a significant determinant of PROP bitterness; heterozygotes showed a flat relationship. Those tasting concentrated PROP as more bitter also tasted concentrated sucrose, citric acid, sodium chloride, and quinine as more intense, even after statistically controlling for TAS2R38 genotype, FP, and intensity of tones (nonoral standard). To summarize, although PROP threshold generally exhibited single-gene complete dominance, PROP bitterness may involve additional bitter receptors as evidenced by misclassification of some nontaster homozygotes and the bitterness functions for concentrated PROP. Variability in receptor expression may explain attenuated bitterness-FP relationships. PROP bitterness does associate with heightened taste sensations (i.e., supertasting), but this is not due to TAS2R38 polymorphisms.  相似文献   

14.
Umami is a pleasant savoury taste imparted by glutamate, a type of amino acid, and ribonucleotides, including inosinate and guanylate, which occur naturally in many foods including meat, fish, vegetables and dairy products. A heterodimer of TAS1R1 and TAS1R3 is known to function as umami taste receptor in humans. To address the association between genetic polymorphism of TAS1R1 / TAS1R3 genes and individual difference in umami taste sensitivity, we have examined the entire coding region of these genes using PCR-mediated direct sequencing analysis. A total of 11 SNPs were identified from 98 unrelated Korean individuals and were in Hardy-Weinberg Equilibrium. Four out of 11 SNPs were found in the exons and two of them were nonsynonymous ones. These coding SNPs (cSNPs), p.A372T in TAS1R1 and p.C757R in TAS1R3 genes, were common in Koreans, so these will be useful resource for further studies to find a functional allele for individual variation to umami taste sensitivity in our population.  相似文献   

15.
The dorsal surface of the mammalian tongue is covered with four kinds of papillae, fungiform, circumvallate, foliate and filiform papillae. With the exception of the filiform papillae, these types of papillae contain taste buds and are known as the gustatory papillae. The gustatory papillae are distributed over the tongue surface in a distinct spatial pattern. The circumvallate and foliate papillae are positioned in the central and lateral regions respectively and the fungiform papillae are distributed on the anterior part of the tongue in a stereotyped array. The patterned distribution and developmental processes of the fungiform papillae indicate some similarity between the fungiform papillae and the other epithelial appendages, including the teeth, feathers and hair. This is because 1) prior to the morphological changes, the signaling molecules are expressed in the fungiform papillae forming area with a stereotyped pattern; 2) the morphogenesis of the fungiform papillae showed specific structures in early development, such as epithelial thickening and mesenchymal condensation and 3) the fungiform papillae develop through reciprocal interactions between the epithelium and mesenchymal tissue. These results led us to examine whether or not the early organogenesis of the fungiform papillae is a good model system for understanding both the spacing pattern and the epithelial-mesenchymal interaction during embryogenesis.  相似文献   

16.
Proper development of taste organs including the tongue and taste papillae requires interactions with the underlying mesenchyme through multiple molecular signaling pathways. The effects of bone morphogenetic proteins (BMPs) and antagonists are profound, however, the tissue‐specific roles of distinct receptors are largely unknown. Here, we report that constitutive activation (ca) of ALK2‐BMP signaling in the tongue mesenchyme (marked by Wnt1‐Cre) caused microglossia—a dramatically smaller and misshapen tongue with a progressively severe reduction in size along the anteroposterior axis and absence of a pharyngeal region. At E10.5, the tongue primordia (branchial arches 1–4) formed in Wnt1‐Cre/caAlk2 mutants while each branchial arch responded to elevated BMP signaling distinctly in gene expression of BMP targets (Id1, Snai1, Snai2, and Runx2), proliferation (Cyclin‐D1) and apoptosis (p53). Moreover, elevated ALK2‐BMP signaling in the mesenchyme resulted in apparent defects of lingual epithelium, muscles, and nerves. In Wnt1‐Cre/caAlk2 mutants, a circumvallate papilla was missing and further development of formed fungiform papillae was arrested in late embryos. Our data collectively demonstrate that ALK2‐BMP signaling in the mesenchyme plays essential roles in orchestrating various tissues for proper development of the tongue and its appendages in a region‐specific manner.  相似文献   

17.
Taste buds were found to stain strongly and selectively in intact papillae with highly acidic dyes such as ponceau S. In intact tongues the taste buds in the fungiform, circumvallate and foliate papillae of the cynomolgus monkey and in the fungiform papillae of the rat as well as the taste discs in the fungiform papillae of the frog could be visualized. This method enables a rapid location and counting of taste buds in taste papillae without preparing histological sections. In cynomolgus tongue material fixed in formalin, the dyes penetrate into the buds. In fresh tongues only the taste pore region of the buds stains, which suggests that in vivo taste buds are impenetrable underneath the pore.  相似文献   

18.
Although canonical Wnt signaling is known to regulate taste papilla induction and numbers, roles for noncanonical Wnt pathways in tongue and taste papilla development have not been explored. With mutant mice and whole tongue organ cultures we demonstrate that Wnt5a protein and message are within anterior tongue mesenchyme across embryo stages from the initiation of tongue formation, through papilla placode appearance and taste papilla development. The Wnt5a mutant tongue is severely shortened, with an ankyloglossia, and lingual mesenchyme is disorganized. However, fungiform papilla morphology, number and innervation are preserved, as is expression of the papilla marker, Shh. These data demonstrate that the genetic regulation for tongue size and shape can be separated from that directing lingual papilla development. Preserved number of papillae in a shortened tongue results in an increased density of fungiform papillae in the mutant tongues. In tongue organ cultures, exogenous Wnt5a profoundly suppresses papilla formation and simultaneously decreases canonical Wnt signaling as measured by the TOPGAL reporter. These findings suggest that Wnt5a antagonizes canonical Wnt signaling to dictate papilla number and spacing. In all, distinctive roles for Wnt5a in tongue size, fungiform papilla patterning and development are shown and a necessary balance between non-canonical and canonical Wnt paths in regulating tongue growth and fungiform papillae is proposed in a model, through the Ror2 receptor.  相似文献   

19.
Summary Taste buds were found to stain strongly and selectively in intact papillae with highly acidic dyes such as ponceau S. In intact tongues the taste buds in the fungiform, circumvallate and foliate papillae of the cynomolgus monkey and in the fungiform papillae of the rat as well as the taste discs in the fungiform papillae of the frog could be visualized. This method enables a rapid location and counting of taste buds in taste papillae without preparing histological sections. In cynomolgus tongue material fixed in formalin, the dyes penetrate into the buds. In fresh tongues only the taste pore region of the buds stains, which suggests that in vivo taste buds are impenetrable underneath the pore.  相似文献   

20.
Brain-derived neurotrophic factor (BDNF) and neurotrophin-4 (NT4) are essential for the survival of geniculate ganglion neurons, which provide the sensory afferents for taste buds of the anterior tongue and palate. To determine how these target-derived growth factors regulate gustatory development, the taste system was examined in transgenic mice that overexpress BDNF (BDNF-OE) or NT4 (NT4-OE) in basal epithelial cells of the tongue. Overexpression of BDNF or NT4 caused a 93 and 140% increase, respectively, in the number of geniculate ganglion neurons. Surprisingly, both transgenic lines had severe reduction in fungiform papillae and taste bud number, primarily in the dorsal midregion and ventral tip of the tongue. No alterations were observed in taste buds of circumvallate or incisal papillae. Fungiform papillae were initially present on tongues of newborn BDNF-OE animals, but many were small, poorly innervated, and lost postnatally. To explain the loss of nerve innervation to fungiform papillae, the facial nerve of developing animals was labeled with the lipophilic tracer DiI. In contrast to control mice, in which taste neurons innervated only fungiform papillae, taste neurons in BDNF-OE and NT4-OE mice innervated few fungiform papillae. Instead, some fibers approached but did not penetrate the epithelium and aberrant innervation to filiform papillae was observed. In addition, some papillae that formed in transgenic mice had two taste buds (instead of one) and were frequently arranged in clusters of two or three papillae. These results indicate that target-derived BDNF and NT4 are not only survival factors for geniculate ganglion neurons, but also have important roles in regulating the development and spatial patterning of fungiform papilla and targeting of taste neurons to these sensory structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号