首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 489 毫秒
1.
The genetic recovery of resistant populations released from pesticide exposure is accelerated by the presence of environmental stressors. By contrast, the relevance of environmental stressors for the spread of resistance during pesticide exposure has not been studied. Moreover, the consequences of interactions between different stressors have not been considered. Here we show that stress through intraspecific competition accelerates microevolution, because it enhances fitness differences between adapted and non-adapted individuals. By contrast, stress through interspecific competition or predation reduces intraspecific competition and thereby delays microevolution. This was demonstrated in mosquito populations (Culex quinquefasciatus) that were exposed to the pesticide chlorpyrifos. Non-selective predation through harvesting and interspecific competition with Daphnia magna delayed the selection for individuals carrying the ace-1R resistance allele. Under non-toxic conditions, susceptible individuals without ace-1R prevailed. Likewise, predation delayed the reverse adaptation of the populations to a non-toxic environment, while the effect of interspecific competition was not significant. Applying a simulation model, we further identified how microevolution is generally determined by the type and degree of competition and predation. We infer that interactions with other species—especially strong in ecosystems with high biodiversity—can delay the development of pesticide resistance.  相似文献   

2.

Background

New approaches to delivering insecticides need to be developed to improve malaria vector control. Insecticidal durable wall lining (DL) and net wall hangings (NWH) are novel alternatives to indoor residual spraying which can be produced in a long-lasting format. Non-pyrethroid versions could be used in combination with long-lasting insecticidal nets for improved control and management of insecticide resistant vector populations.

Methods

Experimental hut trials were carried out in Valley du Kou, Burkina Faso to evaluate the efficacy of pirimiphos methyl treated DL and NWH either alone or in combination with LLINs against pyrethroid resistant Anopheles gambiae ss. Comparison was made with pyrethroid DL. Mosquitoes were genotyped for kdr and ace-1R resistant genes to investigate the insecticide resistance management potential of the combination.

Results

The overall kdr and ace-1R allele frequencies were 0.95 and 0.01 respectively. Mortality with p-methyl DL and NWH alone was higher than with pyrethroid DL alone (>95% vs 40%; P<0.001). Combining pyrethroid DL with LLINs did not show improvement in mortality (48%) compared to the LLIN alone (44%) (P>0.1). Combining p-methyl DL or NWH with LLINs reduced biting rates significantly (8–9%) compared to p-methyl DL and NWH alone (>40%) and killed all An gambiae that entered the huts. Mosquitoes bearing the ace-1R gene were more likely to survive in huts with p-methyl DL alone (p<0.03) whereas all resistant and susceptible genotypes were killed by the combination.

Conclusion

P-methyl DL and NWH outperformed pyrethroid DL. Combining p-methyl DL and NWH with LLINs could provide significant epidemiological benefits against a vector population which is resistant to pyrethroids but susceptible to organophosphates. There was evidence that the single intervention would select kdr and ace-1R resistance genes and the combination intervention might select less strongly. Technology to bind organophosphates to plastic wall lining would be worth developing.  相似文献   

3.
One view of adaptation is that it proceeds by the slow and steady accumulation of beneficial mutations with small effects. It is difficult to test this model, since in most cases the genetic basis of adaptation can only be studied a posteriori with traits that have evolved for a long period of time through an unknown sequence of steps. In this paper, we show how ace-1, a gene involved in resistance to organophosphorous insecticide in the mosquito Culex pipiens, has evolved during 40 years of an insecticide control program. Initially, a major resistance allele with strong deleterious side effects spread through the population. Later, a duplication combining a susceptible and a resistance ace-1 allele began to spread but did not replace the original resistance allele, as it is sublethal when homozygous. Last, a second duplication, (also sublethal when homozygous) began to spread because heterozygotes for the two duplications do not exhibit deleterious pleiotropic effects. Double overdominance now maintains these four alleles across treated and nontreated areas. Thus, ace-1 evolution does not proceed via the steady accumulation of beneficial mutations. Instead, resistance evolution has been an erratic combination of mutation, positive selection, and the rearrangement of existing variation leading to complex genetic architecture.  相似文献   

4.
5.

Background  

The evolutionary dynamics of xenobiotic resistance depends on how resistance mutations influence the fitness of their bearers, both in the presence and absence of xenobiotic selection pressure. In cases of multiple resistance, these dynamics will also depend on how individual resistance mutations interact with one another, and on the xenobiotics applied against them. We compared Culex quinquefasciatus mosquitoes harbouring two resistance alleles ace-1 R and Kdr R (conferring resistance to carbamate and pyrethroid insecticides, respectively) to mosquitoes bearing only one of the alleles, or neither allele. Comparisons were made in environments where both, only one, or neither type of insecticide was present.  相似文献   

6.
7.
Insensitive acetylcholinesterase resistance due to a mutation in the acetylcholinesterase (ace) encoding ace-1 gene confers cross-resistance to organophosphate and carbamate insecticides in Anopheles gambiae populations from Central and West Africa. This mutation is associated with a strong genetic cost revealed through alterations of some life history traits but little is known about the physiological and behavioural changes in insects bearing the ace-1R allele. Comparative analysis of the salivary gland contents between An. gambiae susceptible and ace-1R resistant strains was carried out to charaterize factors that could be involved in modifications of blood meal process, trophic behaviour or pathogen interaction in the insecticide-resistant mosquitoes. Differential analysis of the salivary gland protein profiles revealed differences in abundance for several proteins, two of them showing major differences between the two strains. These two proteins identified as saglin and TRIO are salivary gland-1 related proteins, a family unique to anopheline mosquitoes, one of them playing a crucial role in salivary gland invasion by Plasmodium falciparum sporozoites. Differential expression of two other proteins previously identified in the Anopheles sialome was also observed. The differentially regulated proteins are involved in pathogen invasion, blood feeding process, and protection against oxidation, relevant steps in the outcome of malaria infection. Further functional studies and insect behaviour experiments would confirm the impact of the modification of the sialome composition on blood feeding and pathogen transmission abilities of the resistant mosquitoes. The data supports the hypothesis of alterations linked to insecticide resistance in the biology of the primary vector of human malaria in Africa.  相似文献   

8.
IntroductionThe aim of this study was to characterize the association of human leukocyte antigen (HLA) B alleles and major histocompatibility complex (MHC) single nucleotide polymorphisms (SNPs) with Behçet’s disease (BD) in an Iranian dataset.MethodsThe association of three SNPs in the MHC region previously identified as the most associated in high-density genotyping studies was tested in a case–control study on 973 BD patients and 825 controls from Iran, and the association of HLA-B alleles was tested in a subset of 681 patients and 414 controls.ResultsWe found that HLA-B*51 (P = 4.11 × 10−41, OR [95% CI] = 4.63[3.66-5.85]) and B*15 confer risk for BD (P = 2.83 × 10−2, OR [95% CI] = 1.75[1.08-2.84]) in Iranian, and in B*51 negative individuals, only the B*15 allele is significantly associated with BD (P = 2.51 × 10−3, OR [95% CI] = 2.40[1.37-4.20]). rs76546355, formerly known as rs116799036, located between HLA-B and MICA (MHC class I polypeptide-related sequence A), demonstrated the same level of association with BD as HLA-B*51 (Padj = 1.78 × 10−46, OR [95% CI] = 5.46[4.21-7.09], and Padj = 8.34 × 10−48, OR [95% CI] = 5.44[4.20-7.05], respectively) in the HLA-B allelotyped subset, while rs2848713 was less associated (Padj = 7.14 × 10−35, OR [95% CI] = 3.73[2.97-4.69]) and rs9260997 was not associated (Padj = 1.00 × 10−1). Additionally, we found that B*51 genotype-phenotype correlations do not survive Bonferroni correction, while carriers of the rs76546355 risk allele predominate in BD cases with genital ulcers, positive pathergy test and positive BD family history (2.31 × 10−4 ≤ P ≤ 1.59 × 10−3).ConclusionsWe found that the HLA-B*51 allele and the rs76546355/rs116799036 MHC SNP are independent genetic risk factors for BD in Iranian, and that positivity for the rs76546355/rs116799036 risk allele, but not for B*51, does correlate with specific demographic characteristics or clinical manifestations in BD patients.

Electronic supplementary material

The online version of this article (doi:10.1186/s13075-015-0585-6) contains supplementary material, which is available to authorized users.  相似文献   

9.
The status of genes conferring resistance to organophosphate and carbamate insecticides has been examined in Culex pipiens pipiens mosquitoes sampled in Algeria. Presence of overproduced esterases was sporadic, but acetylcholinesterase-1 resistant alleles were observed in almost all samples. We focused our study on the AChE1 G119S substitution characterized in almost all samples, mostly at the heterozygous state. A genetic test revealed the presence of ace-1 duplication associating a susceptible and a resistant ace-1 copy. Molecular characterization showed a high occurrence of ace-1 duplication with six distinct duplicated alleles out of four samples. The inferred frequency of duplicated allele suggests that it is replacing the single resistant G119S allele. Finally, we discuss the mechanism at the origin of these duplicated haplotypes and their consequences on the management of insecticide resistance.  相似文献   

10.

Background

Identification of parasite genes that underlie traits such as drug resistance and host specificity is challenging using classical linkage mapping approaches. Extreme QTL (X-QTL) methods, originally developed by rodent malaria and yeast researchers, promise to increase the power and simplify logistics of linkage mapping in experimental crosses of schistosomes (or other helminth parasites), because many 1000s of progeny can be analysed, phenotyping is not required, and progeny pools rather than individuals are genotyped. We explored the utility of this method for mapping a drug resistance gene in the human parasitic fluke Schistosoma mansoni.

Results

We staged a genetic cross between oxamniquine sensitive and resistant parasites, then between two F1 progeny, to generate multiple F2 progeny. One group of F2s infecting hamsters was treated with oxamniquine, while a second group was left untreated. We used exome capture to reduce the size of the genome (from 363 Mb to 15 Mb) and exomes from pooled F2 progeny (treated males, untreated males, treated females, untreated females) and the two parent parasites were sequenced to high read depth (mean = 95-366×) and allele frequencies at 14,489 variants compared. We observed dramatic enrichment of alleles from the resistant parent in a small region of chromosome 6 in drug-treated male and female pools (combined analysis: = 11.07, p = 8.74 × 10-29). This region contains Smp_089320 a gene encoding a sulfotransferase recently implicated in oxamniquine resistance using classical linkage mapping methods.

Conclusions

These results (a) demonstrate the utility of exome capture for generating reduced representation libraries in Schistosoma mansoni, and (b) provide proof-of-principle that X-QTL methods can be successfully applied to an important human helminth. The combination of these methods will simplify linkage analysis of biomedically or biologically important traits in this parasite.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-617) contains supplementary material, which is available to authorized users.  相似文献   

11.
12.
Alleles conferring a higher adaptive value in one environment may have a detrimental impact on fitness in another environment. Alleles conferring resistance to pesticides and drugs provide textbook examples of this trade‐off as, in addition to conferring resistance to these molecules, they frequently decrease fitness in pesticide/drug‐free environments. We show here that resistance to chlorpyrifos, an organophosphate (OP), in Chinese populations of the diamondback moth, Plutella xylostella, is conferred by two mutations of ace1 – the gene encoding the acetylcholinesterase enzyme targeted by OPs – affecting the amino acid sequence of the corresponding protein. These mutations were always linked, consistent with the segregation of a single resistance allele, ace1R, carrying both mutations, in the populations studied. We monitored the frequency of ace1R (by genotyping more than 20 000 adults) and the level of resistance (through bioassays on more than 50 000 individuals) over several generations. We found that the ace1R resistance allele was costly in the absence of insecticide and that this cost was likely recessive. This fitness costs involved a decrease in fecundity: females from resistant strains laid 20% fewer eggs, on average, than females from susceptible strains. Finally, we found that the fitness costs associated with the ace1R allele were greater at high temperatures. At least two life history traits were involved: longevity and fecundity. The relative longevity of resistant individuals was affected only at high temperatures and the relative fecundity of resistant females – which was already affected at temperatures optimal for development – decreased further at high temperatures. The implications of these findings for resistance management are discussed.  相似文献   

13.
Paraquat resistance in conyza   总被引:6,自引:2,他引:4       下载免费PDF全文
A biotype of Conyza bonariensis (L.) Cronq. (identical to Conyza linefolia in other publications) originating in Egypt is resistant to the herbicide 1,1′-dimethyl-4,4′-bipyridinium ion (paraquat). Penetration of the cuticle by [14C]paraquat was greater in the resistant biotype than the susceptible (wild) biotype; therefore, resistance was not due to differences in uptake. The resistant and susceptible biotypes were indistinguishable by measuring in vitro photosystem I partial reactions using paraquat, 6,7-dihydrodipyrido [1,2-α:2′,1′-c] pyrazinediium ion (diquat), or 7,8-dihydro-6H-dipyrido [1,2-α:2′,1′-c] [1,4] diazepinediium ion (triquat) as electron acceptors. Therefore, alteration at the electron acceptor level of photosystem I is not the basis for resistance. Chlorophyll fluorescence measured in vivo was quenched in the susceptible biotype by leaf treatment with the bipyridinium herbicides. Resistance to quenching of in vivo chlorophyll fluorescence was observed in the resistant biotype, indicating that the herbicide was excluded from the chloroplasts. Movement of [14C] paraquat was restricted in the resistant biotype when excised leaves were supplied [14C]paraquat through the petiole. We propose that the mechanism of resistance to paraquat is exclusion of paraquat from its site of action in the chloroplast by a rapid sequestration mechanism. No differential binding of paraquat to cell walls isolated from susceptible and resistant biotypes could be detected. The exact site and mechanism of paraquat binding to sequester the herbicide remains to be determined.  相似文献   

14.
IntroductionTocilizumab (TCZ), an anti-interleukin-6 receptor antibody, is clinically effective against rheumatoid arthritis (RA), and several reports have indicated how TCZ influences a number of mechanisms underlying RA pathogenesis. However, it is still unclear whether TCZ affects inflammatory cells in peripheral blood and whether any such changes are associated with clinical response. We evaluated associations between proportions of subsets of peripheral immune cells and clinical response in patients with RA treated with TCZ.MethodsThirty-nine consecutive patients with RA who started to receive TCZ as their first biologic between March 2010 and April 2012 were enrolled. The proportions of several subsets of peripheral cells with their levels of expression of differentiation markers, activation markers and costimulatory molecules were measured sequentially from baseline to week 52 by flow cytometry analysis.ResultsClinical Disease Activity Index (CDAI) remission was achieved in 53.8% of patients at week 52 of TCZ therapy. The proportions of CD4+CD25+CD127low regulatory T cells (Treg) and HLA-DR+ activated Treg cells significantly increased with TCZ therapy (P < 0.001 and P < 0.001, respectively), whereas proportions of CD3+CD4+CXCR3CCR6+CD161+ T helper 17 cells did not change over the 52 weeks. The proportions of CD20+CD27+ memory B cells, HLA-DR+CD14+ and CD69+CD14+ activated monocytes, and CD16+CD14+ monocytes significantly decreased (P < 0.001, P < 0.001, P < 0.001 and P < 0.001, respectively). Among them, only the change in Treg cells was inversely correlated with the change in CDAI score (ρ = −0.40, P = 0.011). The most dynamic increase in Treg cells was observed in the CDAI remission group (P < 0.001).ConclusionThis study demonstrates that TCZ affected proportions of circulating immune cells in patients with RA. The proportion of Treg cells among CD4+ cells correlated well with clinical response.

Electronic supplementary material

The online version of this article (doi:10.1186/s13075-015-0526-4) contains supplementary material, which is available to authorized users.  相似文献   

15.
The genetic components responsible for qualitative and quantitative resistance of rice plants to three strains (CR4, CXO8, and CR6) of Xanthomonas oryzae pv. oryzae (Xoo) were investigated using a set of 315 recombinant inbred lines (RILs) from the cross Lemont (japonica) × Teqing (indica) and a complete linkage map with 182 well distributed RFLP markers. We mapped a major gene (Xa4) and ten quantitative trait loci (QTLs) which were largely responsible for segregation of the resistance phenotype in the RILs. The Teqing allele at the Xa4 locus, Xa4 T , acted as a dominant resistance gene against CR4 and CXO8. The breakdown of Xa4 T -associated resistance mediated by the mutant allele at the avrXa4 locus in the virulent strain CR6 results from significant changes in both gene action (lose of dominance) and the magnitude of gene effect (≈50% reduction). Nevertheless, Xa4 T still acted as a recessive QTL with a significant residual effect against CR6. The mutant alleles at the avrXa4 locus in CXO8 and CR6 that lead to a reduction in effect, or “breakdown”, of Xa4 T were apparently accompanied by corresponding penalties for their fitness. The quantitative component of resistance to Xoo in the RILs was largely due to a number of resistance QTLs. Most resistance QTLs mapped to genomic locations where major resistance genes and/or QTLs for resistance to Xoo, blast and sheath blight were identified in the same cross. Most QTLs showed consistent levels of resistance against all three Xoo strains. Our results suggest that a high level of durable resistance to Xoo may be achieved by the cumulative effects of multiple QTLs, including the residual effects of “defeated” major resistance genes.  相似文献   

16.
Gene duplication is thought to be the main potential source of material for the evolution of new gene functions. Several models have been proposed for the evolution of new functions through duplication, most based on ancient events (Myr). We provide molecular evidence for the occurrence of several (at least 3) independent duplications of the ace-1 locus in the mosquito Culex pipiens, selected in response to insecticide pressure that probably occurred very recently (<40 years ago). This locus encodes the main target of several insecticides, the acetylcholinesterase. The duplications described consist of 2 alleles of ace-1, 1 susceptible and 1 resistant to insecticide, located on the same chromosome. These events were detected in different parts of the world and probably resulted from distinct mechanisms. We propose that duplications were selected because they reduce the fitness cost associated with the resistant ace-1 allele through the generation of persistent, advantageous heterozygosis. The rate of duplication of ace-1 in C. pipiens is probably underestimated, but seems to be rather high.  相似文献   

17.
Two amino acid substitutions in acetylcholinesterase 1 (AChE1), G119S and F290V, are responsible for resistance to organophosphate and carbamate insecticides in Culex pipiens mosquitoes. These mutations generate very different levels of insensitivity to insecticide inhibitors. We described here a biochemical method that rapidly identifies AChE1 variants (susceptible, G119S and F290V, named S, R and V, respectively) present in individual mosquitoes. We investigated the frequency of AChE1 phenotypes in 41 field samples collected around the Mediterranean Sea. F290V substitution was found only in 15 samples and at low frequency, whereas G119S was highly spread in all samples. However, seven V distinct alleles were identified whereas only one R allele was present. The [V] enzymatic phenotype was never observed alone, and the V allele was always found associated with the susceptible and/or G119S AChE1 ([VS], [VR] or [VRS] phenotypes). Furthermore, we showed the presence of duplicated alleles, associating a susceptible and a V copy of the ace-1 gene, in most individuals analyzed for its presence. Evolutionary forces driving the large number of F290V ace-1 alleles and their low frequency in Mediterranean countries are discussed.  相似文献   

18.

Background

Seven donkey breeds are recognized by the French studbook and are characterized by a black, bay or grey coat colour including light cream-to-white points (LP). Occasionally, Normand bay donkeys give birth to dark foals that lack LP and display the no light points (NLP) pattern. This pattern is more frequent and officially recognized in American miniature donkeys. The LP (or pangare) phenotype resembles that of the light bellied agouti pattern in mouse, while the NLP pattern resembles that of the mammalian recessive black phenotype; both phenotypes are associated with the agouti signaling protein gene (ASIP).

Findings

We used a panel of 127 donkeys to identify a recessive missense c.349 T > C variant in ASIP that was shown to be in complete association with the NLP phenotype. This variant results in a cysteine to arginine substitution at position 117 in the ASIP protein. This cysteine is highly-conserved among vertebrate ASIP proteins and was previously shown by mutagenesis experiments to lie within a functional site. Altogether, our results strongly support that the identified mutation is causative of the NLP phenotype.

Conclusions

Thus, we propose to name the c.[349 T > C] allele in donkeys, the anlp allele, which enlarges the panel of coat colour alleles in donkeys and ASIP recessive loss-of-function alleles in animals.

Electronic supplementary material

The online version of this article (doi:10.1186/s12711-015-0112-x) contains supplementary material, which is available to authorized users.  相似文献   

19.
We report engineering Neurospora crassa to improve the yield of cellobiose and cellobionate from cellulose. A previously engineered strain of N. crassa (F5) with six of seven β-glucosidase (bgl) genes knocked out was shown to produce cellobiose and cellobionate directly from cellulose without the addition of exogenous cellulases. In this study, the F5 strain was further modified to improve the yield of cellobiose and cellobionate from cellulose by increasing cellulase production and decreasing product consumption. The effects of two catabolite repression genes, cre-1 and ace-1, on cellulase production were investigated. The F5 Δace-1 mutant showed no improvement over the wild type. The F5 Δcre-1 and F5 Δace-1 Δcre-1 strains showed improved cellobiose dehydrogenase and exoglucanase expression. However, this improvement in cellulase expression did not lead to an improvement in cellobiose or cellobionate production. The cellobionate phosphorylase gene (ndvB) was deleted from the genome of F5 Δace-1 Δcre-1 to prevent the consumption of cellobiose and cellobionate. Despite a slightly reduced hydrolysis rate, the F5 Δace-1 Δcre-1 ΔndvB strain converted 75% of the cellulose consumed to the desired products, cellobiose and cellobionate, compared to 18% converted by the strain F5 Δace-1 Δcre-1.  相似文献   

20.
Rapid resistance detection is necessary for the adaptive management of acaricide-resistant populations of Tetranychus urticae. Detection of phenotypic and genotypic resistance was conducted by employing residual contact vial bioassay (RCV) and quantitative sequencing (QS) methods, respectively. RCV was useful for detecting the acaricide resistance levels of T. urticae, particularly for on-site resistance detection; however, it was only applicable for rapid-acting acaricides (12 out of 19 tested acaricides). QS was effective for determining the frequencies of resistance alleles on a population basis, which corresponded to 12 nonsynonymous point mutations associated with target-site resistance to five types of acaricides [organophosphates (monocrotophos, pirimiphos-methyl, dimethoate and chlorpyrifos), pyrethroids (fenpropathrin and bifenthrin), abamectin, bifenazate and etoxazole]. Most field-collected mites exhibited high levels of multiple resistance, as determined by RCV and QS data, suggesting the seriousness of their current acaricide resistance status in rose cultivation areas in Korea. The correlation analyses revealed moderate to high levels of positive relationships between the resistance allele frequencies and the actual resistance levels in only five of the acaricides evaluated, which limits the general application of allele frequency as a direct indicator for estimating actual resistance levels. Nevertheless, the resistance allele frequency data alone allowed for the evaluation of the genetic resistance potential and background of test mite populations. The combined use of RCV and QS provides basic information on resistance levels, which is essential for choosing appropriate acaricides for the management of resistant T. urticae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号