首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Rising environmental temperatures have become a global threat for ectotherms, with the increasing risk of overheating promoting population declines. Flexible thermoregulatory behavior might be a plausible mechanism to mitigate the effects of extreme temperatures. We experimentally evaluated thermoregulatory behavior in the bunchgrass lizard, Sceloporus aeneus, at three different environmental temperatures (25, 35 and 45 °C) both with and without a thermal refuge. We recorded themoregulatory behaviors (body posture and movement between hot and cold patches) and compared individual lizards across all experimental temperature and shelter combinations. Behavioral thermoregulation in S. aeneus was characterized by the expression of five body postures, whose frequencies varied based on environmental temperature and microthermal conditions. Behavioral responses allowed lizards to maintain a mean body temperature <40 °C, the critical thermal maximum for temperate species, even at extreme environmental temperatures (45 °C). Although S. aeneus express an array of behavioral postures that provide an effective mechanism to cope with elevating temperatures, the presence of a thermal refuge was important to better achieve this. Together, our study offers a novel method to evaluate microhabitat preference that encompasses both behavioral observations and time-space analysis based on the ambient thermal distribution, a consideration that can aid in the formulation of more accurate predictions on ectotherm vulnerability related to increasing global environmental temperatures.  相似文献   

2.
Thermal tolerances of organisms play a role in defining geographic ranges and occurrence of species. In Cuba, three sympatric species of Anolis lizards (Anolis allogus, Anolis homolechis and Anolis sagrei) inhabit different thermal microhabitats. A previous study found that these species showed distinct gene expression patterns in response to temperature stimuli, suggesting the genetically distinct thermal physiology among species. To investigate whether the Anolis species inhabiting locally distinct thermal habitats diverge their thermal tolerances, we first conducted behavioural experiments to analyse the temperatures at which the three Anolis species escape from heat source. Then, for each of the three species, we isolated cDNA encoding a putative molecular heat sensor, transient receptor potential ion channel ankyrin 1 (TRPA1), which has been suggested to play a role on eliciting behavioural responses to heat stimuli. We performed electrophysiological analysis to quantify activation temperature of Anolis TRPA1 to see whether the pattern of divergence in TRPA1 responses is congruent with that of divergence in behavioural responses. We found that temperatures triggering behavioural and TRPA1 responses were significantly lower for shade‐dwelling species (A. allogus) than for sun‐dwelling species (A. homolechis and A. sagrei). The ambient temperature of shade habitats where A. allogus occurs stays relatively cool compared to that of open habitats where A. homolechis and A. sagrei occur and bask. The high temperature thresholds of A. homolechis and A. sagrei may reflect their heat tolerances that would benefit these species to inhabit the open habitats.  相似文献   

3.
Sympatric species that initially overlap in resource use are expected to partition the environment in ways that will minimize interspecific competition. This shift in resource use can in turn prompt evolutionary changes in morphology. A classic example of habitat partitioning and morphological differentiation are the Caribbean Anolis lizards. Less well studied, but nevertheless striking analogues to the Anolis are the Southeast Asian Draco lizards. Draco and Anolis have evolved independently of each other for at least 80 million years. Their comparison subsequently offers a special opportunity to examine mechanisms of phenotypic differentiation between two ecologically diverse, but phylogenetically distinct groups. We tested whether Draco shared ecological axes of differentiation with Anolis (e.g., habitat use), whether this differentiation reflected interspecific competition, and to what extent adaptive change in morphology has occurred along these ecological axes. Using existing data on Anolis, we compared the habitat use and morphology of Draco in a field study of allopatric and sympatric species on the Malay Peninsula, Borneo and in the Philippines. Sympatric Draco lizards partitioned the environment along common resource axes to the Anolis lizards, especially in perch use. Furthermore, the morphology of Draco was correlated with perch use in the same way as it was in Anolis: species that used wider perches exhibited longer limb lengths. These results provide an important illustration of how interspecific competition can occur along common ecological axes in different animal groups, and how natural selection along these axes can generate the same type of adaptive change in morphology.  相似文献   

4.
A 20-month recapture analysis of 1001 individually marked mesquite lizards (Sceloporus grammicus) suggests that variation in thermal quality across three altitudes influences survival probability. Each additional unit of deviation from the temperature selected by these lizards in previous laboratory experiments (i.e. decreased thermal quality) meant an increase of roughly 1.01% in survival probability. Survival probabilities ranged from 0.80 to 0.90 at the lowest elevation site (2600 m), from 0.76 to 0.87 at the middle elevation site (3100 m) and from 0.90 to 0.94 at the highest elevation site (4150 m). These results suggest that in poor thermal quality environments mesquite lizards may employ thermoregulatory strategies (behavioral, physiological and/or morphological) to decrease their metabolic expenditure and their exposure to predators, maximizing survival. These findings highlight the relevance of thermal quality of the habitat in determining survival probability of ectotherms.  相似文献   

5.
A well-defined macroecological pattern is the decline in biodiversity with altitude. However, this decline is taxa-specific. For example, amphibians are more diverse than squamates at extreme elevations in the tropical Andes, but this pattern is reversed at extreme elevations in the southern latitudes. Several ecophysiological and evolutionary factors may be related to this difference. At high-elevations in southern latitudes temperature differs dramatically among seasons and dry soils dominate, characteristics that appear to favor lizard physiological ecology. Tropical high altitudes, in contrast, are humid and offer abundant and diverse water resources. These characteristics allow for a richer anuran community but might complicate lizard egg development through temperature and oxygen constrains. Differences in strategies of thermal adaptation might also modulate diversity patterns. The thermal physiology of anurans is extremely labile so that behavioral and physiological performance is maintained despite an altitudinal decrease in field body temperature. Lizards, in contrast, exhibit a conservative thermal physiology and rely on behavioral thermoregulation to face cold and variable temperatures. Both, lizard behavioral strategies and anuran physiological adjustments seem equally efficient in allowing ecological success and diversification for both groups in the tropics up to approximately 3000 m. At higher elevations physiological thermal adaptation is required, and lizards are ecologically constrained, perhaps at various ontogenetic stages. Patterns of biodiversity along environmental clines can be better understood through a physiological approach, and can help to refine and propose hypotheses in evolutionary physiology.  相似文献   

6.
Understanding how quickly physiological traits evolve is a topic of great interest, particularly in the context of how organisms can adapt in response to climate warming. Adjustment to novel thermal habitats may occur either through behavioural adjustments, physiological adaptation or both. Here, we test whether rates of evolution differ among physiological traits in the cybotoids, a clade of tropical Anolis lizards distributed in markedly different thermal environments on the Caribbean island of Hispaniola. We find that cold tolerance evolves considerably faster than heat tolerance, a difference that results because behavioural thermoregulation more effectively shields these organisms from selection on upper than lower temperature tolerances. Specifically, because lizards in very different environments behaviourally thermoregulate during the day to similar body temperatures, divergent selection on body temperature and heat tolerance is precluded, whereas night-time temperatures can only be partially buffered by behaviour, thereby exposing organisms to selection on cold tolerance. We discuss how exposure to selection on physiology influences divergence among tropical organisms and its implications for adaptive evolutionary response to climate warming.  相似文献   

7.
Humans have, and continue to, dramatically influence the life history of many taxa. Identification of traits that allow taxa to tolerate humans and urban environments is important for informed conservation policy. Winchell et al. (2020) uses a phylogenetic comparative framework to identify such traits in the Caribbean clade of Anolis lizards. They provide an example of how to use disparate data sources to develop probabilities about species’ traits that can be used in phylogenetic analyses.  相似文献   

8.
Adenovirus infection has emerged as a serious threat to the health of captive snakes and lizards (i.e., squamates), but we know relatively little about this virus'' range of possible hosts, pathogenicity, modes of transmission, and sources from nature. We report the first case of adenovirus infection in the Iguanidae, a diverse family of lizards that is widely-studied and popular in captivity. We report adenovirus infections from two closely-related species of Anolis lizards (anoles) that were recently imported from wild populations in the Dominican Republic to a laboratory colony in the United States. We investigate the evolution of adenoviruses in anoles and other squamates using phylogenetic analyses of adenovirus polymerase gene sequences sampled from Anolis and a range of other vertebrate taxa. These phylogenetic analyses reveal that (1) the sequences detected from each species of Anolis are novel, and (2) adenoviruses are not necessarily host-specific and do not always follow a co-speciation model under which host and virus phylogenies are perfectly concordant. Together with the fact that the Anolis adenovirus sequences reported in our study were detected in animals that became ill and subsequently died shortly after importation while exhibiting clinical signs consistent with acute adenovirus infection, our discoveries suggest the need for renewed attention to biosecurity measures intended to prevent the spread of adenovirus both within and among species of snakes and lizards housed in captivity.  相似文献   

9.
Biological impacts of climate warming are predicted to increase with latitude, paralleling increases in warming. However, the magnitude of impacts depends not only on the degree of warming but also on the number of species at risk, their physiological sensitivity to warming and their options for behavioural and physiological compensation. Lizards are useful for evaluating risks of warming because their thermal biology is well studied. We conducted macrophysiological analyses of diurnal lizards from diverse latitudes plus focal species analyses of Puerto Rican Anolis and Sphaerodactyus. Although tropical lowland lizards live in environments that are warm all year, macrophysiological analyses indicate that some tropical lineages (thermoconformers that live in forests) are active at low body temperature and are intolerant of warm temperatures. Focal species analyses show that some tropical forest lizards were already experiencing stressful body temperatures in summer when studied several decades ago. Simulations suggest that warming will not only further depress their physiological performance in summer, but will also enable warm-adapted, open-habitat competitors and predators to invade forests. Forest lizards are key components of tropical ecosystems, but appear vulnerable to the cascading physiological and ecological effects of climate warming, even though rates of tropical warming may be relatively low.  相似文献   

10.
11.
12.
We studied, at 2200 m altitude, the thermal biology of the Pyrenean rock lizard, Iberolacerta bonnali, in the glacial cirque of Cotatuero (National Park of Ordesa, Huesca, Spain). The preferred thermal range (PTR) of I. bonnali indicates that it is a cold-adapted ectotherm with a narrow PTR (29.20–32.77 °C). However, its PTR (3.57 °C) is twice as wide as other Iberolacerta lizards, which may be explained by its broader historical distribution. The studied area is formed by a mosaic of microhabitats which offer different operative temperatures, so that lizards have, throughout their entire daily period of activity, the opportunity to choose the most thermally suitable substrates. I. bonnali achieves an effectiveness of thermoregulation of 0.95, which makes it the highest value found to date among the Lacertidae, and one of the highest among lizards. Their relatively wide distribution, their wider PTR, and their excellent ability of thermoregulation, would make I. bonnali lizards less vulnerable to climate change than other species of Iberolacerta. Thanks to its difficult access, the studied area is not visited by a large number of tourists, as are other areas of the National Park. Thus, it is a key area for the conservation of the Pyrenean rock lizard. By shuttling between suitable microhabitats, lizards achieve suitable body temperatures during all day. However, such thermally suitable microhabitats should vary in other traits than thermal quality, such as prey availability or predation risk. Hence, it seems that these not-thermal traits are not constraining habitat selection and thermoregulation in this population. Therefore, future research in this population may study the causes that would lead lizards to prioritize thermoregulation to such extent in this population.  相似文献   

13.
We conducted this study to determine the diversity patterns, community structures, and seasonality of ground beetle assemblages along an altitudinal gradient (437–1420 m) on Mt. Sobaeksan, Korea. Ground beetles were collected by pitfall traps installed along an altitudinal gradient (437, 757, 1100, and 1420 m). A total of 32 species belonging to seven subfamilies were identified from 3259 collected ground beetles. The diversity pattern of the ground beetle assemblage according to altitude was neither monotonic decreased nor hump-shaped. However, subfamily assemblages and wing form diversity patterns differed according to altitude and may be correlated with altitude or some other environmental variables. The dominant species were Synuchus cycloderus (29.4%) and Eucarabus sternbergi sobaeksanensis (15.4%) and their seasonal activities according to altitude were similar. According to non-metric multidimensional scaling, ground beetles and altitudes could be divided into two distinct groups: a low altitude group (437–757 m) and a high altitude group (1100–1420 m). Some species were particularly abundant at high altitudes, such as Aulonocarabus koreanus kwonileeique and Poecilus nitidicollis, while others were highly abundant at low altitudes, such as Pterostichus audax, Pterostichus ishikawai, and Synuchus species.  相似文献   

14.
Species‐rich adaptive radiations typically diversify along several distinct ecological axes, each characterized by morphological, physiological, and behavioral adaptations. We test here whether different types of adaptive traits share similar patterns of evolution within a radiation by investigating patterns of evolution of morphological traits associated with microhabitat specialization and of physiological traits associated with thermal biology in Anolis lizards. Previous studies of anoles suggest that close relatives share the same “structural niche” (i.e., use the same types of perches) and are similar in body size and shape, but live in different “climatic niches” (i.e., use habitats with different insolation and temperature profiles). Because morphology is closely tied to structural niche and field active body temperatures are tied to climatic niches in Anolis, we expected phylogenetic analyses to show that morphology is more evolutionarily conservative than thermal physiology. In support of this hypothesis, we find (1) that thermal biology exhibits more divergence among recently diverged Anolis taxa than does morphology; and (2) diversification of thermal biology among all species often follows diversification in morphology. These conclusions are remarkably consistent with predictions made by anole biologists in the 1960s and 1970s.  相似文献   

15.
Phenotypic plasticity can contribute to the process of adaptive radiation by facilitating population persistence in novel environments. West Indian Anolis lizards provide a classic example of an adaptive radiation, in which divergence has occurred along two primary ecological axes: structural microhabitat and climate. Adaptive plasticity in limb morphology is hypothesized to have facilitated divergence along the structural niche axis in Anolis, but very little work has explored plasticity in physiological traits. Here, we experimentally ask whether Puerto Rican Anolis cristatellus from mesic and xeric habitats differ in desiccation rates, and whether these lizards exhibit an acclimation response to changes in relative humidity. We first present microclimatic data collected at lizard perch sites that demonstrate that abiotic conditions experienced by lizards differ between mesic and xeric habitat types. In Experiment 1, we measured desiccation rates of lizards from both habitats maintained under identical laboratory conditions. This experiment demonstrated that desiccation rates differ between populations; xeric lizards lose water more slowly than mesic lizards. In Experiment 2, lizards from each habitat were either maintained under the conditions of Experiment 1, or under extremely low relative humidity. Desiccation rates did not differ between lizards from the same habitat maintained under different treatments and xeric lizards maintained lower desiccation rates than mesic lizards within each treatment. Our results demonstrate that A. cristatellus does not exhibit an acclimation response to abrupt changes of hydric conditions, and suggest that tropical Anolis lizards might be unable to exhibit physiological plasticity in desiccation rates in response to varying climatic conditions.  相似文献   

16.
Anolis lizards communicate with displays consisting of motion of the head and body. Early portions of long-distance displays require movements that are effective at eliciting the attention of potential receivers. We studied signal-motion efficacy using a two-dimensional visual-motion detection (2DMD) model consisting of a grid of correlation-type elementary motion detectors. This 2DMD model has been shown to accurately predict Anolis lizard behavioural response. We tested different patterns of artificially generated motion and found that an abrupt 0.3° shift of position in less than 100 ms is optimal. We quantified motion in displays of 25 individuals from five species. Four species employ near-optimal movement patterns. We tested displays of these species using the 2DMD model on scenes with and without moderate wind. Display movements can easily be detected, even in the presence of windblown vegetation. The fifth species does not typically use the most effective display movements and display movements cannot be discerned by the 2DMD model in the presence of windblown vegetation. A number of Anolis species use abrupt up-and-down head movements approximately 10 mm in amplitude in displays, and these movements appear to be extremely effective for stimulating the receiver visual system.  相似文献   

17.
During the past two to three decades, Drosophila ananassae, a warm adapted tropical species, has invaded low to mid altitude localities in the western Himalayas. Due to its cold sensitivity, this species had never been recorded from higher latitudes as well as altitudes in India to the 1960s. A latitudinal cline in this desiccation‐sensitive species corresponds with southern humid tropical localities rather than northern drier subtropical localities. An extension of its cline into lowland to midland montane localities has resulted due to global climatic change as well as local thermal effects through anthropogenic impact. However, D. ananassae populations at species borders are characterized by lower genetic variability for body melanization as well as for desiccation resistance. There is a lack of thermal plastic effects for body melanization, and the observed extended cline might represent evolutionary (genetic) response due to selection pressure imposed by drier habitats. A comparison of fecundity, hatchability and viability at three growth temperatures (17, 20 and 25°C) showed significant reduction in trait values at 17°C in D. ananassae. Thus, its recent range expansion into northern montane localities might involve genetic effects on stress‐related traits and plastic effects on life history traits. We suggest that D. ananassae could serve as an indicator species for analyzing range expansion under changing climatic conditions.  相似文献   

18.
Climate change is rapidly altering the way current species interact with their environment to satisfy life-history demands. In areas anticipated to experience extreme warming, rising temperatures are expected to diminish population growth, due either to environmental degradation, or the inability to tolerate novel temperature regimes. Determining how at risk ectotherms, and lizards in particular, are to changes in climate traditionally emphasizes the thermal ecology and thermal sensitivity of physiology of adult members of a population. In this study, we reveal ontogenetic differences in thermal physiological and ecological traits that have been used to anticipate how ectotherms will respond to climate change. We show that the thermal biological traits of juvenile Yarrow’s Spiny Lizards (Sceloporus jarrovii) differ from the published estimates of the same traits for adult lizards. Juvenile S. jarrovii differ in their optimal performance temperature, field field-active body temperature, and critical thermal temperatures compared to adult S. jarrovii. Within juvenile S. jarrovii, males and females exhibit differences in field-active body temperature and desiccation tolerance. Given the observed age- and sex-related variation in thermal physiology, we argue that not including physiological differences in thermal biology throughout ontogeny may lead to misinterpretation of patterns of ecological or evolutionary change due to climate warming. Further characterizing the potential for ontogenetic changes in thermal biology would be useful for a more precise and accurate estimation of the role of thermal physiology in mediating population persistence in warmer environments.  相似文献   

19.
Summary The helminth communities from ten species of lizard on seven islands in the Caribbean were sampled by collecting one hundred specimens of each species. Nine genera of parasites were identified; these included six nematodes, two digeneans and an acanthocephalan. No relationship was discernible between parasite density or abundance and island area or altitude, although dry islands tend to have fewer species of parasites. Anolis lizards of the bimaculatus and wattsi series share similar parasites with four out of nine species common to both series. The parasite community of lizards on these islands is depauperate with respect to similar surveys on the larger islands of the Greater Antilles.On three of the islands lizards were sub-sampled by collecting from moist woodland and more xeric habitats. These data suggest that differences between habitats are as significant as differences between islands in determining parasite burdens. Worm burdens of the commonest parasite species, T. cubensis, increased monotonically with host body size and no evidence was found to suggest that these parasites affect either host survival or fecundity. The sex-ratio of this species correlated with mean abundance of the parasite, with females the dominant sex on islands or in habitats where the parasite was common. This pattern may reflect haplodiploid sexual determination in this species.  相似文献   

20.
Phenotypic evolution is often exceptionally rapid on islands, resulting in numerous, ecologically diverse species. Although adaptive radiation proceeds along various phenotypic axes, the island effect of faster evolution has been mostly tested with regard to morphology. Here, we leveraged the physiological diversity and species richness of Anolis lizards to examine the evolutionary dynamics of three key traits: heat tolerance, body temperature, and cold tolerance. Contrary to expectation, we discovered slower heat tolerance evolution on islands. Additionally, island species evolve toward higher optimal body temperatures than mainland species. Higher optima and slower evolution in upper physiological limits are consistent with the Bogert effect, or evolutionary inertia due to thermoregulation. Correspondingly, body temperature is higher and more stable on islands than on the American mainland, despite similarity in thermal environments. Greater thermoregulation on islands may occur due to ecological release from competitors and predators compared to mainland environments. By reducing the costs of thermoregulation, ecological opportunity on islands may actually stymie, rather than hasten, physiological evolution. Our results emphasize that physiological diversity is an important axis of ecological differentiation in the adaptive radiation of anoles, and that behavior can impart distinct macroevolutionary footprints on physiological diversity on islands and continents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号