首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Activity of animals is influenced by ambient temperature and increasing temperatures brought about by climate change may impose a heat stress risk. Previous studies investigating the effect of heat waves on activity usually measure animals at different, but constant temperatures, however, rarely are they studied under a natural temperature cycle. General activity, behavioural flexibility and frequency of water drinking counts during a normal day, hot day and a simulated heat wave temperature cycle were studied in the crepuscular four-striped field mouse, Rhabdomys dilectus, and the nocturnal Namaqua rock mouse, Micaelamys namaquensis. Both R. dilectus and M. namaquensis showed typical daily locomotor activity under control conditions. During the heat wave, peak activity times changed for R. dilectus, but both species exhibited higher bouts of activity for the heat wave during the day compared to the control, which was accompanied by an increased amount of time spent drinking water. The increased activity during the heat wave is likely due to enhanced water requirements and potentially a form of behavioural thermoregulation as animals may be uncomfortable and try to move to cooler areas. Thus, in the absence of a typical microclimate, access to water may allow rodents to overcome heat stress from extreme temperatures without having to shift their temporal active times.  相似文献   

2.
Transient receptor potential vanilloid 1 (TRPV1) is mainly expressed in nociceptive primary sensory neurons and acts as a sensor for heat and capsaicin. The functional properties of TRPV1 have been reported to vary among species and, in some cases, the species difference in its thermal sensitivity is likely to be associated with thermal habitat conditions. To clarify the functional properties and physiological roles of TRPV1 in aquatic vertebrates, we examined the temperature and chemical sensitivities of TRPV1 in masu salmon (Oncorhynchus masou ishikawae, Om) belonging to a family of salmonids that generally prefer cool environments. First, behavioral experiments were conducted using a video tracking system. Application of capsaicin, a TRPV1 agonist, induced locomotor activities in juvenile Om. Increasing the ambient temperature also elicited locomotor activity potentiated by capsaicin. RT-PCR revealed TRPV1 expression in gills as well as spinal cord. Next, electrophysiological analyses of OmTRPV1 were performed using a two-electrode voltage-clamp technique with a Xenopus oocyte expression system. Heat stimulation evoked an inward current in heterologously expressed OmTRPV1. In addition, capsaicin produced current responses in OmTRPV1-expressing oocytes, but higher concentrations were needed for its activation compared to the mammalian orthologues. These results indicate that Om senses environmental stimuli (heat and capsaicin) through the activation of TRPV1, and this channel may play important roles in avoiding environments disadvantageous for survival in aquatic vertebrates.  相似文献   

3.
Predicting the effects of high environmental temperatures and drought on populations requires understanding how these conditions will influence the thermoregulatory behavior and thermal tolerance of organisms. Ectotherms show proportional (fine-tuned) and all-or-none (abrupt) responses to avoid overheating. Scattered evidence suggests that dehydration alters these behavioral responses and thermal tolerance, but these effects have not been evaluated in an integrative manner. We examined the effects of hydration level on the behavioral thermoregulation and behavioral and physiological thermal limits of the “bullfrog” (Rana catesbeiana), a well-studied and important invasive species. To examine the effects of dehydration on proportional responses, we compared the Preferred Body Temperatures (PBT) of frogs with restricted and unrestricted access to water. To assess the effect of dehydration on all-or-none responses, we measured and compared the Voluntary Thermal Maximum (VTMax) at different hydration levels (100%, 90%, 80% of body weight at complete hydration). Finally, to understand the effect of dehydration on physiological thermal tolerance, we measured the Critical Thermal Maximum (CTMax) of frogs at matched hydration levels. PBT, VTMax, and CTMax all decreased in response to higher dehydration levels. However, bullfrogs changed their PBT more than their VTMax or CTMax in response to dehydration. Moreover, some severely dehydrated individuals did not exhibit a VTMax response. We discuss the implications of our results in the context of plasticity of thermoregulatory responses and thermal limits, and its potential application to mechanistic modeling.  相似文献   

4.
The natural populations of Dactylorhiza hatagirea have been greatly affected due to incessant exploitation. As such, studies on its population attributes together with habitat suitability and environmental factors affecting its distribution are needed to be undertaken for its conservation in nature. Present study aimed at accessing an impact of anthropogenic pressure on population structure and locate suitable habitats for the conservation of this critically endangered orchid. Considerable changes in the phytosociological attributes were observed on account of the changing magnitude and extent of anthropogenic threat in their natural abode. The distribution pattern of species indicated that more than 90% of the populations exhibit substantially aggregated spatial distribution. Maximum Entropy (MaxEnt) distribution modelling algorithm was used to predict suitable habitat and potential area for its cultivation and reintroduction. Twenty-seven occurrence records, nineteen bioclimatic variables, altitude, and slope were used. MaxEnt map output gave the habitat suitability for this species and predicted its distribution in the North-Western Himalayas of India for approximately 616 km2. Jackknifing indicated that maximum temperature of warmest month, annual mean temperature, mean temperature of the driest quarter, and mean temperature of the wettest quarter were the governing factors for its distribution and hence, presented a higher gain with respect to other variables. According to permutation importance, precipitation seasonality and mean temperature of wettest quarter shows the prominent impact on the habitat distribution. Results of AUC (area under curve) were statistically significant (0.940) and the line of predicted omission falls very close to an omission on training samples, validating a better run of the model. Response curves revealed a probable increase in the occurrence of D. hatagirea with an increase in mean temperature of the wettest quarter and maximum temperature of the warmest month contributed more than 50% to predicted habitat suitability. Direct field observations concurrent with predicted habitat suitability and google-earth images represent greater model thresholds for successful inception of the species. Together, the study proposes that the species can be conserved in or near its present-day natural habitats and is equally effective in determining the possible habitats for its cultivation and reintroduction.  相似文献   

5.
Exercise heat acclimation (HA) is known to magnify the sweating response by virtue of a lower threshold as well as increased gain and maximal capacity of sweating. However, HA has been shown to potentiate the shivering response in a cold-air environment. We investigated whether HA would alter heat loss and heat production responses during water immersion. Twelve healthy male participants underwent a 10-day HA protocol comprising daily 90-min controlled-hyperthermia (target rectal temperature, Tre 38.5 °C) exercise sessions. Preceding and following HA, the participants performed a maximal exercise test in thermoneutral conditions (ambient temperature 23 °C, relative humidity 50%) and were, following exercise, immersed in 28 °C water for 60 min. Thermal comfort zone (TCZ) was also assessed with participants regulating the temperature of a water-perfused suit during heating and cooling. Baseline pre-immersion Tre was similar pre- and post-HA (pre: 38.33 ± 0.33 °C vs post: 38.12 ± 0.36 °C, p = 0.092). The Tre cooling rate was identical pre-to post-HA (−0.03 ± 0.01 °C·min−1, p = 0.31), as was the vasomotor response reflected in the forearm-fingertip temperature difference. Shivering thresholds (p = 0.43) and gains (p = 0.61) were not affected by HA. TCZ was established at similar temperatures, with the magnitude in regulated water temperature being 7.6 (16.3) °C pre-HA and 5.1 (24.7) °C post-HA (p = 0.65). The present findings suggest that heat production and heat loss responses during whole body cooling as well as the skin thermal comfort zone remained unaltered by a controlled-hyperthermia HA protocol.  相似文献   

6.
Though social insects generally seem to have a reduced individual immunoresponse compared to solitary species, the impact of heat stress on that response has not been studied. In the honey bee, the effect of heat stress on reproductives (queens and males/drones) may also vary compared to workers, but this is currently unknown. Here, we quantified the activity of an enzyme linked to the immune response in insects and known to be affected by heat stress in solitary species: phenoloxidase (PO), in workers, queens and drones of Africanized honey bees (AHBs) experimentally subjected to elevated temperatures during the pupal stage. Additionally, we evaluated this marker in individuals experimentally infected with the entomopathogenic fungus Metarhizium anisopliae. Differences in PO activity were found between sexes and castes, with PO activity generally higher in workers and lower in reproductives. Such differences are associated with the likelihood of exposure to infection and the role of different individuals in the colony. Contrary to our expectation, heat stress did not cause an increase in PO activity equally in all classes of individual. Heat stress during the pupal stage significantly decreased the PO activity of AHB queens, but not that of workers or drones, which more frequently engage in extranidal activity. Experimental infection with Metarhizium anisopliae reduced PO activity in queens and workers, but increased it in drones. Notably, heat stressed workers lived significantly shorter after infection despite exhibiting greater PO activity than queens or drones. We suggest that this discrepancy may be related to trade-offs among immune response cascades in honey bees such as between heat shock proteins and defensin peptides used in microbial defence. Our results provide evidence for complex relationships among humoral immune responses in AHBs and suggest that heat stress could result in a reduced life expectancy of individuals.  相似文献   

7.
Salmonella enterica serovar Typhimurium (STM) is a major cause of gastroenteritis and transmitted by consumption of contaminated food. STM is associated to food originating from animals (pork, chicken, eggs) or plants (vegetables, fruits, nuts, and herbs). Infection of warm-blooded mammalian hosts by STM and the underlying complex regulatory network of virulence gene expression depend on various environmental conditions encountered in hosts. However, less is known about the proteome and possible regulatory networks for gene expression of STM outside the preferred host. Nutritional limitations and changes in temperature are the most obvious stresses outside the native host. Thus, we analyzed the proteome profile of STM grown in rich medium (LB medium) or minimal medium (PCN medium) at temperatures ranging from 8 °C to 37 °C. LB medium mimics the nutritional rich environment inside the host, whereas minimal PCN medium represents nutritional limitations outside the host, found during growth of fresh produce (field conditions). Further, the range of temperatures analyzed reflects conditions within natural hosts (37 °C), room temperature (20 °C), during growth under agricultural conditions (16 °C and 12 °C), and during food storage (8 °C). Implications of altered nutrient availability and growth temperature on STM proteomes were analyzed by HPLC/MS-MS and label-free quantification. Our study provides first insights into the complex adaptation of STM to various environmental temperatures, which allows STM not only to infect mammalian hosts but also to enter new infection routes that have been poorly studied so far. With the present dataset, global virulence factors, their impact on infection routes, and potential anti-infective strategies can now be investigated in detail. Especially, we were able to demonstrate functional flagella at 12 °C growth temperature for STM with an altered motility behavior.  相似文献   

8.
Prolonged exposure to cold can impair manual performance, which in turn can affect work task performance. We investigated whether mild whole-body cold stress would affect isometric force control during submaximal hand grip and key pinch tasks. Twelve male participants performed isometric hand grip and key pinch tasks at 10% and 30% of maximal voluntary contraction (MVC) for 30 and 10 s respectively, in cold (8 °C) and control (25 °C) conditions. Finger temperature decreased significantly by 18.7 ± 2.1 °C and continuous low-intensity shivering in the upper trunk increased significantly in intensity and duration during cold exposure. Rectal temperature decreased similarly for the 8 °C and 25 °C exposures. Force variability (FCv) was <2% for the hand grip tasks, and <3% for the key pinch tasks. No significant changes in FCv or force accuracy were found between the ambient temperatures. In conclusion, isometric force control during hand grip and key pinch tasks was maintained when participants experienced mild whole-body cold stress compared with when they were thermally comfortable.  相似文献   

9.
Biomolecular integrity can be compromised when blood plasma/serum (P/S) specimens are improperly handled. Compromised analytes can subsequently produce erroneous results—without any indication of having done so. We recently introduced an LC/MS-based marker of P/S exposure to thawed conditions called ΔS-Cys-Albumin which, aided by an established rate law, quantitatively tracks exposure of P/S to temperatures greater than their freezing point of ?30 °C. The purposes of this study were to (1) evaluate ΔS-Cys-Albumin baseline values in gastrointestinal cancer patients and cancer-free control donors, (2) empirically assess the kinetic profiles of ΔS-Cys-Albumin at 23 °C, 4 °C, and ?20 °C, and (3) empirically link ΔS-Cys-Albumin to the stability of clinically relevant proteins. ΔS-Cys-Albumin was measured at ≥ 9 different time points per exposure temperature in serum and K2EDTA plasma samples from 24 separate donors in aliquots kept separately at 23 °C, 4 °C, and ?20 °C. Twenty-one clinically relevant plasma proteins were measured at four time points per temperature via a multiplexed immunoassay on the Luminex platform. Protein stability was assessed by mixed effects models. Coordinated shifts in stability between ΔS-Cys-Albumin and the unstable proteins were documented by repeated measures and Pearson correlations. Plasma ΔS-Cys-Albumin dropped from approximately 20% to under 5% within 96 h at 23 °C, 28 days at 4 °C, and 65 days at ?20 °C. On average, 22% of the 21 proteins significantly changed in apparent concentration at each exposure temperature (p < 0.0008 with >10% shift). A linear inverse relationship was found between the percentage of proteins destabilized and ΔS-Cys-Albumin (r = ?0.61; p < 0.0001)—regardless of the specific time/temperature of exposure. ΔS-Cys-Albumin tracks cumulative thawed-state exposure. These results now enable ΔS-Cys-Albumin to approximate the percentage of clinically relevant proteins that have been compromised by incidental plasma exposure to thawed-state conditions.  相似文献   

10.
Kukoamines are polyamine alkaloids present in Cortex Lycii (LyC), which is the root bark of Lycium chinense Mill. or L. barbarum L. Environmental conditions and geographical distribution influence the biosynthesis and accumulation of Kukoamines in Lycium species, thus directly affecting the quality of LyC. To identify the factors that influence Kukoamine A (KuA) and Kukoamine B (KuB) accumulation, the KuA and KuB contents of L. chinense and L. barbarum LyC collected from different areas or potted L. barbarum LyC with soil collected from different areas were measured, and the correlation of Kukoamine contents with meteorological factors and soil constituents were analyzed. In both L. barbarum and L. chinense, the KuA and KuB contents of LyC planted in Zhongning were significantly higher than those of LyC planted in other areas. Three L. barbarum species planted in soil collected from different areas presented significant difference in the KuA and KuB content of LyC. The contents of both KuA and KuB showed negative correlation with annual precipitation, mean temperature, and mean humidity, while positively correlated with soil pH, altitude, mean diurnal temperature difference, and annual sunshine hours, but there was no significant correlation with any soil compositions. It might be illustrated that soil pH and meteorological factors are important aspects affecting the quality of LyC.  相似文献   

11.
Heat stress (HS) is the most potent environmental stressors for livestock in tropical and subtropical regions. HS induced splanchnic tissue hypoxia and intestinal oxidative damage, leading to endotoxemia and systemic inflammation. The present study evaluated and compared the modulatory effects of feeding Barki male sheep (Ovis aries) on a standard concentrated diet containing 2% or 4% of the brown seaweed (Sargassum latifolium) followed by roughage for 40 consecutive days on the toxicity-induced by exposure to severe environmental HS (temperature-humidity index = 28.55 ± 1.62). The present study showed that the diet containing Sargassum latifolium (especially 4%) modulated significantly (P < 0.05–0.001) almost all changes shown in the HS-exposed sheep including the increase in the thermo-respiratory responses (skin and rectal temperatures, and respiration rate) and the resulted dyslipidemia, anemia, and systemic inflammation (blood leukocytosis, the elevation in the erythrocyte sedimentation rate, and the increase in serum proinflammatory cytokines and heat shock protein-70 concentrations). In addition, Sargassum latifolium improved significantly (P < 0.05–0.001) the body-weight gain, kidney functions (especially at the high dose), and blood antioxidant defense system (total antioxidant capacity, and the activities of catalase and superoxide dismutase) in the HS-exposed sheep, as well as protected the animals from oxidative tissue damage and the risk of atherosclerosis. In conclusion, feeding sheep with the diet containing 4% of Sargassum latifolium was safe and suitable for animal nutrition, as well as efficiently alleviated the harmful effects of the environmental HS in Barki sheep through improving the animal antioxidant defense system, and regulating the thermo-respiratory and inflammatory responses.  相似文献   

12.
13.
Fusarium oxysporum is one of the most abundant and diverse fungal species found in soils and includes nonpathogenic, endophytic, and pathogenic strains affecting a broad range of plant and animal hosts. Conidiation is the major mode of reproduction in many filamentous fungi, but the regulation of this process is largely unknown. Lysine acetylation (Kac) is an evolutionarily conserved and widespread posttranslational modification implicated in regulation of multiple metabolic processes. A total of 62 upregulated and 49 downregulated Kac proteins were identified in sporulating mycelia versus nonsporulating mycelia of F. oxysporum. Diverse cellular proteins, including glycolytic enzymes, ribosomal proteins, and endoplasmic reticulum–resident molecular chaperones, were differentially acetylated in the sporulation process. Altered Kac levels of three endoplasmic reticulum–resident molecular chaperones, PDIK70, HSP70K604, and HSP40K32 were identified that with important roles in F. oxysporum conidiation. Specifically, K70 acetylation (K70ac) was found to be crucial for maintaining stability and activity of protein disulphide isomerase and the K604ac of HSP70 and K32ac of HSP40 suppressed the detoxification ability of these heat shock proteins, resulting in higher levels of protein aggregation. During conidial formation, an increased level of PDIK70ac and decreased levels of HSP70K604ac and HSP40K32ac contributed to the proper processing of unfolded proteins and eliminated protein aggregation, which is beneficial for dramatic cell biological remodeling during conidiation in F. oxysporum.  相似文献   

14.
Diverse molecular species of sulfatide with differences in FA lengths, unsaturation degrees, and hydroxylation statuses are expressed in the kidneys. However, the physiological functions of specific sulfatide species in the kidneys are unclear. Here, we evaluated the distribution of specific sulfatide species in the kidneys and their physiological functions. Electron microscopic analysis of kidneys of Cst-deficient mice lacking sulfatide showed vacuolar accumulation in the cytoplasm of intercalated cells in the collecting duct, whereas the proximal and distal tubules were unchanged. Immunohistochemical analysis revealed that vacuolar H+-ATPase-positive vesicles were accumulated in intercalated cells in sulfatide-deficient kidneys. Seventeen sulfatide species were detected in the murine kidney by iMScope MALDI-MS analysis. The distribution of the specific sulfatide species was classified into four patterns. Although most sulfatide species were highly expressed in the outer medullary layer, two unique sulfatide species of m/z 896.6 (predicted ceramide structure: t18:0-C22:0h) and m/z 924.6 (predicted ceramide structure: t18:0-C24:0h) were dispersed along the collecting duct, implying expression in intercalated cells. In addition, the intercalated cell-enriched fraction was purified by fluorescence-activated cell sorting using the anti-vacuolar H+-ATPase subunit 6V0A4, which predominantly contained sulfatide species (m/z 896.6 and 924.6). The Degs2 and Fa2h genes, which are responsible for ceramide hydroxylation, were expressed in the purified intercalated cells. These results suggested that sulfatide molecular species with ceramide composed of phytosphingosine (t18:0) and 2-hydroxy FAs, which were characteristically expressed in intercalated cells, were involved in the excretion of NH3 and protons into the urine.  相似文献   

15.
Thermoregulation in patients suffering from multiple sclerosis (MS) is impaired and may result in either increases or decreases in body temperature. We have found that rat experimental autoimmune encephalitis (EAE), being a model of MS, is associated with body temperature disturbances as well.The purpose of the current study was to examine whether the altered body temperature in EAE-induced rats is due to either a deficit in thermoregulation or a controlled change in its set point.Subcutaneous injection of encephalitogenic emulsion into both pads of hind feet of the Lewis rats provoked EAE symptoms. Body temperature (Tb) of 6 rats was measured using biotelemetry system, and ambient temperature (Ta) preferred by 6 rats of another group was analyzed using thermal gradient system.Symptoms of EAE started 11 days postinjection and progressed quickly, culminating in a complete paralysis in rats placed in the gradient, which was associated with behavioural fever (accordingly, selected Ta raised to as much as 32.8 ± 0.5 °C vs 27.2 ± 0.6 °C in control rats). On the other hand, EAE rats, placed at a constant Ta of 24 °C, were able to generate fever (Tb of 37.8 ± 0.1 °C) at the start of the illness and then paralysis compromised fever (most likely due to an impairment of thermogenesis), which, surprisingly, resulted in recovery.We conclude that EAE onset in rats is associated with fever and its behavioural supporting leads to aggravation of the autoimmune neurotoxicity.  相似文献   

16.
Climate change is a grave danger for humans and a looming threat to Earth's biodiversity in the twenty-first century. Assessing the vulnerability of species to climate change is critical for practical conservation efforts. Due to their limited dispersal ability, amphibians are one of the most vulnerable groups of vertebrates to climate change. Among them, the species that inhabit mountains suffer a tremendous amount of climate change-induced pressures. We, therefore, adopted the Azerbaijan Mountain Newt (Neurergus crocatus), which currently inhabits Northwest Iran, North Iraq, and Southeast Turkey, as a case study for assessing the effects of climate change on the distribution patterns of mountain amphibians. By applying the species distribution models (SDMs) in this study, we tried to hindcast the species distribution area in the past and illustrate the impacts of climate change on its distribution in the present and future (the 2050s and 2070s) climate conditions. Also, the patch metrics have been deployed for identifying habitat fragmentation. Our results indicate a more than 50% rise in the species’ current suitable habitats compared to its glacial refugia. The suitable habitat is expected to gradually decrease in RCP 2.6 and RCP 8.5. Among the three countries in which the species occurs, its distribution overlaps with protected areas only in Iraq. The number of habitat patches will grow and reach approximately 20 to 60 patches by 2070 and the average area of the patches will decrease throughout this time. Aside from the numerous threats that endanger the species, climate change puts the long-term existence of Azerbaijan Newt in jeopardy. The results of this study stress the urgent need for taking extreme measures on the species management and conserving its remnant habitat patches.  相似文献   

17.
Bacteria within the phylum Planctomycetota are biologically relevant due to unique characteristics among prokaryotes. Members of the genus Rhodopirellula can be abundant in marine habitats, however, only six species are currently validly described. In this study, we expand the explored genus diversity by formally describing a novel species. The pink-coloured strain ICT_H3.1T was isolated from brackish sediments collected in the Tagus estuary (Portugal) and a 16S rRNA gene sequence-based analysis placed this strain into the genus Rhodopirellula (family Pirellulaceae). The closest type strain is Rhodopirellula rubra LF2T, suggested by a similarity of 98.4% of the 16S rRNA gene sequence. Strain ICT_H3.1T is heterotrophic, aerobic and able to grow under microaerobic conditions. The strain grows between 15 and 37 °C, over a range of pH 6.5 to 11.0 and from 1 to 8% (w/v) NaCl. Several nitrogen and carbon sources were utilized by the novel isolate. Cells have an elongated pear-shape with 2.0 ± 0.3 × 0.9 ± 0.2 µm in size. Cells of strain ICT_H3.1T cluster in rosettes through a holdfast structure and divide by budding. Younger cells are motile. Ultrathin cell sections show cytoplasmic membrane invaginations and polar fimbriae. The genome size is 9,072,081 base pairs with a DNA G + C content of 56.1 mol%. Genomic, physiological and morphological comparison of strain ICT_H3.1T with its relatives suggest that it belongs to a novel species within the genus Rhodopirellula. Hence, we propose the name Rhodopirellula aestuarii sp. nov., represented by ICT_H3.1T (=CECT30431T = LMG32464T) as the type strain of this novel species.16S rRNA gene accession number: GenBank = OK001858.Genome accession number: The Whole Genome Shotgun project has been deposited at DDBJ/ENA/GenBank under the accession JAMQBK000000000. The version described in this paper is version JAMQBK010000000.  相似文献   

18.
Apolipoprotein ε allele 4 (APOE4) influences the metabolism of polyunsaturated fatty acids (PUFAs) such as docosahexaenoic acid (DHA). The entorhinal cortex (EC) in the brain is affected early in Alzheimer's disease and is rich in DHA. The purpose of this study is to identify the effect of APOE4 and DHA lipid species on the EC. Plasma and cerebrospinal fluid (CSF) lipidomic measurements were obtained from the DHA Brain Delivery Pilot, a randomized clinical trial of DHA supplementation (n = 10) versus placebo (n = 12) for six months in nondemented older adults stratified by APOE4 status. Wild-type C57B6/J mice were fed a high or low DHA diet for 6 months followed by plasma and brain lipidomic analysis. Levels of phosphatidylcholine DHA (PC 38:6) and cholesterol ester DHA (CE 22:6) had the largest increases in CSF following supplementation (P < 0.001). DHA within triglyceride (TG) lipids in CSF strongly correlated with corresponding plasma TG lipids, and differed by APOE4, with carriers having a lower increase than noncarriers. Changes in plasma PC DHA had the strongest association with changes in EC thickness in millimeters, independent of APOE4 status (P = 0.007). In mice, a high DHA diet increased PUFAs within brain lipids. Our findings demonstrate an exchange of DHA at the CSF-blood barrier and into the brain within all lipid species with APOE having the strongest effect on DHA-containing TGs. The correlation of PC DHA with EC suggests a functional consequence of DHA accretion in high density lipoprotein for the brain.  相似文献   

19.
Bitter taste perception is mediated by a family of G protein-coupled receptors (T2Rs) in vertebrates. Common carp (Cyprinus carpio), which has experienced an additional round of whole genome duplication during the course of evolution, has a small number of T2R genes similar to zebrafish, a closely related cyprinid fish species, and their expression pattern at the cellular level or their cognate ligands have not been elucidated yet. Here, we showed through in situ hybridization experiments, that three common carp T2R (ccT2R) genes encoding ccT2R200-1, ccT2R202-1, and ccT2R202-2, were specifically expressed in the subsets of taste receptor cells in the lips and gill rakers. ccT2R200-1 was co-expressed with genes encoding downstream signal transduction molecules, such as PLC-β2 and Gαia. Heterologous expression system revealed that each ccT2R showed narrowly, intermediately, or broadly tuned ligand specificity, as in the case of zebrafish T2Rs. However, ccT2Rs showed different ligand profiles from their orthologous zebrafish T2Rs previously reported. Finally, we identified three ccT2Rs, namely ccT2R200-1, ccT2R200-2, and ccT2R203-1, to be activated by natural bitter compounds, andrographolide and/or picrotoxinin, which elicited no response to zebrafish T2Rs, in a dose-dependent manner. These results suggest that some ccT2Rs may have evolved to function in the oral cavity as taste receptors for natural bitter compounds found in the habitats in a species-specific manner.  相似文献   

20.
Distal hereditary motor neuropathies (dHMN) are a group of inherited peripheral nerve disorders characterized by length-dependent motor neuron weakness and subsequent muscle atrophy. Missense mutations in the gene encoding small heat shock protein HSPB1 (HSP27) have been associated with hereditary neuropathies including dHMN. HSPB1 is a member of the small heat shock protein (sHSP) family characterized by a highly conserved α-crystallin domain that is critical to their chaperone activity. In this study, we modeled HSPB1 mutant-induced neuropathies in Drosophila using a human HSPB1S135F mutant that has a missense mutation in its α-crystallin domain. Overexpression of the HSPB1 mutant produced no significant defect in the Drosophila development, however, a partial reduction in the life span was observed. Further, the HSPB1 mutant gene induced an obvious loss of motor activity when expressed in Drosophila neurons. Moreover, suppression of histone deacetylase 6 (HDAC6) expression, which has critical roles in HSPB1 mutant-induced axonal defects, successfully rescued the motor defects in the HSPB1 mutant Drosophila model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号