首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The conjugative plasmid pAD1 (59.6 kilobases) of Streptococcus faecalis shows a 10,000-fold increase in transfer frequency following induction by the sex pheromone cAD1. Mutagenesis of the plasmid with transposon Tn917 was undertaken to determine the region(s) of pAD1 required for the mating response. The relevant genetic material was found to be distributed over a 31.2-kilobase contiguous region of the plasmid. Although insertions in two previously identified regions (traA and traB) exhibited increased transfer frequencies, insertions in five new regions (D, E, F, G, and H) decreased the ability of pAD1 to transfer. Insertions in region H allowed the cells to form visible mating aggregates, but the plasmid transfer frequency was decreased to levels below detection during a 1-h broth mating. Mutants with mutations in region G were able to form aggregates; however, insertions in regions D, E, and F prevented aggregate formation. Insertions in region C decreased the sensitivity of the cell to exogenous cAD1 and exhibited increased activity of the pheromone inhibitor iAD1. Surface protein profiles produced by a number of these mutants were examined, and in some cases were found to be different from those of the wild type. A map showing the various regions is presented, and related aspects of the regulation of the pAD1 mating response are discussed.  相似文献   

2.
The pheromone-responding conjugative bacteriocin plasmid pPD1 (59 kb) of Enterococcus faecalis was mapped physically by using a relational clone approach, and transposon analysis with Tn917 (Emr) or Tn916 (Tcr) facilitated the location of the bacteriocin-related genes in a segment of about 6.7 kb. Tn917 insertions within a 3-kb region resulted in constitutive clumping. The nucleotide sequence of the region that included the insertions giving rise to constitutive clumping was determined. The region of pPD1 spanned about 8 kb and was found to contain a number of open reading frames, some of which were named on the basis of homologies with two other pheromone-responding plasmids, pAD1 and pCF10. The genes were arranged in the sequence repB-repA-traC-traB-traA-ipd-traE-traF- orfY-sea-1 with all but repB and traA oriented in the same (left-to-right) direction. traC and traB corresponded, respectively, to traC and traB of pAD1 and to prgY and prgZ of pCF10.  相似文献   

3.
The enterococcal, conjugative, cytolysin plasmid pAD1 confers a mating response to the peptide sex pheromone cAD1 secreted by plasmid-free strains of Enterococcus faecalis. Cells carrying pAM714, a pAD1::Tn917 derivative with wild-type conjugation properties, were mutagenized with ethyl methanesulfonate to obtain variants that were induced (in the absence of pheromone) to transfer plasmid DNA upon shifting from 32 to 42 degrees C. Of 31 such mutants generated, the results of analyses of 7 are presented in detail. All seven strains were thermosensitive in the E. faecalis host FA2-2; colony morphology, clumping, and DNA transfer correlated well with each other at the two temperatures. In the nonisogenic host E. faecalis OG1X, however, only one derivative (pAM2725) exhibited correlation of all three traits at both temperatures. Three (pAM2700, pAM2703, and pAM2717) clumped and had colonies characteristic of pheromone-induced cells at 32 degrees C but transferred plasmid DNA at a higher frequency only at the elevated temperature. The other three (pAM2708, pAM2709, and pAM2712) were derepressed at both temperatures for all three characteristics. Four of the mutations, including that of pAM2725, mapped within the traA determinant, whereas two mapped identically in a previously unnoted open reading frame (designated traD) putatively encoding a short (23-amino-acid) peptide downstream of the inhibitor peptide determinant iad and in the opposite orientation. One mutant could not be located in the regions sequenced. Studies showed that the traA and traD mutations could be complemented in trans with a DNA fragment carrying the corresponding regions.  相似文献   

4.
5.
The conjugative transfer of the Streptococcus faecalis plasmid pAD1 is characterized by a 10,000-fold increase in frequency following sex pheromone (cAD1) induction. Before the increase in plasmid transfer, donor cells synthesize a proteinaceous adhesin that facilitates the formation of mating aggregates. Four novel surface proteins appearing after exposure of pAD1-containing cells to sex pheromone have been identified. Thirty minutes after induction, a 130-kilodalton (kDa) protein was detectable by Western blotting. A 74-kDa protein, the major species present, and a pair of bands at 153 and 157 kDa were evident 45 min after induction. Induced cells containing another conjugative S. faecalis plasmid, pPD1, gave rise to three high-molecular-weight proteins of the same size (130, 153, and 157 kDa) as those synthesized by pAD1-containing cells. These proteins cross-reacted with antisera raised against induced cells containing pAD1. However, the major protein species produced by pPD1-containing cells had a molecular weight of 78,000 and did not cross-react significantly with the corresponding band of the pAD1 system. Pheromone-induced transfer of the two plasmids, when both were present in the same cell, was independent; induction was limited to the pheromone-specified plasmid. The possibility that lipoteichoic acid might act as a receptor (binding substance) for the induced adhesin protein was also explored. Free lipoteichoic acid (isolated from S. faecalis) inhibited clumping of induced cells, apparently by acting as a competitive inhibitor of the cellular binding substance.  相似文献   

6.
7.
Pheromone-induced conjugal transfer of the hemolysin-bacteriocin plasmid pAD1 of Enterococcus faecalis is regulated by a cluster of determinants designated traA, traB, and regions C and E. The E region is believed to include a positive regulator that controls many structural genes related to conjugation. The pheromone-inducible Tn917-lac fusion NR5, located in the E region, is regulated by the products of traA, traB, and the C region. To more closely examine the effects of these genes on the induction of E region products, inserts in each of these genes were combined with the NR5 fusion in a novel approach involving triparental matings with a pAD1 miniplasmid and recombinational mutagenesis. Results indicate that (i) the traA gene product is a key repressor of the pheromone response; (ii) the traB gene product, in cooperation with a gene within or regulated by the E region, controls pheromone shutdown; (iii) a primary function of the C region gene product is in pheromone sensing, with secondary functions in pheromone shutdown and negative regulation; and (iv) the host in which the plasmid resides has a dramatic effect on the regulation of the NR5 fusion in traB and C region mutants. Numerous parallels were observed between the regulation of the NR5 fusion and the regulation of the aggregation and transfer response. These parallels aided in further defining the functions of particular regulatory determinants as well as further establishing the link between the regulation of the E region and the regulation of the aggregation and transfer response.  相似文献   

8.
Plasmids pAD1 (37.8 megadaltons) and pAD2 (17.1 megadaltons) of Streptococcus faecalis strain DS16 have been mapped with restriction enzymes. The location of a hemolysin-bacteriocin determinant on the conjugative pAD1 plasmid was derived from analyses of transposon insertions. Electron microscope and hybridization analyses located Tn917(Em) and the streptomycin (Sm) and kanamycin (Km) resistance determinants on the nonconjugative pAD2 plasmid. It was shown previously that the erythromycin (Em) resistance associated with Tn917 is inducible and that transposition from pAD2 to pAD1 is also stimulated by exposure of cells to low concentrations of Em. Here we show that inducing concentrations of Em also increase the conjugative transfer potential of pAD1; this is possibly related to a mild and short-lived inhibitory stress placed on the cells before full induction of resistance. Selection of Em-resistant transconjugants arising from matings between DS16 and a plasmid-free recipient gave rise to transconjugants which primarily harbor stable pAD1::pAD2 cointegrates. A 30-min exposure of donors to Em (0.5 microgram/ml) before mating resulted in a severalfold increase in the number of such transconjugants. However, a small fraction (e.g., 3 of 40) of these Emr Smr Kmr transconjugants harbored pAD1::Tn917 and pAD2 molecules. Since we believe pAD2 is incapable of being mobilized by pAD1 without being covalently linked, it is likely that transfer in these cases involved cointegrates representing structural intermediates in the transposition of Tn917 from pAD2 to pAD1. It follows that such intermediates probably had two copies of Tn917 and readily resolved after transfer. (These cointegrates are different from the stable cointegrates which were shown to have only a single copy of Tn917; the latter are assumed not to be related to transposition.) Two variants with altered Tn917 transposition properties were derived. One of them transposed at an elevated frequency, whereas the other showed no detectabel transposition. In neither case was transposition influenced by Em exposure; however, both remained inducible for Em resistance.  相似文献   

9.
K E Weaver  D B Clewell 《Plasmid》1991,25(3):177-189
Aeration of plasmid-free Enterococcus faecalis strains resulted in an 8- to 16-fold decrease in sex pheromone cAD1 activity in culture filtrates. Levels of two unrelated pheromones, cPD1 and cAM373, were unaffected by culture aeration. Aeration also resulted in a decrease in the expression of conjugative transfer functions observed in cells containing pAD1 traB mutations, verifying a link between traB function and pheromone "shutdown." Tests with a series of pAD1 mini-plasmids indicated that the product of the traB gene was involved in, but not sufficient for, pheromone shutdown; the cooperation of one or more other gene products encoded within the pheromone response control region was required.  相似文献   

10.
11.
Streptococcus faecalis strain DS16 harbors two plasmids, a conjugative plasmid, pAD1, which encodes hemolysin and bacteriocin activities, and a nonconjugative plasmid, pAD2, encoding resistance to streptomycin, kanamycin, and erythromycin, the latter of which is inducible. The erythromycin resistance determinant is located on a 3.3-megadalton transposable element designated Tn917, which could be transposed to pAD1 as well as to two other plasmids, pAm gamma 1 and pAM alpha 1. When strain DS16 was exposed to low (inducing) concentrations of erythromycin for a few hours, the frequency of Tn917 transposition from pAD2 to pAD1 increased by an order of magnitude. This induction paralleled induction of erythromycin resistance and was prevented by exposing the cells to inhibitors of deoxyribonucleic acid, ribonucleic acid or protein synthesis. The exposure of strain DS16 to inducing concentrations of erythromycin also enhanced the frequency of erythromycin-resistant transconjugants appearing during mating. Initially, cointegrate molecules, whose molecular weights were approximately the sum of pAD1 and pAD2, accounted for these transconjugants; however, as the induction time increased, pAD1::Tn917 became increasingly prominent.  相似文献   

12.
13.
14.
Conjugative transfer of Enterococcus faecalis-specific sex pheromone plasmids relies on an adhesin, called aggregation substance, to confer a tight cell-to-cell contact between the mating partners. To analyze the dependence of pAD1-encoded aggregation substance, Asa1, on pheromone induction, a variety of upstream fragments were fused to an alpha-amylase reporter gene, amyL, by use of a novel promoter probe vector, pAMY-em1. For pheromone-regulated alpha-amylase activity, a total of at least six genes, traB, traC, traA, traE1, orfY, and orf1, are required: TraB efficiently represses asa1 (by a mechanism unrelated to its presumptive function in pheromone shutdown, since a complete shutdown is observed exclusively in the presence of traC); only traC can relieve traB-mediated repression in a pheromone-dependent manner. In addition to traB, traA is required but not sufficient for negative control. Mutational inactivation of traE1, orfY, or orf1, respectively, results in a total loss of alpha-amylase activity for constructs normally mediating constitutive expression. Inversion of a fragment covering traA, P(0), and traE1 without disrupting any gene or control element switches off amyL or asa1 expression, indicating the involvement of a cis-acting, orientation-dependent factor (as had been shown for plasmid pCF10). Unexpectedly, pAD1 represses all pAMY-em1 derivatives in trans, while its own pheromone-dependent functions are unaffected. The discrepancy between the new data and those of former studies defining TraE1 as a trans-acting positive regulator is discussed.  相似文献   

15.
The Enterococcus faecalis virulence plasmid pAD1 encodes a mating response induced by exposure to an octapeptide sex pheromone, cAD1, secreted by plasmid-free enterococci. The determinant for the pheromone in E. faecalis FA2-2, designated cad, was found to encode a 309-amino-acid lipoprotein precursor with the last 8 residues of its 22-amino acid signal sequence representing the cAD1 moiety. The lipoprotein moiety contained two 77-amino-acid repeats (70% identity) separated by 45 residues. The nonisogenic E. faecalis strain V583 determinant encodes a homologous precursor protein, but it differs at two amino acid positions, both of which are located within the pheromone peptide moiety (positions 2 and 8). Construction of a variant of strain FA2-2 containing the differences present in V583 resulted in cells that did not produce detectable cAD1. The mutant appeared normal under laboratory growth conditions, and while significantly reduced in recipient potential, when carrying pAD1 it exhibited a normal mating response. A mutant of FA2-2 with a truncated lipoprotein moiety appeared normal with respect to recipient potential and, when carrying plasmid DNA, donor potential. A gene encoding a protein designated Eep, believed to be a zinc metalloprotease, had been previously identified as required for pheromone biosynthesis and was believed to be involved in the processing of a pheromone precursor. Our new observation that the pAD1-encoded inhibitor peptide, iAD1, whose precursor is itself a signal sequence, is also dependent on Eep is consistent with the likelihood that such processing occurs at the amino terminus of the cAD1 moiety.  相似文献   

16.
Members of the Tn916 family of conjugative transposons are able to insert themselves into Enterococcus faecalis hemolysin/bacteriocin plasmid pAD1 (and related elements) in such a way as to generate hyperexpression of the hemolysin/bacteriocin. To examine this phenomenon in more detail, E. faecalis (pAD1::Tn916) derivatives defective or altered in hemolysin expression were isolated and characterized with respect to production of the L (lytic) or A (activator) component (also known as CylA) and the specific location of the transposon. The mutants fell into five classes. Class 1 strains were nonhemolytic, and the related insertions mapped in a location known to affect expression of the L component. The other four classes varied from an inability to express hemolysin (class 2) to different degrees of hyperhemolytic expression (classes 3 to 5); the insertions in these classes mapped in a similar place within cylA, near the 3' end of the determinant. A previous study provided evidence that CylA is also necessary for bacteriocin immunity; however, these insertions did not destroy this function. (A Tn917 insertion in the 5' half of the determinant eliminates immunity.) In mutant classes 3 to 5, the presence of tetracycline enhanced hemolysin expression. In late-exponential-phase broth cultures, hemolysin could not be detected in supernatants of classes 2 to 5, in contrast to a wild-type control strain; however, different amounts of the L component could be detected, with the lowest in class 2 and greater-than-normal amounts in classes 3 to 5. Although nucleotide sequencing showed that the Tn916 insertions in classes 2 to 5 were at identical sites, the transposon junction sequences differed in some cases. The data indicated that cylA translation into the transposon would result in different truncation sites, and these differences were probably related to phenotype differences.  相似文献   

17.
18.
Thirty-seven nonhemolytic/nonbacteriocinogenic mutations in Enterococcus (Streptococcus) faecalis plasmid pAD1 were generated by Tn917 insertion. All were found to belong to one of two complementation classes. Each class of mutants secreted either hemolysin/bacteriocin (Hly/Bac) component A or L into the culture medium. DNA encoding Hly/Bac was cloned in Escherichia coli in which both components of the hemolysin were expressed individually and collectively. The region encoding components A and L was further defined by deletion analysis and physically mapped. A total of approximately 8.4 kilobases of pAD1 DNA were observed to be required for hemolysin expression. Hly/Bac activity of the wild-type and the inactive L substance was observed to be heat stable. Active Hly/Bac resulting from incubating separately secreted components A and L was also found to be heat stable. The results indicate that component A activates component L and that activated component L possesses the Hly/Bac activity. Component A was also observed to be associated with host immunity to the Hly/Bac.  相似文献   

19.
The tetracycline resistance plasmid pCF10 (58 kilobases [kb]) of Streptococcus faecalis possesses two separate conjugation systems. A 25-kb region of the plasmid (designated TRA) was shown previously to determine pheromone response and conjugation functions required for transfer of pCF10 between S. faecalis cells (P. J. Christie and G. M. Dunny, Plasmid 15:230-241, 1986). When S. faecalis cells were mixed with Bacillus subtilis in broth, tetracycline resistance was transferred from S. faecalis. The tetracycline-resistant B. subtilis cells contained a 16-kb region of pCF10 (distinct from TRA) that carried the tetracycline resistance determinant (Tetr). This Tetr element was found to transfer between S. faecalis and B. subtilis strains in the absence of plasmids. Genetic and molecular techniques were used to establish locations of the element at several different sites on the B. subtilis chromosome. The Tetr element could be transferred in filter matings from B. subtilis to S. faecalis strains and between recombination-proficient and -deficient S. faecalis strains in the absence of any plasmid DNA. The transfer required direct cell-to-cell contact and was not inhibited by DNase. The Tetr element was shown to transpose from the S. faecalis chromosome to various locations within the hemolysin plasmid pAD1. Together, the data indicate that the Tetr element, termed transposon Tn925, is very similar to the conjugative transposon Tn916 in both structure and function. A derivative of Tn925, containing transposon Tn917 inserted into a site approximately 3 kb from one end, exhibited elevated transfer frequencies and may provide a useful means for delivering Tn917 by conjugation into various gram-positive species.  相似文献   

20.
Plasmid-free strains of Enterococcus faecalis secrete a peptide sex pheromone, cAD1, which specifically induces a mating response by donors carrying the hemolysin plasmid pAD1 or related elements. A determinant on the E. faecalis OG1X chromosome has been found to encode a 46.5-kDa protein that plays an important role in the production of the extracellular cAD1. Wild-type E. faecalis OG1X cells harboring a plasmid chimera carrying the determinant exhibited an eightfold enhanced production of cAD1, and plasmid-free cells carrying a mutated chromosomal determinant secreted undetectable or very low amounts of the pheromone. The production of other pheromones such as cPD1, cOB1, and cCF10 was also influenced, although there was no effect on the pheromone cAM373. The determinant, designated eep (for enhanced expression of pheromone), did not include the sequence of the pheromone. Its deduced product (Eep) contains apparent membrane-spanning sequences; conceivably it is involved in processing a pheromone precursor structure or in some way regulates expression or secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号