首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Ornithine transcarbamylase deficiency is a human genetic disease potentially susceptible to gene therapy. A murine model system exists for the disease in the sparse-fur (spf) mouse. Before gene therapy studies can be performed it is necessary to have practical methods which could detect successful gene transfer. Therefore we have developed an in situ staining procedure for the detection of ornithine transcarbamylase activity in polyacrylamide gels. Following electrophoretic separation under nondenaturing conditions inorganic phosphate cleaved from carbamyl phosphate in gels as a result of enzymatic activity was precipitated as phosphomolybdic acid and visualized by reduction with ascorbic acid. Results from the procedure correlated with ornithine transcarbamylase activity as measured by solution assay for citrulline, the other product of the reaction. This procedure readily distinguished mutant forms of ornithine transcarbamylase as exemplified by the murine spf mutation and resolved ornithine transcarbamylases of all animals tested into multiple forms. The procedure further distinguished ornithine transcarbamylases of animals of several different genera while yielding virtually identical patterns of the enzyme from species within the same genus. This procedure also suggested that the human enzyme was more labile than murine ornithine transcarbamylase; direct thermolability studies confirmed this finding.  相似文献   

2.
Rat heart ornithine decarboxylate activity from isoproterenol-treated rats was inactivated in vitro by reactive species of oxygen generated by the reaction xanthine/xanthine oxidase. Reduced glutathione, dithiothreitol and superoxide dismutase has a protective effect in homogenates and in partially purified ornithine decarboxylase exposed to the xanthine/xanthine oxidase reaction, while diethyldithiocarbamate, which is an inhibitor of superoxide dismutase, potentiated the damage induced by O2- on enzyme activity. Dithiothreitol at concentrations above 1.25 mM had an inhibitory effect upon supernatant ornithine decarboxylase activity, while at 2.5 mM it was most effective in the recovery of ornithine decarboxylase activity, after the purification of the enzyme by the ammonium sulphate precipitation procedure. The ornithine decarboxylase inactivated by the xanthine/xanthine oxidase reaction showed a higher value of Km and a reduction of Vmax with respect to control activity. The exposure of rats to 100% oxygen for 3 h reduced significantly the isoproterenol-induced heart ornithine decarboxylase activity. The injection with diethyldithiocarbamate 1 h before hyperoxic exposure further reduced heart ornithine decarboxylase activity.  相似文献   

3.
Ornithine aminotransferase was purified by conventional biochemical methods from rat kidney, rat liver, and human liver. Affinity-purified antibodies raised to the rat kidney enzyme were used to produce an immunoadsorbent enabling a one-step purification of ornithine aminotransferase to be made from crude human liver extracts. The harsh chemical conditions often required to desorb immunoadsorbents were avoided by isolating antibodies with low functional affinity and employing an electrophoretic desorption method which allowed the enzyme activity to be retained. The close structural similarity between human and rat ornithine aminotransferase was demonstrated by immunodiffusion reactions. It was therefore possible to purify the enzyme from human liver using immobilized antibodies raised against rat kidney ornithine aminotransferase. Furthermore, desorption was more readily achieved due to the lower affinity for the human enzyme.  相似文献   

4.
Rat heart ornithine decarboxylase activity from isoproterenol-treated rats was inactivated in vitro by reactive species of oxygen generated by the reaction xanthine/xanthine oxidase. Reduced glutathione, dithiothreitol and superoxide dismutase had a protective effect in homogenates and in partially purified ornithine decarboxylase exposed to the xanthine/xanthine oxidase reaction, while diethyldithiocarbamate, which is an inhibitor of superoxide dismutase, potentiated the damage induced by O2? on enzyme activity. Dithiothreitol at concentrations above 1.25 mM had an inhibitory effect oupon supernatant ornithine decarboxylase activity, while at 2.5 mM it was most effective in the recovery of ornithine decarboxylase activity, after the purification of the enzyme by the ammonium sulphate precipitation procedure. The ornithine decarboxylase inactivated by the xanthine/xanthine oxidase reaction showed a higher value of Km and a reduction of Vmax with respect to control activity. The exposure of rates to 100% oxygen for 3 h reduced significantly the isoproterenol-induced heart ornithine decarboxylase activity. The injection with diethyldithiocarbamate 1 h before hyperoxic exposure further reduced heart ornithine decarboxylase activity.  相似文献   

5.
Ornithine decarboxylase from calf liver. Purification and properties   总被引:5,自引:0,他引:5  
M K Haddox  D H Russell 《Biochemistry》1981,20(23):6721-6729
Ornithine decarboxylase (ODC) was purified 25000-fold from calf liver to apparent homogeneity by methods developed to circumvent the lability of the enzyme. Appropriate ratios of sample protein applied to column size and/or gradient size were derived for each purification procedure (ion-exchange, gel filtration ahd hydroxylapatite chromatography, electrophoresis, and thiol affinity chromatography) to maintain enzymatic activity. The enzyme was labile to dilution at all steps of the purification; the inclusion of poly(ethylene glycol) or additional protein decreased but did not eliminate the activity loss. The purified enzyme had a Stokes radius of 3.14 and a molecular weight of 54000. The Km for ornithine was 0.12 mM, and pyridoxal phosphate was 2.0 microM; the pH optimum for the decarboxylation reaction was 7.0. Analysis by sievorptive ion-exchange chromatography indicated the presence of three ionic forms. In the presence of Tris-barbital buffer containing thioglycolic acid, the ODC preparation assumed an apparent molecular weight of 100000 and a Stokes radius of 4.5 and retained full catalytic activity.  相似文献   

6.
Ornithine transcarbamylase, the enzyme which catalyzes the formation of citrulline from ornithine and carbamoylphosphate, has been purified from guinea pig liver. By the procedure indicated in the present paper a 200 fold purification of the enzyme has been achieved. Using both the purified fraction and the crude extract, a parallel determination of some physicochemical properties has been carried out. The pH of maximal activity of OTC was 7.8 for both preparations. The maximal stability of the enzyme with respect of pH showed a plateau over the range of pH 7 to 9.5 in the purified fraction, whereas the crude extract exhibited a major stability which lay between pH and 10. Both OTC preparations showed similar behavior regarding thermal stability, the enzyme being still active at a 50 degrees C temperature. The values of the apparent Km's proved to be 4.4 mM for the substrate ornithine and 5 mM for carbamoylphosphate.  相似文献   

7.
O'neal TD 《Plant physiology》1975,55(6):975-977
An enzyme was extensively purified from jack bean leaves (Canavalia ensiformis L.) which produced o-ureidohomoserine from l-canaline and carbamyl phosphate. The most highly purified preparations catalyzed both this reaction and citrulline synthesis from ornithine and carbamyl phosphate, and the ratio of the two activities remained nearly constant during purification. When hydrated jack bean seeds were the enzyme source, ornithine carbamyltransferase (EC 2.1.3.3) activity was high but synthesis of ureidohomoserine was barely detectable. Both ornithine carbamyltransferase and the ureidohomoserine synthesizing enzyme had similar Km values for carbamyl phosphate. The purification data suggest that one enzyme may catalyze both reactions in jack bean leaves.  相似文献   

8.
We report experiments describing the isolation and characterization of ornithine transcarbamylase from normal human liver. Our preparative procedure employs initial centrifugation and heat steps, intermediate batch-wise adsorption and desorption from ion exchange resins and column chromatographic elution from hydroxylapatite, and final purification by gel filtration chromatography and glycerol density gradient centrifugation. The enzyme, purified 580-fold in this way, is homogeneous as judged by native and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Human ornithine transcarbamylase has a molecular weight of 114,000 and is a trimer of identical 38,000 molecular weight subunits. It focuses at pH 6.8 as a single band on polyacrylamide gel, has a COOH-terminal phenylalanine, an NH2-terminal glycine, an apparent Km for L-ornithine of 0.4 mM and for carbamyl phosphate of 0.16 mM, and a pH optimum of 7.7. The enzyme is quite stable over a temperature range from -50 degrees to +60 degrees C and over the pH range from 5.8 to 8.2. The quaternary structure and amino acid composition of the human enzyme are very similar to those of its bovine homologue.  相似文献   

9.
A radioimmunoassay for ornithine decarboxylase was used to study the regulation of this enzyme in rat liver. The antiserum used reacts with ornithine decarboxylase from mouse, human or rat cells. Rat liver ornithine decarboxylase enzyme activity and enzyme protein (as determined by radioimmunoassay) were measured in thioacetamide-treated rats at various times after administration of 1,3-diaminopropane. Enzyme activity declined rapidly after 1,3-diaminopropane treatment as did the amount of enzyme protein, although the disappearance of enzyme activity slightly preceded the loss of immunoreactive protein. The loss of enzyme protein after cycloheximide treatment also occurred rapidly, but was significantly slower than that seen with 1,3-diaminopropane. When 1,3-diaminopropane and cycloheximide were injected simultaneously, the rate of disappearance of enzyme activity and enzyme protein was the same as that seen with cycloheximide alone. These results show that the rapid loss in enzyme activity after 1,3-diaminopropane treatment is primarily due to a loss in enzyme protein and that protein synthesis is needed in order for 1,3-diaminopropane to exert its full effect. A macromolecular inhibitor of ornithine decarboxylase that has been termed antizyme is induced in response to 1,3-diaminopropane, but our results indicate that the loss of enzyme activity is not due to the accumulation of inactive ornithine decarboxylase-antizyme complexes. It is possible that the antizyme enhances the degradation of the enzyme protein. Control experiments demonstrated that the antiserum used would have detected any inactive antizyme-ornithine decarboxylase complexes present in liver since addition of antizyme to ornithine decarboxylase in vitro did not affect the amount of ornithine decarboxylase detected in our radioimmunoassay. Anti-(ornithine decarboxylase) antibodies may be useful in the purification of antizyme since the antizyme-ornithine decarboxylase complex can be immunoprecipitated, and antizyme released from the precipitate with 0.3 M-NaCl.  相似文献   

10.
In this paper, we describe an efficient procedure for the purification of yeast phosphofructokinase. This procedure eliminates any time delay and enables to obtain an enzyme with minimum proteolytic alterations. The molecular weights of the oligomeric enzyme and of its constitutive subunits were both evaluated by means of several independent methods. However, the accuracy of each measurement was not sufficient to discriminate between an hexameric and an octameric structure of the enzyme oligomer. On the other hand, crosslinking experiments demonstrated the octameric structure of yeast phosphofructokinase. Obviously, some methods of molecular weight determination have led to erroneous results. In particular, our experiments show that the reliability of molecular weight determinations performed by gel filtration of native proteins must be considered with caution.  相似文献   

11.
Ornithine decarboxylase from the African trypanosome is an important target for antitrypanosomal chemotherapy. Despite this, the enzyme had not been previously purified or extensively characterized as it is a very low level protein. In this paper we describe the purification of Trypanosoma brucei brucei ornithine decarboxylase from bloodstream form trypomastigotes by 107,000-fold to a specific activity of 2.7 x 10(6) nmol CO2/h/mg of protein in the parasite. T. brucei ornithine decarboxylase had a native molecular weight of 90,000 and a subunit molecular weight of 45,000. The isoelectric point of the protein was 5.0. The Km for ornithine was 280 microM and the Ki for the irreversible inhibitor alpha-difluoromethylornithine (DFMO) was 220 microM with a half-time of inactivation at saturating DFMO concentration of 2.7 min. T. brucei ornithine decarboxylase appears similar to mouse ornithine decarboxylase, further supporting our previous suggestion that the selective toxicity of DFMO to the parasite is not due to catalytic differences between the two proteins. Although a small quantity of T. brucei ornithine decarboxylase was purified from T. brucei, extensive structural and kinetic studies will require a more ample source of the enzyme. We therefore expressed our previously cloned T. brucei ornithine decarboxylase gene in Escherichia coli using a vector that contains an inducible lambda promoter. T. brucei ornithine decarboxylase activity was induced in E. coli to levels that were 50 to 200 fold of that present in the long-slender bloodstream form of T. brucei. Ornithine decarboxylase activity in the crude E. coli lysate was 1500-6000 nmol of CO2/h/mg of protein and represented 0.05-0.2% of the total cell protein. The recombinant T. brucei ornithine decarboxylase was purified to apparent homogeneity from the transformed E. coli. The purified recombinant enzyme had kinetic and physical properties essentially identical to those of the native enzyme.  相似文献   

12.
Ornithine decarboxylase (l-ornithine carboxy-lyase, EC 4.1.1.17) has been purified from simian virus 40-transformed 3T3 mouse fibroblasts by a procedure utilizing affinity chromatography as the principal step. Selective elution of the enzyme from a pyridoxamine 5′-phosphate-agarose affinity matrix with the use of pyridoxal 5′-phosphate effected a single-step purification of approximately 500-fold, with a significantly higher overall recovery of activity (30 to 45%) than achieved with previous procedures. In the presence of optimal protein concentrations, the enzyme from transformed fibroblasts exhibited a significantly higher specific activity than reported previously for the decarboxylase purified from liver. The apparent affinities of the fibroblast enzyme for substrate and cofactor were similar to those reported for the decarboxylases purified from other tissues. With the use of sodium dodecyl sulfate-gel electrophoresis, the subunit molecular weight of the purified ornithine decarboxylase was demonstrated to be approximately 55,000, while the apparent molecular weight of the active enzyme in vitro as determined by gel filtration was approximately 110,000.  相似文献   

13.
A monoclonal antibody to rat liver ornithine decarboxylase   总被引:5,自引:0,他引:5  
A monoclonal antibody was obtained against rat liver ornithine decarboxylase by using hybridoma technology with a small amount of partially purified enzyme. The antibody, IgG1 of kappa-type, was affinity-purified to homogeneity from culture supernatants of hybridoma cells. While the antibody had no inhibitory effect on ornithine decarboxylase activity when tested alone, it precipitated up to 87 units (60 ng) of the enzyme per microgram in the presence of formalin-fixed Staphylococcus aureus Cowan I bacteria. Immunoadsorption on a column of the monoclonal antibody-Sepharose 4B was shown to be useful for the removal of ornithine decarboxylase from antizyme inhibitor preparations, an essential procedure for the accurate assay of either ornithine decarboxylase-antizyme complex or antizyme inhibitor. It was also shown that antizyme could be affinity-purified by using a column of the monoclonal antibody-Affi-Gel 10 to which ornithine decarboxylase had been bound.  相似文献   

14.
The purification of yeast invertase was attempted by application of the chromatographic method using Duolite C-10, a sulfonic acid cation exchange resin. This method was found to be extremely simple in process and significantly effective for the improvement of purity of the enzyme, compared with those other methods reported, hitherto. In the present paper, the procedure of the purification and some properties of the enzyme obtained thereby, are described, and some discussion of the implications is presented.  相似文献   

15.
Traditionally, most enzyme assays utilize homogenized cell extracts with or without dialysis. Homogenization and centrifugation of large numbers of samples for screening of mutants and transgenic cell lines is quite cumbersome and generally requires sufficiently large amounts (hundreds of milligrams) of tissue. However, in situations where the tissue is available in small quantities, or one needs to study changes in enzyme activities during development (e.g. somatic embryogenesis), it is desirable to have rapid and reproducible assay methods that utilize only a few milligrams of tissue and can be conducted without homogenization. Here, we report a procedure for the measurement of enzyme activities of the three key decarboxylases involved in polyamine biosynthesis utilizing small quantities of plant tissue without the homogenization and centrifugation steps. Suspension cultures of red spruce (Picea rubens (Sarg.)), hybrid poplar (Populus nigra × maximowiczii), and wild carrot (Daucus carota) were used directly to measure decarboxylation of ornithine, arginine and S-adenosylmethionine. Our results demonstrate that this procedure can be used to quantify the activities of arginine decarboxylase (EC 4.1.1.19), ornithine decarboxylase (EC 4.1.1.17) and S-adenosylmethionine decarboxylase (EC 4.1.1.50) in a manner quite comparable to the traditional assays for these enzymes that involve laborious steps of homogenization and centrifugation.  相似文献   

16.
A procedure was developed for purification of ornithine transcarbamylase (OTCase) to near homogeneity from Bacillus subtilis 168. The purified native enzyme existed as a mixture of dimeric, tetrameric, and hexameric forms, but was converted to the dimer in the presence of 2-mercaptoethanol. The molecular weight of the subunit was 44,000. Some general kinetic properties of the enzyme were described. OTCase was repressed by arginine in growing B. subtilis cells, but the enzyme was induced by arginine at the end of exponential growth. Specific antibodies against the purified OTCase were used to show that the same enzyme was produced under all conditions. These results and studies of a mutant lacking OTCase demonstrated that B. subtilis produced only a single OTCase. OTCase was clearly required for arginine biosynthesis, but the physiological function of OTCase induction by arginine was obscure. OTCase was not induced by, or required for, growth on arginine as a carbon and nitrogen source. Absence of OTCase in a mutant did not alter the yield or arginine content of its spores in comparison to a strain containing OTCase.  相似文献   

17.
The binding of alpha-difluoromethylornithine, an irreversible inhibitor, to ornithine decarboxylase was used to investigate the amount of enzyme present in rat liver under various conditions and in mouse kidney after treatment with androgens. Maximal binding of the drug occurred on incubation of the tissue extract for 60min with 3mum-difluoromethyl[5-(14)C]ornithine in the presence of pyridoxal phosphate. Under these conditions, only one protein became labelled, and this corresponded to ornithine decarboxylase, having M(r) about 100000 and subunit M(r) about 55000. Treatment of rats with thioacetamide or carbon tetrachloride or by partial hepatectomy produced substantial increases in ornithine decarboxylase activity and parallel increases in the amount of enzyme protein as determined by the extent of binding of difluoromethyl[5-(14)C]ornithine. Similarly, treatment with cycloheximide or 1,3-diaminopropane greatly decreased both the enzyme activity and the amount of difluoromethyl-[5-(14)C]ornithine bound to protein. In all cases, the ratio of drug bound to activity was 26fmol/unit, where 1 unit corresponds to 1nmol of substrate decarboxylated in 30min. These results indicate that even after maximal induction of the enzyme in rat liver there is only about 1ng of enzyme present per mg of protein. When mice were treated with androgens there was a substantial increase in renal ornithine decarboxylase activity, the magnitude of which depended on the strain. There was an excellent correspondence between the amount of activity present and the capacity to bind labelled alpha-difluoromethylornithine in the mouse kidney extracts, but in this case the ratio of drug bound to activity was 14fmol/unit, suggesting that the mouse enzyme has a higher catalytic-centre activity. After androgen induction, the mouse kidney extracts contain about 170ng of enzyme/mg of protein. These results indicate that titration with alpha-difluoromethylornithine provides a valuable method by which to quantify the amount of active ornithine decarboxylase present in mammalian tissues, and that the androgen-treated mouse kidney is a much better source for purification of the enzyme than is rat liver.  相似文献   

18.
Antibodies were produced in rabbits to homogeneous mouse kidney ornithine decarboxylase and used to determine the amount of this protein present in kidney extracts by a competitive radioimmunoassay procedure. The labeled ligand for this assay was prepared by reacting renal ornithine decarboxylase with [5-3H] alpha-difluoromethylornithine, an enzyme-activated irreversible inhibitor. The sensitivity of the assay was such that 1 ng of protein could be quantitated and the binding to ornithine decarboxylase of a macromolecular inhibitor (antizyme) or alpha-difluoromethylornithine did not affect the reaction. It was found that treatment of female mice with testosterone produced a 400-fold increase in ornithine decarboxylase protein in the kidney within 4-5 days. Exposure to cycloheximide or to 1,3-diaminopropane led to a rapid disappearance of the protein which paralleled the loss of enzyme activity. There was no sign of any immunoreactive but enzymatically inactive form of mouse kidney ornithine decarboxylase under any of the conditions investigated. The results indicate that fluctuations of the enzyme activity in this organ are mediated via changes in the amount of enzyme protein rather than by post-translational modifications or interaction with inhibitors or activators.  相似文献   

19.
Ornithine decarboxylase is the initial and rate-limiting enzyme in the polyamine biosynthetic pathway. Polyamines are found in all mammalian cells and are required for cell growth. We previously demonstrated that N-hydroxyarginine and nitric oxide inhibit tumor cell proliferation by inhibiting arginase and ornithine decarboxylase, respectively, and, therefore, polyamine synthesis. In addition, we showed that nitric oxide inhibits purified ornithine decarboxylase by S-nitrosylation. Herein we provide evidence for the chemical mechanism by which nitric oxide and S-nitrosothiols react with cysteine residues in ornithine decarboxylase to form an S-nitrosothiol(s) on the protein. The diazeniumdiolate nitric oxide donor agent 1-diethyl-2-hydroxy-2-nitroso-hydrazine acts through an oxygen-dependent mechanism leading to formation of the nitrosating agents N(2)O(3) and/or N(2)O(4). S-Nitrosoglutathione inhibits ornithine decarboxylase by an oxygen-independent mechanism likely by S-transnitrosation. In addition, we provide evidence for the S-nitrosylation of 4 cysteine residues per ornithine decarboxylase monomer including cysteine 360, which is critical for enzyme activity. Finally S-nitrosylated ornithine decarboxylase was isolated from intact cells treated with nitric oxide, suggesting that nitric oxide may regulate ornithine decarboxylase activity by S-nitrosylation in vivo.  相似文献   

20.
In a recent communication (Thompson, J., Curtis, M. A., and Miller, S.P.F. (1986) J. Bacteriol. 167, 522-529) we described the purification and characterization of N5-(1-carboxyethyl)ornithine from cells of Streptococcus lactis 133. This unusual amino acid has not previously been found in nature. Radiotracer experiments presented here reveal that exogenous [14C]ornithine serves as the precursor for biosynthesis of [14C]arginine, [14C]N5-(1-carboxyethyl)ornithine, and [14C]N5-acetylornithine by cells of S. lactis K1 during growth in a defined medium lacking arginine. In the absence of both arginine and ornithine, cells of S. lactis K1 can also generate intracellular [14C]N5-(1-carboxyethyl)ornithine from exogenous [14C]glutamic acid. Previously we showed that the properties of N5-(1-carboxyethyl)ornithine prepared from S. lactis were identical to one of the two diastereomers [2S, 7S) or (2S, 7R] present in a synthetic preparation of (2S, 7RS)-N5-(1-carboxyethyl)ornithine. The two diastereomers have now been unambiguously synthesized by an Abderhalden-Haase condensation between (2S)-N2-t-butoxycarbonyl-ornithine and the chiral (2S)-, and (2R)-bromopropionates. By 13C-NMR spectroscopy it has been established that the preparation from S. lactis is exclusively (2S, 7S)-N5-(1-carboxyethyl)ornithine. has been demonstrated in a cell-free extract of S. lactis 133. The requirements for ornithine, pyruvic acid, and NAD(P)H suggest that biosynthesis of N5-(1-carboxyethyl)ornithine occurs via a reductive condensation mechanism. A general survey revealed that N5-(1-carboxyethyl)ornithine was produced only by certain strains of Group N streptococci. These findings may indicate a plasmid locus for the gene(s) encoding the enzyme(s) for N5-(1-carboxyethyl)ornithine biosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号