首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract— The purification of choline acetyltransferase (ChAc) has been hampered by the increasing instability of the enzyme in the course of purification. By working with a high concentration of protein and by adding glycerol to the enzyme, the stability was increased. The purification was performed by centrifuging twice, at low and high salt concentrations, precipitation by ammonium sulphate and chromatography on carboxymethyl–Sephadex, hydroxylapatite and Sephadex G 100. The final steps were performed by using chromatography on an immunoabsorbent; this consists of agarose-coupled gammaglobulins of antisera devoid of any activity against ChAc itself and directed against other proteins still present in the purest ChAc preparation achieved by conventional biochemical techniques. The purest rat brain ChAc preparation had a specific activity of 20 μmol/min/mg of protein after a 30,000-fold purification. The enzyme was not homogeneous in polyacrylamide gel electrophoresis performed either at pH 4.5 or with sodium dodecyl sulphate. Pure ChAc from rat brain would have a specific activity of approximately 100 μmol/min/mg of protein.  相似文献   

2.
Abstract— Purification of choline acetyltransferase (ChAc) from heads of Drosophila melanogaster , the richest known source of ChAc, has been accomplished. The stability of the enzyme was preserved by working with a concentration of protein above 0.1 mg/ml. The purification was carried out with ammonium sulfate fractionation and column chromatography on QAE-Sephadex, CoA-Sepharose, G-200 Sephadex, and PCMB-Sepharose. In a procedure using 100 g of Drosophila heads, the specific activity of the crude homogenate was 0.028 μmol/min/mg protein and that of the final product was 43 μmol/min/mg protein, representing a 1500 fold purification. A single protein band, containing all of the ChAc activity, was seen by polyacrylamide gel electrophoresis. A sharp pH optimum at 7.2 was observed. Apparent Km's for acetyl CoA and choline were 90 μM and 47 μM , respectively. The molecular weight was determined to be 69,000. Isoelectric focusing of extracts of Drosophila heads showed only one peak of choline acetyltransferase activity with an apparent pi of 5.1.  相似文献   

3.
Previously we reported a homologous radioimmunoassy for rat thyrocalcitonin (TCT) which was sensitive enough (2--3 ng/ml serum) to measure TCT in thyroid venous blood or thyroid gland extracts but could not detect TCT in peripheral blood even after provocative challenge with iv calcium. In the present study chicken antisera to rat TCT were developed which were sufficiently sensitive (120--240 pg/ml serum) to permit initial evaluation of changes in TCT in rat peripheral blood. The following results were observed: (1) Basal serum TCT in young male Holtzman rats was undetectable, being less than 120--240 pg/ml; (2) induction of marked hypercalcemia by iv calcium increased TCT to approximately 1000--3000 pg/ml within 5 min; (3) thyroid cautery increased TCT to approximately 1000 pg/ml in 5--15 min; (4) calcium gavage (12.2 mg Ca/100 g) produced modest hypercalcemia in 30--60 min and increased serum TCT to approximately 500 pg/ml; (5) injection of isoproterenol raised serum TCT detectably; (6) injection of large doses of gastrin or pentagastrin did not produce detectable increases in TCT 5 or 30 min later. The results show that suitable antisera to rat TCT can be developed in chickens and applied to the measurement, by radioimmunoassay, of elevated circulating levels of TCT in the rat.  相似文献   

4.
Male Sprague-Dawley rats were actively immunised against testosterone-3-bovine serum albumin (T-3-BSA) and on appearance of detectable anti-testosterone antibodies, elevated serum testosterone and LH concentrations were observed. These concentrations reached values of >28 μg/100ml testosterone and 16 μg/100ml LH in some animals after 5 months of immunisation. The corresponding prolactin values did not appear to differ significantly from controls. The circulating bound testosterone fraction as determined by equilibrium dialysis, rose from 65.0 ± 2.75% before immunisation to 98.7 ± 0.75% in those animals possessing high titre antisera. This entailed a nett decrease in the concentration of unbound steroid from 144 ± 49 ng/100 ml to 78 ± 25 ng/100ml.  相似文献   

5.
6.
The kinetic properties of soluble and membrane-bound choline acetyltransferase (ChAc) were determined as a function of homogenization media and solubilization procedure in various regions of rat brain. Treatment of homogenate and/or subcellular fractions with KCl, Triton X-100, or ether dramatically altered the apparent Vmax and the degree of solubilization of the enzyme, but no fraction exhibited Km values substantially different from 12 μM for acetyl-CoA and 200 μM for choline. On the other hand, increasing the ionic strength of the assay medium for a given fraction from 0-02 M to 0-5 M increased both Vmax and Km values for both substrates. The absolute levels and subcellular distribution of ChAc were determined in 11 brain regions to localize cholinergic cell bodies and nerve endings. Levels of ChAc varied from 139 m-units/g tissue in caudate-putamen to 5-7 m-units/g tissue in cerebellum. The fraction of ChAc activity associated with synaptosomes varied from near 75 per cent in caudate-putamen, hippocampus and cortical regions to near 20 per cent in septum, locus coeruleus area and substantia nigra area. The apparent parallel distribution of cholinergic and catecholaminergic nerve endings is discussed in terms of a hypothetical model for the pathophysiology and treatment of Parkinson's syndrome.  相似文献   

7.
Abstract— Plasmalogenase was assayed by measuring the disappearance of the plasmalogen by two-dimensional thin-layer chromatography. The enzyme was present in a glycerol-bicarbonate extract of an acetone-dried powder from bovine brain. With ethanolamine plasmalogens as the substrate, the Km was 180 μM. Diacyl glycerophosphorylcholines, diacyl glycerophosphorylethanolamines and choline plasmalogens were competitive inhibitors. With choline plasmalogens as the substrate, the Km was 208 μM and competitive inhibition was observed with diacyl glycerophosphorylcholines and ethanolamine plasmalogens. The same enzyme may be responsible for the hydrolysis of the alk-1-enyl moiety from both plasmalogens. Plasmalogenase activity was 5.1 μmol/h/g of dog brain, 3.9 μmol/h/g of rat brain and 3.4 μmol/h/g of gerbil brain. A lysophospholipase was also found in the glycerol-bicarbonate extract from the acetone-dried powder. The lysophospholipase was more active in hydrolysing acyl groups from 2-acyl-sn-glycero-3-phosphorylethanolamines than the plasmalogenase was active in hydrolyzing alk-1-enyl groups from 1-alk-1′-enyl-2-acyl-sn-glycero-3-phosphorylethanolamines.  相似文献   

8.
The intracerebroventricular injection of pyridoxal phosphate (PLP, 0.125-1.25 μmol/rat) causes epileptic seizures (4 min → 1 min) that are preventable or reversible by GABA (1 μmol/rat), by muscimol (O.025 μmol/rat), or by diazepam (1.75 μmol/rat). At the peak of PLP-induced convulsions, the activities of GAD and GABA-T in 14 regions of rat brain remained unaltered, whereas the concentrations of PLP remained elevated. The PLP-induced convulsion was blocked by DABA (10 μmol/rat) but was not altered by β-alanine (50 μmol/rat). The previous in vitro studies have shown that PLP increases the uptake of [3H]GABA into synaptosomes and inhibits the binding of [3H]GABA to synaptic membranes. These data suggest that PLP-induced convulsion is due to reduced availability of GABA to its recognition sites, rather than to alteration in the activity of GABA metabolizing enzymes, or unavailability of PLP as a coenzyme for GAD and GABA-T. Since the duration of PLP-induced epileptic seizures is short and can be prevented by GABA agonists, PLP may be used as a tool to study the nature of GABA-mediated neuroinhibition and the properties of GABA receptor sites.  相似文献   

9.
Intraperitoneal administration of thyrotropin releasing hormone (50 μmol/kg) produced an approximately 2-fold increase in rat brain cGMP concentration within 15 min. Histidyl-proline diketopiperazine, a metabolite of thyrotropin releasing hormone, produced a similar effect, but the response was faster and shorter-lasting. Intraperitoneal administration of ethanol (1.5 g/kg) decreased brain cGMP concentration approximately 50% within 10–15 min; thyrotropin releasing hormone or histidyl-proline diketopiperazine, injected 5 min after ethanol, antagonized the ethanol-induced decrease in cGMP. Antagonism of the ethanol-induced decrease in the cGMP level required 10 μmol/kg of thyrotropin releasing hormone but was observed with 5 μmol/kg of histidyl-proline diketopiperazine. These data suggest that the metabolic conversion of thyrotropin releasing hormone to histidylproline diketopiperazine might explain the previous observation that thyrotropin releasing hormone elevated the level of brain cGMP and antagonized the ethanolinduced decrease in brain cGMP concentration.  相似文献   

10.
Acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) were estimated colorimetrically with thiocholine (SCh) esters as substrates in homogenates of bovine anterior pituitary (AP), posterior pituitary (PP), and pineal body (PB), and the levels were referred to those of whole rat brain. The levels of BuChE were very similar in all four tissues, approximately 10.25 μm -BuSCh hydrolysed/g tissue/hr; indicating that this enzymic activity represents a common structural component, perhaps vascular elements. Acetyl-thiocholine (ASCh) hydrolysis by AChE for brain, PP, PB, and AP was 338, 37,24, and 6 μm /g/hr, respectively. Choline acetyltransferase (ChAc) was estimated by the formation of [14C]acetylcholine from [14C]acetyl CoA. ChAc activity of posterior pituitary was generally found to be 15–20 per cent that of brain; the activity was always lowest in the anterior pituitary and pineal body, sometimes undetectable, but generally 5–10 per cent that of brain. The basis for the interpretation that cholinergic components in the posterior pituitary are due to acetylcholme-containing nerve endings and in anterior pituitary and pineal body to axons of sympathetic neurons was discussed.  相似文献   

11.
Choline acetyltransferase (ChAT) has been purified from pig brain to greater than 95% homogeneity (purification factor: 646 000, specific activity of the purified enzyme: 128 mumol acetylcholine formed/min/mg). Gel electrophoresis of the purified enzyme in the presence of sodium dodecylsulphate and beta-mercaptoethanol revealed a single protein band at 68 000 daltons. Immunoprecipitation and double immunodiffusion tests showed that antisera raised against this protein specifically recognize ChAT. A monoclonal antibody prepared against the enzyme specifically binds a protein from crude pig brain supernatants which has a mol. wt. of 68 000 and a specific activity of 153 mumol/min/mg. This antibody shows no species cross-reactivity. The specificity of the immunohistochemical localization of ChAT has been established by comparing the labeling of pig retina using the antiserum with that obtained using the monoclonal antibody. Both probes specifically identify the same retinal structures: labeled cell bodies are found in the inner nuclear layer and the ganglion cell layer, while a double band is stained in the inner plexiform layer. In rat spinal cord, the antiserum labels the motoneurons and the preganglionic sympathetic neurons, located in the intermedio-lateral nucleus, the intercalated region, and the central autonomic area.  相似文献   

12.
—The distribution of choline acetyltransferase (ChAc, EC 2.3.1.6) and l -glutamate 1-carboxylyase (glutamate decarboxylase, GAD, EC 4.1.1.15) was studied in serial frontal slices of the substantia nigra (SN) (pars compacta, PC; pars reticulata, PR; an intermediate region, IR) as well as in other brain areas from post mortem tissue of control and Parkinsonian patients. Within the SN from control brain ChAc and GAD activities showed a distinctive distribution: ChAc activity in PC was higher than in PR and IR by 427% and 253% respectively and within PC the enzyme activity in the rostral part exceeded that in the control part by 353%. The GAD activity in PC was higher by 41% than that in PR and within PC seemed to be higher in the caudal than in the rostral part. For both enzyme activities there were no significant differences between PR and IR or within these regions. In Parkinsonian brain both ChAc and GAD activities were reduced to 15-25% of controls in all 3 regions of the SN. The distinctive distribution of ChAc and GAD activity found in the SN of control brain was abolished: no difference was observed between the 3 regions. However, within PC the ChAc activity was lower in the medial than in the rostral part. Since nigral ChAc is possibly located in interneurons, the decrease in enzyme activity may be connected with the cell loss observed in the SN of Parkinsonian brain. By contrast, nigral GAD is probably contained in terminals of strio-nigral neurons and the decrease in enzyme activity in Parkinson's disease in the absence of striatal cell loss, may reflect a change in the functional state of these GABA neurons. Among various areas of control brains ChAc activity was highest in caudate nucleus and putamen while GAD was highest in SN. caudate nucleus, putamen and cerebral cortex. In Parkinsonian brain the most severe reduction in ChAc and GAD activities was found in the SN.  相似文献   

13.
Monospecific antisera were prepared against the most prominent arylamidase (alpha-aminoacyl-peptide hydrolase (microsomal), EC 3.4.11.2) active antigen in plasma membranes (the plasma membrane arylamidase) and lysomal content (the lysosomal content arylamidase), respectively. Plasma membrane extract and lysosomal content were allowed to react in crossed immunoelectrophoresis against their homologous antisera. The electrophoretic plates were washed extensively, dried and subsequently stained for arylamidase activity.The particular immunoprecipitates were thus identified and could be excised to be used for immunizations. The two resulting antisera precipitated the arylamidase used for immunization, but failed to be monospecific as they precipitated additional antigens. These antisera with restricted specificity against some plasma membrane and lysosomal content antigens, respectively, were used to produce immunoprecipitates intended for new attempts to prepare monospecific antisera by a second cycle of immunizations. A monospecific antiserum against the plasma membrane arylamidase was thus obtained, while a third cycle of immunizations was needed to get a monospecific anti-lysosomal content antiserum. The plasma membrane arylamidase showed ATPase activity also after precipitation with the monospecific antiserum, thus still retaining its characteristics as a multienzyme complex.  相似文献   

14.
The effects of rat obturator nerve extracts on total and 16S acetylcholinesterase (AChE) activity were studied in endplate regions of denervated anterior gracilis muscles maintained in organ culture for 48 hr. The decrease of total AChE activity in cultured muscles was similar to that observed in denervated muscles in vivo. This decrease in activity was partly prevented by addition of either 100 or 200 μl nerve extract (2.7 mg/ml protein) to the nutrient medium. Nerve extract treatment also decreased the release of AChE activity from the muscle into the bathing medium. Conversely, rat serum (20 μl; 90 mg/ml protein) had no effect on total AChE activity in muscle endplates, nor on release of the enzyme by the muscle. The 16S form of AChE was confined to motor endplate muscle regions and its activity was drastically decreased by denervation in both organ culture and in vivo preparations in a comparable manner. Nerve-extract supplemented cultures contained a significantly (p ? 0.001) larger amount of endplate 16S AChE activity (140–145%) than the corresponding controls (100-). Our results suggest that some nerve soluble substance, other than serum contaminants or 16S AChE itself, affects the maintenance of 16S AChE at the neuromuscular junction.  相似文献   

15.
L-DOPA decarboxylase [DDC, aromatic-L-amino acid carboxyl-lyase, EC 4.1.1.28] was purified 800-fold from rat liver by several column chromatographic steps. The enzyme (specific activity, about 6 mumol/min X mg protein) had a molecular weight of 100,000 and gave a single band with a molecular weight of 50,000 on SDS-polyacrylamide gel electrophoresis. Its isoelectric point was pH 5.7. The absorption spectrum in the visible region of the purified DDC showed maxima at 330 and 420 nm. Polyclonal and monoclonal antibodies against DDC were produced by using this purified protein as an antigen. Polyclonal anti-DDC serum immunoprecipitated the DDC activities of rat, guinea-pig and rabbit livers (about 1, 10, and more than 100 microliter of antiserum, respectively, were required for 50% precipitation of 2 nmol/min of activity of these enzymes). The monoclonal antibody, named MA-1, belonged to the IgG1 subclass and immunoprecipitated the DDC activities of rat and guinea-pig livers to the same extent (about 0.5 micrograms of IgG was required to immunoprecipitate 2 nmol/min activity of each enzyme), but it did not affect the rabbit enzyme. The antibody MA-1 detected DDC molecules of both the purified enzyme and crude homogenate of rat liver blotted onto a nitrocellulose sheet. Immunohistochemically this antibody also stained specific neurons in the substantia nigra, raphe nucleus and locus coeruleus of rat brain.  相似文献   

16.
The 1,044 bp endo-1,4-β-xylanase gene of a hyperthermophilic Eubacterium, "Thermotoga petrophila RKU 1" (T. petrophila) was amplified, from the genomic DNA of donor bacterium, cloned and expressed in mesophilic host E. coli strain BL21 Codon plus. The extracellular target protein was purified by heat treatment followed by anion and cation exchange column chromatography. The purified enzyme appeared as a single band, corresponding to molecular mass of 40 kDa, upon SDS-PAGE. The pH and temperature profile showed that enzyme was maximally active at 6.0 and 95 °C, respectively against birchwood xylan as a substrate (2,600 U/mg). The enzyme also exhibited marked activity towards beech wood xylan (1,655 U/mg). However minor activity against CMC (61 U/mg) and β-Glucan barley (21 U/mg) was observed. No activity against Avicel, Starch, Laminarin and Whatman filter paper 42 was observed. The K(m), V(max) and K (cat) of the recombinant enzyme were found to be 3.5 mg ml(-1), 2778 μmol mg(-1)min(-1) and 2,137,346.15 s(-1), respectively against birchwood xylan as a substrate. The recombinant enzyme was found very stable and exhibited half life (t(?)) of 54.5 min even at temperature as high as 96 °C, with enthalpy of denaturation (ΔH*(D)), free energy of denaturation (ΔG*(D)) and entropy of denaturation (ΔS*(D)) of 513.23 kJ mol(-1), 104.42 kJ mol(-1) and 1.10 kJ mol(-1)K(-1), respectively at 96 °C. Further the enthalpy (ΔH*), Gibbs free energy (ΔG*) and entropy (ΔS*) for birchwood xylan hydrolysis by recombinant endo-1,4-β-xylanase were calculated at 95 °C as 62.45 kJ mol(-1), 46.18 kJ mol(-1) and 44.2 J mol(-1) K(-1), respectively.  相似文献   

17.
Nα-vanillyl-Nω-nitroarginine (N ? 1) that combines the active functions of natural antioxidant and nitric oxide synthase inhibitor was developed for its neuroprotective properties. N ? 1 exhibited protective effects against hydrogen peroxide-induced cell damage and the inhibitory effect on nitric oxide ‘NO’ production induced by calcium ionophore in NG 108-15 cells. N ? 1 inhibited the constitutive NOS isolated from rat cerebellar in a greater extent than constitutive NOS from human endothelial cells. Low binding energy ( ? 10.2 kcal/mol) obtained from docking N ? 1 to nNOS supported the additional mode of action of N ? 1 as an nNOS inhibitor. The in vivo neuroprotective effect on kainic acid-induced nitric oxide production and neuronal cell death in rat brain was investigated via microdialysis. Rats were injected intra-peritonially with N ? 1 at 75 μmol/kg before kainic acid injection (10 mg/kg). The significant suppression effect on kainic acid-induced NO and significant increase in surviving cells were observed in the hippocampus at 40 min after the induction.  相似文献   

18.
The existence of large amounts of insulin in rat brain and of a porcine- or rat-like insulin in guinea pig brain have been disputed on the basis of differing results from standard (Method I) and hydrophobic adsorption techniques (Method II) for concentrating insulin from acid ethanol extracts. To try to resolve these differences, acid ethanol extracts of rat and guinea pig brains were divided into equal aliquots and concentrated for insulin radioimmunoassay (RIA) by both techniques. The RIA used guinea pig anti-porcine insulin serum, with 50% B0 for purified pancreatic porcine, rat and guinea pig insulin standards being 1.35, 2.38 and greater than 1,000 ng/ml, respectively. Oral glucose (4 g/kg) produced plasma glucose of 377 mg/dl in a guinea pig by 20 min but was not associated with any porcine- or rat-like immunoreactive insulin. Dilutions of guinea pig and rat brain extracts had parallel cross-reactivity with insulin standard curves. Insulin contents of rat brain (uncorrected for recovery) against porcine and rat insulin standards, respectively, were 1.33 and 1.93 ng/g (Method I) and 5.93 and 11.67 ng/g (Method II). Rat plasma was 0.85 and 1.42 ng/ml, respectively. Guinea pig contained 1.35 and 1.89 ng/g (uncorrected), respectively (Method I), and 2.99 and 5.62 ng/g, respectively (Method II). Guinea pig plasma was below the sensitivity of the RIA (less than 0.15 ng/ml). These results suggest that a porcine- or rat-like insulin may exist in guinea pig brain.  相似文献   

19.
To evaluate the direct effects of a barbiturate on cerebral functions without its influence on brain perfusion pressure, circulatory hormones and metabolites, the electroencephalogram (EEG) was studied in the isolated rat head. Male Wistar rats were anesthetized, and EEG electrodes were inserted into the cranium. A Krebs-Ringer bicarbonate buffer solution containing heparinized rat whole blood, 20 mmol/l glucose, 200 mmol/l mannitol and 0.1 mg/ml dexamethasone was used for the perfusate. The bilateral common carotid arteries were cannulated, pumped at a rate of 6 ml/min and the head was isolated. The venous effluent was reoxygenated and recirculated into the brain. Twenty-five min after isolation of the heads pentobarbital was added to the perfusate at concentrations of 0.1, 0.5 and 2.5 mg/ml. EEG was recorded before and during perfusion. EEG activity could be recorded for more than 25 min after the beginning of perfusion. EEG activity gradually declined from 42+/-5 microV before perfusion (in vivo) to 4+/-1 microV at 25 min after the beginning of perfusion. Then, 3 min after the addition of pentobarbital, the EEG activity became significantly higher in the high dose groups; 12+/-3 microV in the 0.5 mg/ml group (p<0.05) and 12+/-1 microV in 2.5 mg/ml group (p<0.05) compared with the group without pentobarbital (2+/-2 microV). The present study suggests that a barbiturate has mitigating effects on the brain damage induced by the in vitro brain perfusion.  相似文献   

20.
The cytotoxicity and complement-fixation activity of rabbit antisera against rat and human brain cortex and white matter was tested against mouse and rat thymocytes and bone marrow cells. The cytotoxic test proved to be more sensitive and accurate. The cytotoxins to rodent thymocytes were found in the antisera against human brain cortex only. At the same time cytotoxic antibodies were revealed both in the antisera rat brain cortex and white matter; but the former contained much more cytotoxic antibodies than the letter. After absorption with the same antigen the antisera against rat brain cortex lost their cytotoxic effect, but retained it in case of absorption with the white matter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号