首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Applications of DNA tiling arrays for whole-genome analysis   总被引:26,自引:0,他引:26  
  相似文献   

2.
3.
4.
5.
6.
DNA microarray technology has become an important research tool for microbiology and biotechnology as it allows for comprehensive DNA and RNA analyses to characterize genetic diversity and gene expression in a genome-wide manner. DNA microarrays have been applied extensively to study the biology of many bacteria including Mycobacterium tuberculosis, but only recently have they been used for the related high-GC Gram-positive Corynebacterium glutamicum, which is widely used for biotechnological amino acid production. Besides the design and generation of microarrays as well as their use in hybridization experiments and subsequent data analysis, recent applications of DNA microarray technology in C. glutamicum including the characterization of ribose-specific gene expression and the valine stress response will be described. Emerging perspectives of functional genomics to enlarge our insight into fundamental biology of C. glutamicum and their impact on applied biotechnology will be discussed.  相似文献   

7.
8.
DNA microarrays have revolutionized gene expression studies and made large-scale parallel measurement of whole genome expression a feasible technique in model species where genomes are well characterized. Such studies are perfectly suited to unraveling the complex regulation and/or interaction of both genes and proteins likely involved in most physiological processes. Gene expression profiles are currently being used to identify genes underlying a range of physiological responses. Characterization of these genes will help to elucidate the pathways and processes regulating physiological processes. Expanding the use of DNA microarrays to non-model species that have been critical in elucidating certain physiological pathways will be valuable in determining the genes associated with these processes. Approaches that do not require complete genome information have recently been applied to "non-model" organisms. As whole genomes are sequenced for non-model organisms, the application of DNA microarrays to comparative physiology will expand even further. The recent development of protein microarrays will be critical in understanding the regulation of physiological processes not accounted for at the genomic level. Together, DNA and protein microarrays provide the most thorough and efficient method of understanding the molecular basis of physiological processes to date. In turn, classical physiological approaches will be vital in characterizing and verifying the function of the novel genes identified by microarray experiments. Ultimately, DNA and protein microarray expression profiles may be used to predict physiological responses.  相似文献   

9.
Protein microarray technology   总被引:9,自引:0,他引:9  
Microarray technology allows the simultaneous analysis of thousands of parameters within a single experiment. Microspots of capture molecules are immobilized in rows and columns onto a solid support and exposed to samples containing the corresponding binding molecules. Readout systems based on fluorescence, chemiluminescence, mass spectrometry, radioactivity or electrochemistry can be used to detect complex formation within each microspot. Such miniaturized and parallelized binding assays can be highly sensitive, and the extraordinary power of the method is exemplified by array-based gene expression analysis. In these systems, arrays containing immobilized DNA probes are exposed to complementary targets and the degree of hybridization is measured. Recent developments in the field of protein microarrays show applications for enzyme-substrate, DNA-protein and different types of protein-protein interactions. Here, we discuss theoretical advantages and limitations of any miniaturized capture-molecule-ligand assay system and discusses how the use of protein microarrays will change diagnostic methods and genome and proteome research.  相似文献   

10.
Genome-wide expression analysis is rapidly becoming an essential tool for identifying and analysing genes involved in, or controlling, various biological processes ranging from development to responses to environmental cues. The control of cell division involves the temporal expression of different sets of genes, allowing the dividing cell to progress through the different phases of the cell cycle. A landmark study using DNA microarrays to follow the patterns of gene expression in synchronously dividing yeast cells has allowed the identification of several hundreds of genes that are involved in the cell cycle. Although DNA microarrays provide a convenient tool for genome-wide expression analysis, their use is limited to organisms for which the complete genome sequence or a large cDNA collection is available. For other organisms, including most plant species, DNA fragment analysis based methods, such as cDNA-AFLP, provide a more appropriate tool for genome-wide expression analysis. Furthermore, cDNA-AFLP exhibits properties that complement DNA microarrays and, hence, constitutes a useful tool for gene discovery.  相似文献   

11.

Background  

DNA microarray technology provides a powerful tool for characterizing gene expression on a genome scale. While the technology has been widely used in discovery-based medical and basic biological research, its direct application in clinical practice and regulatory decision-making has been questioned. A few key issues, including the reproducibility, reliability, compatibility and standardization of microarray analysis and results, must be critically addressed before any routine usage of microarrays in clinical laboratory and regulated areas can occur. In this study we investigate some of these issues for the Applied Biosystems Human Genome Survey Microarrays.  相似文献   

12.
13.
DNA microarrays have the ability to analyze the expression of thousands of the same set of genes under at least two different experimental conditions. However, DNA microarrays require substantial amounts of RNA to generate the probes, especially when bacterial RNA is used for hybridization (50 microg of bacterial total RNA contains approximately 2 microg of mRNA). We have developed a computer-based algorithm for prediction of the minimal number of primers to specifically anneal to all genes in a given genome. The algorithm predicts, for example, that 37 oligonucleotides should prime all genes in the Mycobacterium tuberculosis genome. We tested the usefulness of the genome-directed primers (GDPs) in comparison to random primers for gene expression profiling using DNA microarrays. Both types of primers were used to generate fluorescent-labeled probes and to hybridize to an array of 960 mycobacterial genes. Compared to random-primer probes, the GDP probes were more sensitive and more specific, especially when mammalian RNA samples were spiked with mycobacterial RNA. The GDPs were used for gene expression profiling of mycobacterial cultures grown to early log or stationary growth phases. This approach could be useful for accurate genome-wide expression analysis, especially for in vivo gene expression profiling, as well as directed amplification of sequenced genomes.  相似文献   

14.
In the relatively short period since their development, DNA microarrays have been used increasingly in the study of genetic and cellular processes, thereby offering a genome-wide approach to gene expression studies. With the advent of genome sequencing programs for organisms from yeast to man, the number of organisms which now have ready-made commercial arrays continues to increase. Here, the principle of DNA microarrays is introduced, with particular attention being given to the role of this technology in studies of the nervous system of the fruitfly Drosophila melanogaster. The importance of experimental design and sample preparation, in line with minimum information about microarray experiment (MIAME) compliance, is emphasised. The technical platforms available to the Drosophila neurobiologist have been illustrated and a brief number of data analysis tools that are readily available reviewed.  相似文献   

15.
基因芯片技术在检测肠道致病菌方面的应用   总被引:10,自引:0,他引:10  
基因芯片技术具有高通量、自动化、快速检测等特点,因此被广泛地应用于各种研究领域,如细菌分子流行病学、细菌基因鉴定、致病分子机理、基因突变及多态性分析、表达谱分析、DNA测序和药物筛选等。现介绍基因芯片检测肠道致病菌方面的国外研究进展,基因芯片应用于检测肠道致病菌的3个方面:结合多重PCR对致病菌的毒力因子或者特异性基因进行鉴定;直接检测细菌的DNA或者RNA;以致病细菌核糖体RNA作为检测的靶基因同时检测多种肠道致病菌。由于其检测的高效率,该技术要优于其他分子生物学检测方法。基因芯片技术在肠道致病菌检测中有着巨大的应用价值,具有广阔的应用前景。  相似文献   

16.
DNA microarrays for expression profiling   总被引:4,自引:0,他引:4  
  相似文献   

17.
18.
19.
We describe, for the first time, the generation of a viral DNA chip for simultaneous expression measurements of nearly all known open reading frames (ORFs) in the largest member of the herpesvirus family, human cytomegalovirus (HCMV). In this study, an HCMV chip was fabricated and used to characterize the temporal class of viral gene expression. The viral chip is composed of microarrays of viral DNA prepared by robotic deposition of oligonucleotides on glass for ORFs in the HCMV genome. Viral gene expression was monitored by hybridization to the oligonucleotide microarrays with fluorescently labelled cDNAs prepared from mock-infected or infected human foreskin fibroblast cells. By using cycloheximide and ganciclovir to block de novo viral protein synthesis and viral DNA replication, respectively, the kinetic classes of array elements were classified. The expression profiles of known ORFs and many previously uncharacterized ORFs provided a temporal map of immediate-early (alpha), early (beta), early-late (gamma1), and late (gamma2) genes in the entire genome of HCMV. Sequence compositional analysis of the 5' noncoding DNA sequences of the temporal classes, performed by using algorithms that automatically search for defined and recurring motifs in unaligned sequences, indicated the presence of potential regulatory motifs for beta, gamma1, and gamma2 genes. In summary, these fabricated microarrays of viral DNA allow rapid and parallel analysis of gene expression at the whole viral genome level. The viral chip approach coupled with global biochemical and genetic strategies should greatly speed the functional analysis of established as well as newly discovered large viral genomes.  相似文献   

20.
The Human Genome Project was launched in 1989 in an effort to sequence the entire span of human DNA. Although coding sequences are important in identifying mutations, the static order of DNA does not explain how a cell or organism may respond to normal and abnormal biological processes. By examining the mRNA content of a cell, researchers can determine which genes are being activated in response to a stimulus.Traditional methods in molecular biology generally work on a "one gene: one experiment" basis, which means that the throughput is very limited and the "whole picture" of gene function is hard to obtain. To study each of the 60,000 to 80,000 genes in the human genome under each biological circumstance is not practical. Recently, microarrays (also known as gene or DNA chips) have emerged; these allow for the simultaneous determination of expression for thousands of genes and analysis of genome-wide mRNA expression.The purpose of this article is twofold: first, to provide the clinical plastic surgeon with a working knowledge and understanding of the fields of genomics, microarrays, and bioinformatics and second, to present a case to illustrate how these technologies can be applied in the study of wound healing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号