首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary A locally isolated strain of Aspergillus foetidus MTCC 4898 was studied for xylanase (EC 3.2.1.8) production using lignocellulosic substrates under solid state fermentation. Corncobs were found as the best substrates for high yield of xylanases with poor cellulase production. The influence of various parameters such as temperature, pH, moistening agents, moisture level, nitrogen sources and pretreatment of substrates were evaluated with respect to xylanase yield, specific activity and cellulase production. Influence of nitrogen sources on protease secretion was also examined. Maximum xylanase production (3065 U/g) was obtained on untreated corncobs moistened with modified Mandels and Strenberg medium, pH 5.0 at 1 5 moisture levels at 30 °C in 4 days of cultivation. Submerged fermentation under the same conditions gave higher yield (3300 U/g) in 5 days of cultivation, but productivity was less. Ammonium sulphate fractionation yielded 3.56-fold purified xylanase with 76% recovery. Optimum pH and temperature for xylanase activity were found to be 5.3 and 50 °C respectively. Kinetic parameters like Km and Vmax were found to be 3.58 mg/ml and 570 μmol/mg/min. Activity of the enzyme was found to be enhanced by cystiene hydrochloride, CoCl2, xylose and Tween 80, while significantly inhibited by Hg++, Cu++ and glucose. The enzyme was found to be stable at 40 °C. The half life at 50 °C was 57.53 min. However thermostability was enhanced by glycerol, trehalose and Ca++. The crude enzyme was stable during lyophilization and could be stored at less than 0 °C.  相似文献   

2.
Thermotolerant Emericella nidulans NK-62 was isolated from bird nesting material and was tested for its ability to produce xylanase. The fungus when grown on a medium containing wheat bran (2% w/v) supplemented with Czapek's mineral salt solution at 45 °C for 7 days produced 362 IU/ml of xylanase (EC 3.2.1.8). The specific activity of E. nidulans NK-62 xylanase was found to be 275 IU/mg of total protein. The enzyme was found to be active over a broad temperature and pH range with 60 °C as optimum temperature for enzyme activity. The enzyme was stable at 50 °C and its half-life at 55 °C was 45 min. -xylosidase (EC 3.2.1.37) and carboxymethylcellulase (EC 3.2.1.4) activities, 0.018 and 0.21 IU/ml respectively, were also noticed. The fungus was screened for its ability to produce xylanase on four different lignocellulosic substrates. It produced 318.9 IU/ml of cellulase-free xylanase on corn cobs. The fungus could also utilize lentil bran (seed husk of Lens esculentus) and meal of groundnut shells to produce 84.8 and 17.3 IU/ml xylanase respectively.  相似文献   

3.
Xylanases of marine fungi of potential use for biobleaching of paper pulp   总被引:1,自引:0,他引:1  
Microbial xylanases that are thermostable, active at alkaline pH and cellulase-free are generally preferred for biobleaching of paper pulp. We screened obligate and facultative marine fungi for xylanase activity with these desirable traits. Several fungal isolates obtained from marine habitats showed alkaline xylanase activity. The crude enzyme from NIOCC isolate 3 (Aspergillus niger), with high xylanase activity, cellulase-free and unique properties containing 580 U l–1 xylanase, could bring about bleaching of sugarcane bagasse pulp by a 60 min treatment at 55°C, resulting in a decrease of ten kappa numbers and a 30% reduction in consumption of chlorine during bleaching. The culture filtrate showed peaks of xylanase activity at pH 3.5 and pH 8.5. When assayed at pH 3.5, optimum activity was detected at 50°C, with a second peak of activity at 90°C. When assayed at pH 8.5, optimum activity was seen at 80°C. The crude enzyme was thermostable at 55°C for at least 4 h and retained about 60% activity. Gel filtration of the 50–80% ammonium sulphate-precipitated fraction of the crude culture filtrate separated into two peaks of xylanase with specific activities of 393 and 2,457 U (mg protein)–1. The two peaks showing xylanase activity had molecular masses of 13 and 18 kDa. Zymogram analysis of xylanase of crude culture filtrate as well as the 50–80% ammonium sulphate-precipitated fraction showed two distinct xylanase activity bands on native PAGE. The crude culture filtrate also showed moderate activities of -xylosidase and -l-arabinofuranosidase, which could act synergistically with xylanase in attacking xylan. This is the first report showing the potential application of crude culture filtrate of a marine fungal isolate possessing thermostable, cellulase-free alkaline xylanase activity in biobleaching of paper pulp.  相似文献   

4.
The production of an alkali-stable xylanase, with dual pH optima, from haloalkalophilic Staphylococcus sp. SG-13 has been enhanced using agro-residues in submerged fermentation and a biphasic growth system. The agro-residues such as wheat bran, sugarcane bagasse, corncobs and poplar wood when used as sole carbon source, improved the xylanase yield by five-fold as compared to xylose and xylan. Staphylococcus sp. SG-13 also produced equally good amounts of xylanase when grown simply in deionized water (pH 8.0) supplemented with agro-residues as sole carbon source. In the biphasic growth system (lower layer containing agricultural residue set in agar medium with liquid medium above it), the prime substrate, wheat bran (1% w/v), resulted in maximum xylanase production of 4525 U l–1 (pH 7.5) and 4540 U l–1 (pH 9.2) at an agar: broth ratio of 4.0 after 48 h of incubation at 37 °C under static conditions. In general, the cost-effective agro-residues were found to be more suitable inducers for xylanase production over expensive substrates like xylan.  相似文献   

5.
ABacillus sp (V1-4) was isolated from hardwood kraft pulp. It was capable of growing in diluted kraft black liquor at pH 11.5 and produced 49 IU (mol xylose min–1 ml–1) of xylanase when cultivated in alkaline medium at pH 9. Maximal enzyme activity was obtained by cultivation in a defined alkaline medium with 2% birchwood xylan and 1% corn steep liquor at pH 9, but high enzyme production was also obtained on wheat bran. The apparent pH optimum of the enzyme varied with the pH used for cultivation and the buffer system employed for enzyme assay. With cultivation at pH 10 and assays performed in glycine buffer, maximal activity was observed at pH 8.5; with phosphate buffer, maximal activity was between pH 6 and 7. The xylanase temperature optimum (at pH 7.0) was 55°C. In the absence of substrate, at pH 9.0, the enzyme was stable at 50°C for at least 30 min. Elecrophoretic analysis of the crude preparation showed one predominant xylanase with an alkaline pl. Biobleaching studies showed that the enzyme would brighten both hardwood and softwood kraft pulp and release chromophores at pH 7 and 9. Because kraft pulps are alkaline, this enzyme could be used for prebleaching with minimal pH adjustment.  相似文献   

6.
Anaerobic enrichment cultures inoculated with neutral and alkaline (pH 7.0–9.0) sediment and biomat samples from hot-springs in Hveragerdi and Fluir, Iceland, were screened for growth on beech xylan from pH 8.0 to 10.0 at 68° C: no growth occured in cultures above pH 8.4. Five anaerobic xylanolytic bacteria were isolated from enrichment cultures at pH 8.4; all five microbes were Gram-positive rods with terminal spores, and produced CO2, H2, acetate, lactate and ethanol from xylan and xylose. One of the isolates, strain A2, grew from 50 to 75° C, with optimum growth near 68° C, and from pH 5.2 to 9.0 with an optimum between 6.8 and 7.4. Taxonomically, strain A2 was most similar to Clostridium thermohydrosulfuricum. At pH 7.0, the supernatant xylanases of strain A2 had a temperature range from 50 to 78° C with an optimum between 68 and 78° C. At 68° C, xylanase activity occurred from pH 4.9 to 9.1, with an optimum from pH 5.0 to 6.6. At pH 7.0 and 68° C, the K m of the supernatant xylanases was 2.75 g xylan/l and the V max was 2.65 × 10–6 kat/l culture supernatant. When grown on xylose, xylanase production was as high as when grown on xylan. Correspondence to: B. K. Ahring  相似文献   

7.
Thermomyces lanuginosus, isolated from self-heated jute stacks in Bangladesh, was able to produce a very high level of cellulase-free xylanase in shake cultures using inexpensive lignocellulosic biomass. Of the nine lignocellulosic substrates tested, corn cobs were found to be the best inducer of xylanase activity. The laboratory results of xylanase production have been successfully scaled up to VABIO (Voest-Alpine Biomass Technology Center) scale using a 15-m3 fermentor for industrial production and application of xylanase. In addition, some properties of the enzyme in crude culture filtrate produced on corn cobs are presented. The enzyme exhibited very satisfactory storage stability at 4–30°C either as crude culture filtrate or as spray- or freeze-dried powder. The crude enzyme was active over a broad range of pH and had activity optima at pH 6.5 and 70–75°C. The enzyme was almost thermostable (91–92%) at pH 6.5 and 9.0 after 41 h preincubation at 55°C and lost only 20–33% activity after 188 h. In contrast, it was much less thermostable at pH 5.0 and 11.0. Xylanases produced on different lignocellulosic substrates exhibited differences in thermostability at 55°C and pH 6.5. Correspondence to: J. Gomes  相似文献   

8.
The thermophilic, xylanolytic, anaerobic organism, Dictyoglomus sp. B1, was cultivated in batch and continuous cultures in media containing insoluble beech-wood xylan. The extracellular xylanase activity levels obtained for the two cultivation methods were compared. Experiments were performed separately to determine the optimum substrate concentration, dilution rate, pH and temperature for xylanase production. Maximum xylanase activity was found at a substrate concentration of 1.5 g xylan/l, a dilution rate of 0.112 h–1, pH 8.0 and at 7°C. Different combinations of these optimum values were used in a 23 factorial experiment to investigate whether an increase in the xylanase production/activity could be achieved. A maximum xylanase activity of 2312 U/l was found when fermentors were operated at 73°C with a substrate concentration of 1.5 g xylan/l, pH 8.0, and a dilution rate of 0.112 h–1. Thus, the optimum xylanase activity in the factorial experiment was obtained when the conditions that gave the maximum xylanase activities in the individual experiments were combined. Optimum xylanase activity obtained in the 23 factorial experiment was 6.2 times higher than the activity found in the initial batch culture (373 U/l) and 3.0 times higher than the activity of a batch culture (783 U/l) grown at the same optimum conditions as the factorial experiment. The higher specific xylanase activity (217 U/mg protein) found in the 23 factorial experiment was 4.1 times higher than the specific activity in the initial batch culture (53 U/mg protein).  相似文献   

9.
Extracellular cellulolytic and xylanolytic enzymes ofStreptomyces sp. EC22 were produced during submerged fermentation. The cell-free culture supernatant of the streptomycete grown on microcrystalline cellulose contained enzymes able to depolymerize both crystalline and soluble celluloses and xylans. Higher cellulase and xylanase activities were found in the cell-free culture supernatant of the strain when grown on microcrystalline cellulose than when grown on xylan. Total cellulase and endoglucanase [carboxymethyl-cellulase (CMCase)] activities reached maxima after 72 h and xylanase activity was maximal after 60h. Temperature and pH optima were 55°C and 5.0 for CMCase activity and 60°C and 5.5 for total crystalline cellulase and xylanase activities. At 80°C, approximate half-lives of the enzymes were 37, 81 and 51 min for CMCase, crystalline cellulose depolymerization and xylanase, respectively.  相似文献   

10.
This study reports on the effects of growth temperature on the secretion and some properties of the xylanase and -xylosidase activities produced by a thermotolerant Aspergillus phoenicis. Marked differences were observed when the organism was grown on xylan-supplemented medium at 25 °C or 42 °C. Production of xylanolytic enzymes reached maximum levels after 72 h of growth at 42 °C; and levels were three- to five-fold higher than at 25 °C. Secretion of xylanase and -xylosidase was also strongly stimulated at the higher temperature. The optimal temperature was 85 °C for extracellular and 90 °C for intracellular -xylosidase activity, independent of the growth temperature. The optimum temperature for extracellular xylanase increased from 50 °C to 55 °C when the fungus was cultivated at 42 °C. At the higher temperature, the xylanolytic enzymes produced by A. phoenicis showed increased thermostability, with changes in the profiles of pH optima. The chromatographic profiles were distinct when samples obtained from cultures grown at different temperatures were eluted from DEAE–cellulose and Biogel P-60 columns.  相似文献   

11.
Pichia anomala, isolated from dried flower buds of Woodfordia fruticosa, produced a high activity of an intracellular phytase, at 68 U per g dry biomass, when grown at 20 °C for 24 h in a medium containing glucose (40 g l–1) and beef extract (10 g l–1) supplemented with Fe2+ (0.15 mM). Partially purified phytase was optimally active at 60 °C and pH 4 with a half life of 7 days at 60 °C. It retained 85% of its activity at 80 °C for 15 min. The enzyme is suitable for supplementing animal feeds to improve the availability of phosphate from phytate.  相似文献   

12.
An alkali-tolerant cellulase-free xylanase producer, WLI-11, was screened from soil samples collected from a pulp and paper mill in China. It was subsequently identified as a Pseudomonas sp. A mutant, WLUN024, was selected by consecutive mutagenesis by u.v. irradiation and NTG treatment using Pseudomonas sp. WLI-11 as parent strain. Pseudomonas sp. WLUN024 produced xylanase when grown on xylosidic materials, such as hemicellulose, xylan, xylose, and wheat bran. Effects of various nutritional factors on xylanase production by Pseudomonas sp. WLUN024 with wheat bran as the main substrate were investigated. A batch culture of Pseudomonas sp. WLUN024 was conducted under suitable fermentation conditions, where the maximum activity of xylanase reached 1245 U ml−1 after incubating at 37 °C for 24 h. Xylanase produced by Pseudomonas sp. WLUN024 was purified and the molecular weight was estimated as 25.4 kDa. Primary studies on the characteristics of the purified xylanase revealed that this xylanase was alkali-tolerant (optimum pH 7.2–8.0) and cellulase-free. In addition, the xylanase was also capable of producing high quality xylo-oligosaccharides, which indicated its application potential in not only pulp bio-bleaching processes but also in the nutraceutical industry.  相似文献   

13.
Thermoalkaliphilic Bacillus sp. strain TAR-1 isolated from soil produced an extracellular xylanase. The enzyme (xylanase R) was purified to homogeneity by ammonium sulfate fractionation and anion-exchange chromatography. The molecular mass of xylanase R was 40 kDa and the isoelectric point was 4.1. The enzyme was most active over the range of pH 5.0 to 10.0 at 50°C. The optimum temperatures for activity were 75°C at pH 7.0 and 70°C at pH 9.0. Xylanase R was stable up to 65°C at pH 9.0 for 30 min in the presence of xylan. Mercury(ll) ion at 1 mM concentration abolished all the xylanase activity. The predominant products of xylan-hydrolysate were xylobiose, xylotriose, and higher oligosaccharides, indicating that xylanase R was an endo-acting enzyme. Xylanase R had a Km of 0.82 mg/ml and a Vmax of 280 μmol min−1 mg−1 for xylan at 50°C and pH 9.0.  相似文献   

14.
Summary Clostridium thermoaceticum was used to ferment carbohydrate released from pretreated oat splet xylan and hemicellulose isolated from hybrid poplar. Hydrolysis with dilute sulfuric acid (2.5% (v/v) for oat spelt xylan and 4.0% (v/v) for poplar hemicellulose) at 100°C for 60 min was found to release the highest concentration of fermentable substrate.C. thermoaceticum, when grown in non-pH controlled batch culture at 55°C under a headspace of 100% CO2, typically produced 14gl–1 acetic acid during a 48 h fermentation in medium containing 2% xylose. In fed-batch fermentations this organism was able to produce 42gl–1 acetic acid after 116h when the concentration of xylose was maintained at approximately 2% and the pH was controlled at 7.0.  相似文献   

15.
A strain of Aspergillus niger PPI having prolific xylanolytic potential was isolated and the optimum conditions for maximum xylanase production was studied, resulting in the following: 4% substrate concentration, 10% v/v inoculum size, 72 h of incubation and pH 3.5–4.5 at 28 °C. The production profile of xylanase was examined with various lignocellulosics and maximum yield was achieved with oat. The hemicellulose content of wastes was also determined and oatmeal was found to have maximum hemicellulose content followed by wheat straw, sugarcane bagasse, rice husk and gram residue respectively. The enzyme showed maximum activity at pH 4 and temperature 60 °C. However, maximum stability was achieved at pH 3.5 and temperature 55 °C. Cellulase activity was found altogether absent in the enzyme broth.  相似文献   

16.
Two cellulase-free xylanases were secreted by a thermophile, Bacillus licheniformis A99. Of the two, the predominant one was purified to homogeneity. The enzyme was optimally active at 60 °C, pH 6–7.5, and had a molecular weight of about 45 KDa and isoelectric point of 7.0 ± 0.2. The K m (for birchwood xylan) and V max were 3.33 mg/ml and 1.111 mmols mg–1 protein min–1 respectively. The half-life of the enzyme was 5 h at 60 °C. All cations except Hg2+ and Ag+ as well as EDTA were well tolerated and did not adversely affect xylanase activity. However, SDS inhibited the enzyme activity. The release of reducing sugars from unbleached commercial pulp sample on treatment with the enzyme indicated its potential in prebleaching of paper pulp. The enzyme caused saccharification of lignocellulosics such as wheat bran, wheat straw and sawdust. This is the first report on purification and characterization of cellulase-free xylanase from a moderate thermophile Bacillus licheniformis.  相似文献   

17.
A number of factors affecting production of xylanase, by the thermophilic fungus Sporotrichum thermophile under solid state fermentation (SSF) were investigated. Initial moisture content and type of carbon source were consecutively optimized. Solid state fermentation in a laboratory horizontal bioreactor using the optimized medium allowed the production of 320 U g–1 of carbon source which compared favourably with those reported for other microorganisms. Optimal xylanase activity was observed at pH 5 and 70 °C. Chromogenic (fluorogenic) 4-methylumbelliferyl -glycoside of xylobiose (MUX2) was used to characterize the xylanase multienzyme component, after separation by isoelectric focusing and native PAGE electrophoresis. The zymograms indicated one major xylanase fraction exhibiting pI and molecular mass values 4 and 90–120 kDa, respectively.  相似文献   

18.
An extracellular, debranching isoamylase fromHendersonula toruloidea ATCC 64930, grown on starch, was purified 12-fold to an electrophoretically homogeneous state. The purified enzyme (estimated mol wt 83000) was optimally active at pH 6.0 and 50°C and remained active when held at 70°C (30 min) and at pH 6 to 8 for 24 h. Na+, Fe2+ and Ba2+ (at 5mm) enhanced enzyme activity while Hg2+, Zn2+ and Cu2+ (at 5mm) were inhibitory. The enzyme hydrolysed amylopectin (Km, 0.25 mg/ml), forming maltose, maltotriose and maltotetraose and hydrolyzed glycogen (Km, 0.29 mg/ml) and soluble starch (Km, 0.42 mg/ml) forming maltotriose and maltotetraose. Pullulan was not hydrolyzed.  相似文献   

19.
Kluyveromyces marxianus was grown in submerged culture in a complex medium with several potential inducers of lipolytic activity (triacylglycerols, fatty acids). The highest extracellular lipolytic enzyme production (about 80 U ml–1 in 3 d) was obtained when the medium was supplemented with 2 g urea l–1 plus 5 g tributyrin l–1. Addition of surfactants (1 g l–1) did not improve production. The lipase had a high thermal stability in aqueous solution (73% residual activity after 9 d at 50 °C, 16 min half-life time at 100 °C). It was also stable at acidic pH and showed good tolerance to organic solvents (70% residual activity after 2 d in n-hexane of cyclohexane).  相似文献   

20.
The novel fungus Aspergillus niveus RS2 isolated from rice straw showed relatively high xylanase production after 5 days of fermentation. Of the different xylan-containing agricultural by-products tested, rice husk was the best substrate; however, maximum xylanase production occurred when the organism was cultured on purified xylan. Yeast extract was found to be the best nitrogen source for xylanase production, followed by ammonium sulfate and peptone. The optimum pH for maximum enzyme production was 8 (18.2 U/ml); however, an appreciable level of activity was obtained at pH 7 (10.9 U/ml). Temperature and pH optima for xylanase were 50°C and 7.0, respectively; however the enzyme retained considerably high activity under high temperature (12.1 U/ml at 60°C) and high alkaline conditions (17.2 U/ml at pH 8 and 13.9 U/ml at pH 9). The enzyme was strongly inhibited by Hg2+, while Mn2+ was slight activator. The half-life of the enzyme was 48 min at 50°C. The enzyme was purified by 5.08-fold using carboxymethyl-sephadex chromatography. Zymogram analysis suggested the presence of a single candidate xylanase in the purified preparation. SDS-PAGE revealed a molecular weight of approximately 22.5 kDa. The enzyme had K m and V max values of 2.5 and 26 μmol/mg per minute, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号