首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The role of mitochondria in carbon catabolite repression in Saccharomyces cerevisiae was investigated by comparing normal, respiratory competent (RHO) strains with their mitochondrially inherited, respiratory deficient mutant derivatives (rho). Formation of maltase and invertase was used as an indicator system for the effect of carbon catabolite repression on carbon catabolic reactions. Fermentation rates for glucose, maltose and sucrose were the same in RHO and rho strains. Specific activities of maltase and invertase were usually higher in the rho-mutants. A very pronounced difference in invertase levels was observed when cells were grown on maltose; rho-mutants had around 30 times more invertase than their RHO parent strains.The fact that rho-mutants were much less sensitive to carbon catabolite repression of invertase synthesis than their RHO parents was used to search for the mitochondrial factor(s) or function(s) involved in carbon catabolite repression. A possible metabolic influence of mitochondria on this system of regulation was tested after growth of RHO strains under anaerobic conditions (no respiration nor oxidative phosphorylation), in the presence of KCN (respiration inhibited), dinitrophenol (uncoupling of oxidative phosphorylation) and of both inhibitors anaerobic conditions and dinitrophenol had no effect on the extent of invertase repression. KCN reduced the degree of repression but not to the level found in rho-mutants. A combination of both inhibitors gave the same results as with KCN alone. Erythromycin and chloramphenicol were used as specific inhibitors of mitochondrial protein synthesis. Erythromycin prevented the formation of mitochondrial respiratory systems but did not induce rho-mutants under the conditions used. However, repression of invertase was as strong as in the absence of the inhibitor. Chloramphenicol led only to a slight reduction of the respiratory systems and did not affect invertase levels. A combination of both antibiotics had about the same effect as growth in the presence of KCN.The results showed that mitochondria are involved in carbon catabolite repression and they cause an increase in the degree of repression. These effects cannot be due to mere metabolic activities nor to factors made on the mitochondrial protein synthesizing machinery. This regulatory role of mitochondria is observed as long as an intact mitochondrial genome is maintained.  相似文献   

2.
V A Kissel  W J Hartig 《In vitro》1983,19(7):529-537
Mitochondria have been isolated from the codling moth Laspeyresia pomonella, CP-1268 cell line. The mitochondrial fraction was isolated from pooled 4 d, exponential growth phase, cultures. The mitochondria were determined to be intact based on the demonstration of respiratory control, the effects of 2,4 dinitrophenol and oligomycin on respiration, the inability to oxidize NADH, and the inability of cytochrome c to enhance respiration. The isolated mitochondria were able to oxidize succinate, pyruvate, malate, alpha-ketoglutarate, and alpha-glycerophosphate efficiently. Of the substrates tested, the CP-1268 mitochondria oxidized succinate most efficiently. The respiratory control ratios ranged from a high of 4.6 for pyruvate to a low of 1.7 with alpha-glycerophosphate. These findings confirm that the mitochondria were tightly coupled. The data also confirm the presence of three sites of oxidative phosphorylation because NAD-linked substrates had ADP-to-O ratios approaching 3 and flavoprotein linked substrates had values approaching 2.  相似文献   

3.
The expression of a key mitochondrial membrane component, the ADP/ATP carrier, was investigated in two aerobic yeast species, Kluyveromyces lactis and Schizosaccharomyces pombe. Although the two species differ very much in their respiratory capacity, the expression of the carrier in both yeast species was decreased under partially anaerobic conditions and was induced by nonfermentable carbon sources. The single ADP/ATP carrier encoding gene was deleted in S. pombe. The null mutant exhibits impaired growth properties, especially when cultivated at reduced oxygen tension, and is unable to grow on a nonfermentable carbon source. Our results suggest that the inability of K. lactis and S. pombe to grow under anaerobic conditions can be related in part to the absence of a functional ADP/ATP carrier due to repression of the corresponding gene expression.  相似文献   

4.
1. The properties of membrane vesicles from the extreme thermophile Bacillus caldolyticus were investigated. 2. Vesicles prepared by exposure of spheroplasts to ultrasound contained cytochromes a, b and c, and at 50 degrees C they rapidly oxidized NADH and ascorbate in the presence of tetramethyl-p-phenylenediamine. Succinate and l-malate were oxidized more slowly, and dl-lactate, l-alanine and glycerol 1-phosphate were not oxidized. 3. In the absence of proton-conducting uncouplers the oxidation of NADH was accompanied by a net translocation of H(+) into the vesicles. Hydrolysis of ATP by a dicyclohexylcarbodi-imide-sensitive adenosine triphosphatase was accompanied by a similarly directed net translocation of H(+). 4. Uncouplers (carbonyl cyanide p-trifluoromethoxyphenylhydrazone or valinomycin plus NH(4) (+)) prevented net H(+) translocation but stimulated ATP hydrolysis, NADH oxidation and ascorbate oxidation. The last result suggested an energy-conserving site in the respiratory chain between cytochrome c and oxygen. 5. Under anaerobic conditions the reduction of cytochrome b by ascorbate (with tetramethyl-p-phenylenediamine) was stimulated by ATP hydrolysis, indicating an energy-conserving site between cytochrome b and cytochrome c. However, no reduction of NAD(+) supported by oxidation of succinate, malate or ascorbate occurred, neither did it with these substrates in the presence of ATP under anaerobic conditions, suggesting that there was no energy-conserving site between NADH and cytochrome b. 6. Succinate oxidation, in contrast with that of NADH and ascorbate, was strongly inhibited by uncouplers and stimulated by ATP hydrolysis. These effects were not observed when phenazine methosulphate, which transfers electrons from succinate dehydrogenase directly to oxygen, was present. It was concluded that in these vesicles the oxidation of succinate was energy-dependent and that the reoxidation of reduced succinate dehydrogenase was dependent on the outward movement of H(+) by the protonmotive force. 7. In support of the foregoing conclusion it was shown that the reduction of fumarate by NADH was an energy-conserving process. 8. If the activities of vesicles accurately represent those of the intact organism it appears that in B. caldolyticus the reduction of fumarate to succinate at the expense of reducing equivalents from NADH is energetically favoured over succinate oxidation even under aerobic conditions. This may be related to the need for an ample supply of succinate for haem synthesis in order to provide cytochromes for the organism.  相似文献   

5.
The effect of succinate on the growth and respiration of the yeast Dipodascus magnusii VKM Y-1072, which is auxotrophic for thiamine and biotin, was studied. The addition of succinate to a culture grown on glucose was found to activate the respiration of cells on various substrates by enhancing the processes related to transamination reactions. In this case, aerobic fermentation (ethanol production) decreased, whereas pyruvate production increased. When succinate was added to the medium as the sole carbon source, it supported yeast growth in the absence of one of the two vitamins, thiamine or biotin, but not both. The yeast metabolism was completely respiratory, without any signs of aerobic fermentation. A drastic rise in pyruvate production in the yeast grown on glucose in the presence of succinate and the absence of biotin are also indicative of metabolic changes.  相似文献   

6.
A soil bacterium, Pseudomonas sp. strain P136, was isolated by selective enrichment for anaerobic utilization of o-phthalate through nitrate respiration. o-Phthalate, m-phthalate, p-phthalate, benzoate, cyclohex-1-ene-carboxylate, and cyclohex-3-ene-carboxylate were utilized by this strain under both aerobic and anaerobic conditions. m-Hydroxybenzoate and p-hydroxybenzoate were utilized only under anaerobic conditions. Protocatechuate and catechol were neither utilized nor detected as metabolic intermediates during the metabolism of these aromatic compounds under both aerobic and anaerobic conditions. Cells grown anaerobically on one of these aromatic compounds also utilized all other aromatic compounds as substrates for denitrification without a lag period. On the other hand, cells grown on succinate utilized aromatic compounds after a lag period. Anaerobic growth on these substrates was dependent on the presence of nitrate and accompanied by the production of molecular nitrogen. The reduction of nitrite to nitrous oxide and the reduction of nitrous oxide to molecular nitrogen were also supported by anaerobic utilization of these aromatic compounds in this strain. Aerobically grown cells showed a lag period in denitrification with all substrates tested. Cells grown anaerobically on aromatic compounds also consumed oxygen. No lag period was observed for oxygen consumption during the transition period from anaerobic to aerobic conditions. Cells grown aerobically on one of these aromatic compounds were also adapted to utilize other aromatic compounds as substrates for respiration. However, cells grown on succinate showed a lag period during respiration with aromatic compounds. Some other characteristic properties on metabolism and regulation of this strain are also discussed for their physiological aspects.  相似文献   

7.
Summary Mitochondria have been isolated from the codling mothLaspeyresia pomonella, CP-1268 cell line. The mitochondrial fraction was isolated from pooled 4 d, exponential growth phase, cultures. The mitochondria were determined to be intact based on the demonstration of respiratory control, the effects of 2,4 dinitrophenol and oligomycin on respiration, the inability to oxidize NADH, and the inability of cytochromec to enhance respiration. The isolated mitochondria were able to oxidize succinate, pyruvate, malate, α-ketoglutarate, and α-glycerophosphate efficiently. Of the substrates tested, the CP-1268 mitochondria oxidized succinate most efficiently. The respiratory control ratios ranged from a high of 4.6 for pyruvate to a low of 1.7 with α-glycerophosphate. These findings confirm that the mitochondria were tightly coupled. The data also confirm the presence of three sites of oxidative phosphorylation because NAD-linked substrates had ADP-to-O ratios approaching 3 and flavoprotein linked substrates had values approaching 2.  相似文献   

8.
The cytosolic factors that influence mitochondrial oxidative phosphorylation rates are relatively unknown. In this report, we examine the effects of phosphoenolpyruvate (PEP), a glycolytic intermediate, on mitochondrial function. It is reported here that in rat heart mitochondria, PEP delays the onset of state 3 respiration in mitochondria supplied with either NADH-linked substrates or succinate. However, the maximal rate of state 3 respiration is only inhibited when oxidative phosphorylation is supported by NADH-linked substrates. The capacity of PEP to delay and/or inhibit state 3 respiration is dependent upon the presence or absence of ATP. Inhibition of state 3 is exacerbated in uncoupled mitochondria, with a 40% decrease in respiration seen with 0.1mM PEP. In contrast, ATP added exogenously or produced by oxidative phosphorylation completely prevents PEP-mediated inhibition. Mechanistically, the results support the conclusion that the main effects of PEP are to impede ADP uptake and inhibit NADH oxidation. By altering the NADH/NAD(+) status of mitochondria, it is demonstrated that PEP enhances succinate dehydrogenase activity and increase free radical production. The results of this study indicate PEP may be an important modulator of mitochondrial function under conditions of decreased ATP.  相似文献   

9.
See RM  Foy CL 《Plant physiology》1982,70(2):350-352
Mitochondria isolated from hypocotyls of five-day-old bean (Phaseolus vulgaris L. `Black Valentine') seedlings rapidly oxidized succinate, malate, and NADH. Oxidation rates, respiratory control, and ADP:O ratios obtained with saturating concentrations of all three substrates indicated that the mitochondria were tightly coupled. The mitochondrial preparation was then employed to investigate the respiration-inhibiting effects of butanedioic acid mono (2,2-dimethyl-hydrazide) (daminozide) a plant growth retardant having structural similarity to an endogenous respiratory substrate (succinate). Daminozide markedly inhibited the activity of membrane-bound succinate dehydrogenase. Inhibition was of the competitive type (apparent Ki, 20.2 millimolar) with respect to succinate. Although not excluding other hypotheses, the results support an active role for daminozide in the suppression of respiration as an important metabolic site of its action as a plant growth regulator.  相似文献   

10.
NDI1 is the unique gene encoding the internal mitochondrial NADH dehydrogenase of Saccharomyces cerevisiae. The enzyme catalyzes the transfer of electrons from intramitochondrial NADH to ubiquinone. Surprisingly, NDI1 is not essential for respiratory growth. Here we demonstrate that this is due to in vivo activity of an ethanol-acetaldehyde redox shuttle, which transfers the redox equivalents from the mitochondria to the cytosol. Cytosolic NADH can be oxidized by the external NADH dehydrogenases. Deletion of ADH3, encoding mitochondrial alcohol dehydrogenase, did not affect respiratory growth in aerobic, glucose-limited chemostat cultures. Also, an ndi1Delta mutant was capable of respiratory growth under these conditions. However, when both ADH3 and NDI1 were deleted, metabolism became respirofermentative, indicating that the ethanol-acetaldehyde shuttle is essential for respiratory growth of the ndi1 delta mutant. In anaerobic batch cultures, the maximum specific growth rate of the adh3 delta mutant (0.22 h(-1)) was substantially reduced compared to that of the wild-type strain (0.33 h(-1)). This is consistent with the hypothesis that the ethanol-acetaldehyde shuttle is also involved in maintenance of the mitochondrial redox balance under anaerobic conditions. Finally, it is shown that another mitochondrial alcohol dehydrogenase is active in the adh3 delta ndi1 delta mutant, contributing to residual redox-shuttle activity in this strain.  相似文献   

11.
The effects of hypophysectomy and subsequent administration of bovine growth hormone (0.1 IU/100 g body wt) and l-thyroxine (5 μg/100 g body wt) on respiration, energization-dependent fluorescence of 1-anilino-8-naphthalene sulfonate, NADH dehydrogenase, energy-independent nicotinamide nucleotide transhydrogenase, and succinate dehydrogenase activities were investigated in submitochondrial particles of rat liver. Hormones were injected daily for 7 days. Hypophysectomy decreased the respiratory rate with NADH or succinate and the activities of the three enzymes. Administration of growth hormone increased the respiration but showed selectivity toward NADH. Thyroxine increased the respiration more than growth hormone did with both substrates. Growth hormone increased the activities of NADH dehydrogenase and transhydrogenase whereas thyroxine increased the activity of only succinate dehydrogenase. After growth hormone treatment transhydrogenase activity was increased to about three times that of controls which may have significance in some processes mediated either directly or permissively by growth hormone. When both hormones were injected together, there was a significant decrease in the thyroxine-dependent rise in respiration on succinate as well as the growth hormone-dependent rise in enzyme activities. Fluorescence yield of 1-anilino-8-naphthalene sulfonate in unenergized submitochondrial particles remained unchanged independent of the hormonal status. Energization with succinate or NADH increased the fluorescence yield by about 2–20 times. Several parameters of energizationdependent fluorescence were decreased after hypophysectomy. In restoring these parameters, growth hormone and thyroxine showed specificity toward the energization substrate NADH and succinate, respectively. From the present results we conclude that (a) growth hormone and thyroxine regulate mitochondrial activity by affecting different segments of the respiratory chain, namely Complex I and Complex II, respectively, and (b) growth hormone and thyroxine exert moderating effects on one another.  相似文献   

12.
Trypanosoma brucei procyclic trypomastigotes were made permeable by using digitonin (0-70 micrograms/mg of protein). This procedure allowed exposure of coupled mitochondria to different substrates. Only succinate and glycerol phosphate (but not NADH-dependent substrates) were capable of stimulating oxygen consumption. Fluorescence studies on intact cells indicated that addition of succinate stimulates NAD(P)H oxidation, contrary to what happens in mammalian mitochondria. Addition of malonate, an inhibitor of succinate dehydrogenase, stimulated NAD(P)H reduction. Malonate also inhibited intact-cell respiration and motility, both of which were restored by further addition of succinate. Experiments carried out with isolated mitochondrial membranes showed that, although the electron transfer from succinate to cytochrome c was inhibitable by antimycin, NADH-cytochrome c reductase was antimycin-insensitive. We postulate that the NADH-ubiquinone segment of the respiratory chain is replaced by NADH-fumarate reductase, which reoxidizes the mitochondrial NADH and in turn generates succinate for the respiratory chain. This hypothesis is further supported by the inhibitory effect on cell growth and respiration of 3-methoxyphenylacetic acid, an inhibitor of the NADH-fumarate reductase of T. brucei.  相似文献   

13.
A prominent phenotype of the yeast sit4 mutant, which lacks the Ser-Thr phosphatase Sit4, is hyper-accumulation of glycogen and the failure to grow on respiratory substrates. We investigated whether these two phenotypes are linked by studying the metabolic response to SIT4 deletion. Although the sit4 mutant failed to grow on respiratory substrates, in the exponential growth, phase respiration was de-repressed; active respiration was confirmed by measuring oxygen consumption and NADH generation. However, the fermentation rate and the internal glucose 6-phosphate and pyruvate levels were reduced, while glycogen content was high. Respiro-fermentative and respiratory substrates such as galactose, glycerol and ethanol were directed toward glycogen synthesis, which indicates that sit4 mutant deviates metabolism to glycogenesis by activating a glycogen futile cycle and depleting cells of Krebs cycle intermediates. An important feature of the sit4 mutant was the lack of growth under anaerobic conditions, suggesting that respiration is necessary to meet the energy requirements of the cell. Addition of aspartic acid, which can restore Krebs cycle intermediates, partially restored growth on ethanol. Our findings suggest that inhibition of Sit4 activity may be essential for redirecting carbohydrate flux to gluconeogenesis and glycogen storage.  相似文献   

14.
Whole cell respiration rates were measured polarographically for Naegleria gruberi during growth in agitated cultures. Log growth phase amebae consumed 80 ng atoms O/min/mg cell protein. At stationary phase, respiration rate decreased 4–fold. Intact mitochondria were isolated from N. gruberi and their oxidative and phosphorylative capacities were studied polarographically. As with the mammalian system, the mitochondria oxidized succinate and NAD-linked substrates, but unlike rat liver mitochondria, those from the protozoan rapidly oxidized citrate and NADH. The rates of substrate oxidation were ADP-dependent, with ADP:O ratios equalling ? 2.8 for NAD-linked substrates and ? 2.2 for succinate. The respiratory control ratios. 2 to 4 for 11 substrates, were dependent on Pi, Mg2+, and serum albumin. Potassium cyanide, azide, malonale, and rotenone inhibited electron transport the same way as that of the mammalian system: however, amytal inhibited both glutamate and succinate respiration. Pentachlorophenol, DNP, and bilirubin uncoupled oxidation from phosphorylation. Difference spectra of oxidized and dithionite-reduced mitochondria had distinct absorption bands of flavins and of c-, b-, and α-type cytochromes.  相似文献   

15.
The effects of cadmium on isolated corn shoot mitochondria were determined. In the absence of phosphate cadmium stimulated the oxidation of exogenous NADH optimally at 0.025 mM, but was inhibitory at 0.1 mM and above. The presence of phosphate negated the cadmium stimulation of exogenous NADH oxidation and permitted inhibitions only at higher cadmium concentrations. Succinate or malate + pyruvate oxidation in the absence of phosphate was inhibited to a greater extent by cadmium than when phosphate was present. ADP/O and respiratory control ratios were reduced by cadmium but generally were less sensitive to cadmium than state 4 or minus phosphate respiration. The data suggest that the site of cadmium effect is likely to be early in electron transport. Cadmium had a pronounced effect on mitochondrial swelling under either passive or active conditions. When succinate or exogenous NADH were being oxidized swelling occurred at 0.05 mM cadmium, but with malate + pyruvate the cadmium concentration had to exceed 1.0 mM. Phosphate (2 mM) prevented the swelling. Dithiothreitol, a SH group protector, prevented any effect of cadmium on swelling or respiration which suggests that sulfhydryl groups are likely involved in the cadmium-membrane interaction.  相似文献   

16.
The importance of a functional Krebs cycle for energy generation in the procyclic stage of Trypanosoma brucei was investigated under physiological conditions during logarithmic phase growth of a pleomorphic parasite strain. Wild type procyclic cells and mutants with targeted deletion of the gene coding for aconitase were derived by synchronous in vitro differentiation from wild type and mutant (Delta aco::NEO/Delta aco::HYG) bloodstream stage parasites, respectively, where aconitase is not expressed and is dispensable. No differences in intracellular levels of glycolytic and Krebs cycle intermediates were found in procyclic wild type and mutant cells, except for citrate that accumulated up to 90-fold in the mutants, confirming the absence of aconitase activity. Surprisingly, deletion of aconitase did not change differentiation nor the growth rate or the intracellular ATP/ADP ratio in those cells. Metabolic studies using radioactively labeled substrates and NMR analysis demonstrated that glucose and proline were not degraded via the Krebs cycle to CO(2). Instead, glucose was degraded to acetate, succinate, and alanine, whereas proline was degraded to succinate. Importantly, there was absolutely no difference in the metabolic products released by wild type and aconitase knockout parasites, and both were for survival strictly dependent on respiration via the mitochondrial electron transport chain. Hence, although the Krebs cycle enzymes are present, procyclic T. brucei do not use Krebs cycle activity for energy generation, but the mitochondrial respiratory chain is essential for survival and growth. We therefore propose a revised model of the energy metabolism of procyclic T. brucei.  相似文献   

17.
Mitochondria were isolated from the scapes of Orobanche cernua. On the basis of comparative studies with four media, a mannitol grinding medium was selected at a slightly alkaline pH and supplemented with EDTA, metabisulphite, BSA and soluble PVP. Various intermediates of the Krebs cycle, pyruvate, glutamate and NADH were oxidized by the isolated particles, though with different efficiencies. The rate of oxidation was steady for every intermediate tested over a 60 min period, except for NADH. In the majority of cases, the oxidation was accompanied by efficient coupling with phosphorylation. Antimycin A led to significant reduction in the oxygen uptake in the presence of succinate and complete suppression of phosphate-esterification. The amount of protein recovered in the mitochondrial fraction was comparable with the reported recoveries from a number of plant tissues. The biochemical integrity of mitochondria in the particulate fraction appeared possible from: (a) the absence of respiratory response to added cytochrome c during the oxidation of succinate, (b) insignificant oxidation of exogenously added pyruvate in the absence of sparker and (c) the ability to satisfactorily couple phosphorylation to the oxidation of a number of substrates.  相似文献   

18.
In Saccharomyces cerevisiae, there are two isoenzymes of fumarate reductase (FRDS1 and FRDS2), encoded by the FRDS and OSM1 genes, respectively. Simultaneous disruption of these two genes results in a growth defect of the yeast under anaerobic conditions, while disruption of the OSM1 gene causes slow growth. However, the metabolic role of these isoenzymes has been unclear until now. In the present study, we found that the anaerobic growth of the strain disrupted for both the FRDS and OSM1 genes was fully restored by adding the oxidized form of methylene blue or phenazine methosulfate, which non-enzymatically oxidize cellular NADH to NAD(+). When methylene blue was added at growth-limiting concentrations, growth was completely arrested after exhaustion of oxidized methylene blue. In the double-disrupted strain, the accumulation of succinate in the supernatant was markedly decreased during anaerobic growth in the presence of methylene blue. These results suggest that fumarate reductase isoenzymes are required for the reoxidation of intracellular NADH under anaerobic conditions, but not aerobic conditions.  相似文献   

19.
20.
The effect of various agents on the activation of succinate dehydrogenase in cauliflower (Brassica oleracea) and mung bean (Phaseolus aureus) mitochondria and in sonicated particles has been investigated. Reduced coenzyme Q10, inosine diphosphate, inosine triphosphate, acid pH, and anions activate the enzyme in mitochondria from higher plants in the same manner as in mammalian preparations. Significant differences have been detected in the behavior of plant and animal preparations in the effects of ATP, ADP, NADH, NAD-linked substrates, and of 2, 4-dinitrophenol on the state of activation of the dehydrogenase. In mammalian mitochondria ATP activates, whereas ADP does not, and the ATP effect is shown only in intact mitochondria. In mung bean and cauliflower mitochondria, both ATP and ADP activate and the effect is also shown in sonicated and frozen-thawed preparations. In sonicated mung bean mitochondria NADH causes complete activation, as in mammalian submitochondrial particles, but in sonicated cauliflower mitochondria activation by NADH is incomplete, as is also true of intact, anaerobic cauliflower mitochondria. Moreover, neither NAD-linked substrates nor a combination of these with NADH can fully activate the enzyme in cauliflower mitochondria. In contrast to mammalian mitochondria, succinate dehydrogenase is not deactivated in cauliflower or mung beam mitochondria under the oxidized conditions brought about by uncoupling of oxidative phosphorylation by 2,4-dinitrophenol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号