首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
When sphingomyelin is digested by sphingomyelinase in the plasma membrane of rat astrocytes, productions of sphingomyelin, diacylglycerol, and phosphatidylcholine are stimulated. D609, an inhibitor of phosphatidylcholine-specific phospholipase C, suppressed these effects. Similarly, when apolipoprotein A-I removed cellular cholesterol, phosphatidylcholine, and sphingomyelin to generate high density lipoprotein, cholesterol synthesis from acetate subsequently increased, and sphingomyelin synthesis from acetate and serine also increased. D609 inhibited these effects again. D609 also inhibited the cholesterol removal by apoA-I not only from the astrocytes but also from BALB/3T3 and RAW264 cells. D609 decreased cholesterol synthesis, although D609 did not directly inhibit hydroxymethylglutaryl-CoA reductase. ApoA-I-stimulated translocation of newly synthesized cholesterol to cytosol was also decreased by D609. A diacylglycerol analog increased the apoA-I-mediated cholesterol release, whereas ceramide did not influence it. We concluded that removal of cellular sphingomyelin by apolipoproteins is replenished by transfer of phosphorylcholine from phosphatidylcholine to ceramide, and this reaction may limit the removal of cholesterol by apoA-I. This reaction also produces diacylglycerol that potentially triggers subsequent cellular signal cascades and regulates intracellular cholesterol trafficking.  相似文献   

2.
The hydrolysis of sphingomyelin from cellular plasma membranes imposes many consequences on cellular cholesterol homeostasis by causing a rapid and dramatic redistribution of plasma membrane cholesterol within the cells (Slotte, J.P. and Bierman, E.L. (1988) Biochem. J. 250, 653-658). The objective of this study was to examine the effects of an extracellular cholesterol acceptor on the directions of the sphingomyelinase-induced cholesterol flow in cultured fibroblasts. We have used HDL3 as a physiological acceptor for cholesterol, and measured the effects of sphingomyelin hydrolysis on efflux and endogenous esterification of cellular [3H]cholesterol. Treatment of cells with sphingomyelinase did induce a dramatically increased esterification of plasma-membrane-derived [3H]cholesterol. The presence of HDL3 in the medium (100 micrograms/ml) did not prevent or reduce the extent of the sphingomyelinase-induced cellular esterification of [3H]cholesterol. Degradation of cellular sphingomyelin (75% hydrolysis) also did not enhance the rate of [3H]cholesterol efflux from the plasma membranes to HDL3. In addition, we also observed that the degradation of sphingomyelin in the HDL3 particles (complete degradation) did not change the apparent rate of [3H]cholesterol transfer from HDL3 to the cells. These findings together indicate that hydrolysis of sphingomyelin did not markedly affect the rates of cholesterol surface transfer between HDL3 and cells. By whatever mechanism cholesterol is forced to be translocated from the plasma membranes subsequent to the degradation of sphingomyelin, it appears that the sterol flow is specifically directed towards the interior of the cells.  相似文献   

3.
Efflux of excess cellular cholesterol mediated by lipid-poor apolipoproteins occurs by an active mechanism distinct from passive diffusion and is controlled by the ATP-binding cassette transporter ABCA1. Here we examined whether ABCA1-mediated lipid efflux involves the selective removal of lipids associated with membrane rafts, plasma membrane domains enriched in cholesterol and sphingomyelin. ABCA1 was not associated with cholesterol and sphingolipid-rich membrane raft domains based on detergent solubility and lack of colocalization with marker proteins associated with raft domains. Lipid efflux to apoA-I was accounted for by decreases in cellular lipids not associated with cholesterol/sphingomyelin-rich membranes. Treating cells with filipin, to disrupt raft structure, or with sphingomyelinase, to digest plasma membrane sphingomyelin, did not impair apoA-I-mediated cholesterol or phosphatidylcholine efflux. In contrast, efflux of cholesterol to high density lipoproteins (HDL) or plasma was partially accounted for by depletion of cholesterol from membrane rafts. Additionally, HDL-mediated cholesterol efflux was partially inhibited by filipin and sphingomyelinase treatment. Apo-A-I-mediated cholesterol efflux was absent from fibroblasts with nonfunctional ABCA1 (Tangier disease cells), despite near normal amounts of cholesterol associated with raft domains and normal abilities of plasma and HDL to deplete cholesterol from these domains. Thus, the involvement of membrane rafts in cholesterol efflux applies to lipidated HDL particles but not to lipid-free apoA-I. We conclude that cholesterol and sphingomyelin-rich membrane rafts do not provide lipid for efflux promoted by apolipoproteins through the ABCA1-mediated lipid secretory pathway and that ABCA1 is not associated with these domains.  相似文献   

4.
Plasma membrane sphingomyelin in baby hamster kidney (BHK-21) cells was hydrolyzed with sphingomyelinase (Staphylococcus aureus) and the effects on membrane cholesterol translocation and the properties of membrane bound adenylate cyclase and Na+/K(+)-ATPase were determined. Exposure of confluent BHK-21 cells to 0.1 U/ml of sphingomyelinase led to the degradation (at 37 degrees C) of about 60% of cell sphingomyelin. No simultaneous hydrolysis of phosphatidylcholine occurred. The hydrolysis of sphingomyelin subsequently led to the translocation (within 40 min) of about 50-60% of cell [3H]cholesterol from a cholesterol oxidase susceptible pool to an oxidase resistant compartment. The translocation of [3H]cholesterol from the cell surface to intracellular membranes was accompanied by a paralleled increase in [3H]cholesterol ester formation. When cells were first exposed to sphingomyelinase (to degrade sphingomyelin) and then incubated without the enzyme in serum-free media, the mass of cell sphingomyelin decreased initially (by 60%), but then began to increase and reached control levels within 3-4 h. The rapid re-synthesis of sphingomyelin was accompanied by an equally rapid normalization of cell [3H]cholesterol distribution. The re-formation of cell sphingomyelin also led to a decreased content of cellular [3H]cholesterol esters, indicating that unesterified [3H]cholesterol was pulled out of the cholesterol ester cycle and transported to the cell surface. Exposure of BHK-21 cells to sphingomyelinase further led to a dramatically decreased activity of ouabain-sensitive Na+/K(+)-ATPase, whereas forskolin-stimulated adenylate cyclase activity was not affected. The activity of Na+/K(+)-ATPase returned to normal in parallel with the normalization of cell sphingomyelin mass and cholesterol distribution. We conclude that sphingomyelin has profound effects on the steady-state distribution of cell cholesterol, and that manipulations of cell sphingomyelin levels directly and reversibly affects the apparent distribution of cholesterol. Changes in the lipid composition of the plasma membrane also appears to selectively affect important metabolic reactions in that compartment.  相似文献   

5.
This study examines the relationship between cellular sphingomyelin content and the distribution of unesterified cholesterol between the plasma-membrane pool and the putative intracellular regulatory pool. The sphingomyelin content of cultured human skin fibroblasts was reduced by treatment of intact cells with extracellularly added neutral sphingomyelinase, and subsequent changes in the activities of cholesterol-metabolizing enzymes were determined. Exposure of fibroblasts to 0.1 unit of sphingomyelinase/ml for 60 min led to the depletion of more than 90% of the cellular sphingomyelin, as determined from total lipid extracts. In a time-course study, it was found that within 10 min of the addition of sphingomyelinase to cells, a dramatic increase in acyl-CoA:cholesterol acyltransferase activity could be observed, whether measured from the appearance of plasma membrane-derived [3H]cholesterol or exogenously added [14C]oleic acid, in cellular cholesteryl esters. In addition, the cholesteryl ester mass was significantly higher in sphingomyelin-depleted fibroblasts at 3 h after exposure to sphingomyelinase compared with that in untreated fibroblasts [7.1 +/- 0.4 nmol of cholesterol/mg equivalents of esterified cholesterol compared with 4.2 +/- 0.1 nmol of cholesterol/mg equivalents of cholesteryl ester in control cells (P less than 0.05)]. The sphingomyelin-depleted cells also showed a reduction in the rate of endogenous synthesis of cholesterol, as measured by incorporation of sodium [14C]acetate into [14C]cholesterol. These results are consistent with a rapid movement of cholesterol from sphingomyelin-depleted plasma membranes to the putative intracellular regulatory pool of cholesterol. This mass movement of cholesterol away from the plasma membranes presumably resulted from a decreased capacity of the plasma membranes to solubilize cholesterol, since sphingomyelin-depleted cells also had a decreased capacity to incorporate nanomolar amounts of [3H]cholesterol from the extracellular medium, as compared with control cells. These findings confirm previous assumptions that the membrane sphingomyelin content is an important determinant of the overall distribution of cholesterol within intact cells.  相似文献   

6.
An inhibition of human fibroblast sphingomyelinase by cholesterol and 7-dehydrocholesterol is shown. This effect is obtained for cholesterol and 7-dehydrocholesterol/sphingomyelin molar ratios above 0.1. Diffusion measurements performed on mixed liposomes demonstrated for cholesterol/sphingomyelin and 7-dehydrocholesterol/sphingomyelin molar ratios above 0.1 a sharp increase in diffusion intensity. The mechanism of the inhibition of sphingomyelinase by sterols is discussed in relation to the physical state of the substrate. A possible involvement of this phenomenon in sphingomyelin accumulation observed in aging or in atheroma is discussed.  相似文献   

7.
ATP binding cassette protein A1 (ABCA1) plays a major role in cholesterol homeostasis and high density lipoprotein (HDL) metabolism. It is proposed that ABCA1 reorganizes the plasma membrane and generates more loosely packed domains that facilitate apoA-I-dependent cholesterol efflux. In this study, we examined the effects of the cellular sphingomyelin level on HDL formation by ABCA1 by using a Chinese hamster ovary-K1 mutant cell line, LY-A, which has a missense mutation in the ceramide transfer protein CERT. When LY-A cells were cultured in Nutridoma-BO medium and sphingomyelin content was reduced, apoA-I-dependent cholesterol efflux by ABCA1 from LY-A cells increased 1.65-fold compared with that from LY-A/CERT cells stably transfected with human CERT cDNA. Exogenously added sphingomyelin significantly reduced the apoA-I-dependent efflux of cholesterol from LY-A cells, confirming that the decrease in sphingomyelin content in the plasma membrane stimulates cholesterol efflux by ABCA1. The amount of cholesterol available to cold methyl-beta-cyclodextrin (MbetaCD) extraction from LY-A cells was increased by 40% by the expression of ABCA1 and was 1.6-fold higher than that from LY-A/CERT cells. This step in ABCA1 function, making cholesterol available to cold MbetaCD, was independent of apoA-I. These results suggest that the function of ABCA1 could be divided into two steps: (i) a flopping step to move phosphatidylcholine and cholesterol from the inner to outer leaflet of the plasma membrane, where cholesterol becomes available to cold MbetaCD extraction, and (ii) a loading step to load phosphatidylcholine and cholesterol onto apoA-I to generate HDL.  相似文献   

8.
The present study has focused on three questions concerning the effect of sphingomyelinase on release of free cholesterol from the plasma membrane and its intracellular translocation: (i) Can one change the direction of the flow of cholesterol? (ii) Can one modulate the flow? (iii) May such a mechanism be relevant in atherogenesis? (i) The results obtained show that even in the presence of potent nonlipoprotein cholesterol acceptors in the medium, the intracellular flow of cholesterol is not reduced as measured by cholesterol esterification. Moreover, in sphingomyelinase-treated cells, cholesterol efflux in presence of nonlipoprotein acceptors was not enhanced even when intracellular esterification was inhibited. (ii) Modulation of the sphingomyelinase induced cholesterol flow can be obtained by 100 microM verapamil which reduces it. In human skin fibroblast, interference with the delivery of free cholesterol to its site of esterification was found in the presence of brefeldin A. (iii) Aortic smooth muscle cells in culture are sensitive to low concentrations of sphingomyelinase and the increase in esterified cholesterol is evident also after exposure to the enzyme for 24 h. The present results suggest that in the plasma membrane, free cholesterol bound to sphingomyelin may be in a compartment which renders it more available for transport to the cell interior than for efflux. In view of the sensitivity of aortic smooth muscle cells to sphingomyelinase, this mechanism for enhanced esterification of cholesterol could be relevant to the transformation of arterial smooth muscle cells into foam cells in the process of atherogenesis.  相似文献   

9.
About 60-65% of the total sphingomyelin in intact BHK cells is in a readily accessible pool which is rapidly degraded by Staphylococcus aureus sphingomyelinase. No more sphingomyelin is broken down in cells which have been fixed with glutaraldehyde or lysed with streptolysin O, suggesting that all the sphingomyelin which is available to the enzyme is on the cell surface. The inaccessible pool of sphingomyelin does not equilibrate with the plasma-membrane pool, even after prolonged incubation. Experiments using [3H]-choline show that much more phosphocholine is released from the intact cells treated with sphingomyelinase than can be accounted for by breakdown of the original cell-surface pool of sphingomyelin; the excess appears to be a consequence of the breakdown of sphingomyelin newly resynthesized at the expense of a pool of phosphatidylcholine which represents about 8% of total cell phosphatidylcholine and may reside in the plasma membrane. This would be consistent with resynthesis of cell-surface sphingomyelin by the phosphatidylcholine: ceramide phosphocholinetransferase pathway, which has previously been shown to be localized in the plasma membrane. However, in [3H]palmitate-labelled cells there appeared to be no accumulation of the diacylglycerol expected to be produced by this reaction, and no enhanced synthesis of phosphatidate or phosphatidylinositol; instead there was an increased synthesis of triacylglycerol. A similar increase in labelling of triacylglycerol was seen in enzyme-treated cells where the sphingomyelinase was subsequently removed, allowing resynthesis of sphingomyelin which occurred at a rate of about 25% of total sphingomyelin/h. Treatment of BHK cells with sphingomyelinase caused no change in the rates of fluid-phase endocytosis or exocytosis as measured with [3H]inulin.  相似文献   

10.
A basis for the insulin mimetic effect of sphingomyelinase on glucose transporter isoform GLUT4 translocation remains unclear. Because sphingomyelin serves as a major determinant of plasma membrane cholesterol and a relationship between plasma membrane cholesterol and GLUT4 levels has recently become apparent, we assessed whether GLUT4 translocation induced by sphingomyelinase resulted from changes in membrane cholesterol content. Exposure of 3T3-L1 adipocytes to sphingomyelinase resulted in a time-dependent loss of sphingomyelin from the plasma membrane and a concomitant time-dependent accumulation of plasma membrane GLUT4. Degradation products of sphingomyelin did not mimic this stimulatory action. Plasma membrane cholesterol amount was diminished in cells exposed to sphingomyelinase. Restoration of membrane cholesterol blocked the stimulatory effect of sphingomyelinase. Increasing concentrations of methyl--cyclodextrin, which resulted in a dose-dependent reversible decrease in membrane cholesterol, led to a dose-dependent reversible increase in GLUT4 incorporation into the plasma membrane. Although increased plasma membrane GLUT4 content by cholesterol extraction with concentrations of methyl--cyclodextrin above 5 mM most likely reflected decreased GLUT4 endocytosis, translocation stimulated by sphingomyelinase or concentrations of methyl--cyclodextrin below 2.5 mM occurred without any visible changes in the endocytic retrieval of GLUT4. Furthermore, moderate loss of cholesterol induced by sphingomyelinase or low concentrations of methyl--cyclodextrin did not alter membrane integrity or increase the abundance of other plasma membrane proteins such as the GLUT1 glucose transporter or the transferrin receptor. Regulation of GLUT4 translocation by moderate cholesterol loss did not involve known insulin-signaling proteins. These data reveal that sphingomyelinase enhances GLUT4 exocytosis via a novel cholesterol-dependent mechanism. vesicular trafficking; signal transduction; sphingolipids  相似文献   

11.
Lysosomal involvement in cellular turnover of plasma membrane sphingomyelin   总被引:2,自引:0,他引:2  
At least two isoenzymes of sphingomyelinase (sphingomyelin cholinephosphohydrolase, EC 3.1.4.12), including lysosomal acid sphingomyelinase and nonlysosomal magnesium-dependent neutral sphingomyelinase, catalyse the degradation of sphingomyelin in cultured human skin fibroblasts. A genetically determined disorder of sphingomyelin metabolism, type A Niemann-Pick disease, is characterized by a deficiency of lysosomal acid sphingomyelinase. To investigate the involvement of lysosomes in the degradation of cellular membrane sphingomyelin, we have undertaken studies to compare the turnover of plasma membrane sphingomyelin in fibroblasts from a patient with type A Niemann-Pick disease, which completely lack acid sphingomyelinase activity but retain nonlysosomal neutral sphingomyelinase activity, with turnover in fibroblasts from normal individuals. Plasma membrane sphingomyelin was labeled by incubating cells at low temperature with phosphatidylcholine vesicles containing radioactive sphingomyelin. A fluorescent analog of sphingomyelin, N-4-nitrobenzo-2-oxa-1,3-diazoleaminocaproyl sphingosylphosphorylcholine (NBD-sphingomyelin) is seen to be readily transferred at low temperature from phosphatidylcholine liposomes to the plasma membranes of cultured human fibroblasts. Moreover, when kinetic studies were done in parallel, a constant ratio of [14C]oleoylsphingosylphosphorylcholine ( [14C]sphingomyelin) to NBD-sphingomyelin was taken up at low temperature by the fibroblast cells, suggesting that [14C]sphingomyelin undergoes a similar transfer. The comparison of sphingomyelin turnover at 37 degrees C in normal fibroblasts compared to Niemann-Pick diseased fibroblasts shows that a rapid turnover of plasma membrane-associated sphingomyelin within the first 30 min appears to be similar in both normal and Niemann-Pick diseased cells. This rapid turnover appears to be primarily due to rapid removal of the [14C]sphingomyelin from the cell surface into the incubation medium. During long-term incubation, an increase in the formation of [14C]ceramide correlating with the degradation of [14C]sphingomyelin is observed in normal fibroblasts. In contrast, the level of [14C]ceramide remains constant in Niemann-Pick diseased cells, which correlates with a higher level of intact [14C]sphingomyelin remaining in these cells compared to normal cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Astrocytes play a key role in cholesterol metabolism in central nervous system. We have shown that fetal rat astrocytes in primary culture secrete cholesterol-rich HDL with the endogenous apolipoprotein (apo) E and generate cholesterol-poor HDL with exogenous apoE and apoA-I [Ito et al. (1999) J. Neurochem. 72, 2362]. In order to study these reactions in relation to the stage of cell differentiation, we examined generation of HDL by rat astrocytoma cells. Lack of apoE secretion was found in three astrocytoma cell lines, human T98G, rat C6, and GA-1 [Kano-Tanaka et al. (1986) Proc. Jpn. Acad. Ser. B 62, 109]. GA-1 produced apoE at very low level and therefore generated much less HDL by itself than the astrocytes in primary culture. In contrast, GA-1 interacted with exogenous apoE and apoA-I to produce cholesterol-rich HDL while the astrocytes produced cholesterol-poor HDL with these apolipoproteins. Cholesterol biosynthesis rate measured from mevalonate was higher and down-regulated more by LDL in the astrocytes than GA-1. On the other hand, the cellular cholesterol level, uptake of LDL, and cyclodextrin-mediated non-specific diffusion of cholesterol from cell surface were same between these two cells. Treatment of GA-1 with acidic fibroblast growth factor influenced neither the production of apoE nor the baseline lipid secretion, but increased the cholesterol synthesis from mevalonate and the magnitude of its down-regulation by LDL, and decreased cholesterol content in the HDL produced by exogenous apoA-I. In conclusion, suppression of apoE biosynthesis in the undifferentiated astrocytes GA-1 resulted in poor secretion of cholesterol-rich HDL and in turn more production of HDL with exogenous apolipoprotein. Cellular cholesterol homeostasis was altered accordingly.  相似文献   

13.
The purpose of this study was to determine the capacity of Niemann-Pick type C (NPC) fibroblasts to transport cholesterol from the cell surface to intracellular membranes. This is relevant in light of the observations that NPC cells display a sluggish metabolism of LDL-derived cholesterol, a phenomenon which could be explained by a defective intracellular transport of cholesterol. Treatment of NPC cells for 4 h with 0.1 mg/ml of LDL failed to increase the incorporation of [14C]oleic acid into cholesterol [14C]oleate, an observation consistent with previous reports on this cell type (Pentchev et al. (1985) Proc. Natl. Acad. Sci. USA 82, 8247). Normal fibroblasts, however, displayed the classical upregulation (6-fold over control) of the endogenous esterification reaction in response to LDL exposure. Incubation of normal or NPC fibroblasts with sphingomyelinase (100 mU/ml; Staphylococcus aureus) led to a rapid and marked increase (9- and 10-fold for normal and NPC fibroblasts, respectively, after 4 h) in the esterification of plasma-membrane-derived [3H]cholesterol suggesting that sphingomyelin degradation forced a net transfer of cholesterol from the cell surface to the endoplasmic reticulum. The similar response in normal and mutant fibroblasts to the degradation of sphingomyelin suggests that plasma membrane cholesterol can be transported into the substrate pool of ACAT to about the same extent in these two cell types. Degradation of cell sphingomyelin in NPC fibroblasts also resulted in the movement of 20-25% of the cellular cholesterol from a cholesterol oxidase susceptible pool into oxidase-resistant pools, implying that a substantial amount of plasma membrane cholesterol was internalized after sphingomyelin degradation. This cholesterol internalization was not accompanied by an increased rate of membrane internalization, as measured by [3H]sucrose uptake. Although NPC cells showed a relative accumulation of unesterified cholesterol and a sluggish esterification of LDL-derived cholesterol when exposed to LDL, these cells responded like normal fibroblasts with regard to their capacity to transport cholesterol from the cell surface into intracellular sites in response to sphingomyelin degradation. It therefore appears that NPC cells, in contrast to the impaired intracellular movement of lipoprotein-derived cholesterol, do not display a general impairment of cholesterol transport between the cell surface and the intracellular regulatory pool of cholesterol.  相似文献   

14.
We have examined the mechanism of the inhibition of cholesterol synthesis in cells treated with exogenous sphingomyelinase. Treatment of rat intestinal epithelial cells (IEC-6), human skin fibroblasts (GM-43), and human hepatoma (HepG2) cells in culture with sphingomyelinase resulted in a concentration- and time-dependent inhibition of the activity of HMG-CoA reductase, a key regulatory enzyme in cholesterol biosynthesis. The following observations were obtained with IEC-6 cells. Free fatty acid synthesis or general cellular protein synthesis was unaffected by the addition of sphingomyelinase. Addition of sphingomyelinase to the in vitro reductase assay had no effect on activity, suggesting that an intact cell system is required for the action of sphingomyelinase. The products of sphingomyelin hydrolysis, e.g., ceramide and phosphocholine, had no effect on reductase activity. Sphingosine, a further product of ceramide metabolism, caused a stimulation of reductase activity. Examination of the incorporation of [3H]acetate into the nonsaponifiable lipid fractions in the presence of sphingomyelinase showed no changes in the percent distribution of radioactivity in the post-mevalonate intermediates of the cholesterol biosynthetic pathway, but there was increased radioactivity associated with the polar sterol fraction. Pretreatment of cells with ketoconazole, a known inhibitor of oxysterol formation, prevented the inhibition of reductase activity by sphingomyelinase and decreased the incorporation of [3H]acetate in the polar sterol fraction. Ketoconazole had no effect on exogenous sphingomyelinase activity in vitro in the presence or absence of cells. Endogenous sphingomyelinase activity was also unaffected by ketoconazole. Addition of inhibitors of endogenous sphingomyelinase activity, e.g., chlorpromazine, desipramine, and N-(6-aminohexyl)-5-chloro-1-naphthalene sulfonamide (W-7), to the culture medium caused a dose-dependent stimulation of reductase activity. However, these agents had no effect on the inhibition of reductase activity by exogenous sphingomyelinase. Treatment of cells with small unilamellar vesicles of dioleyl phosphatidylcholine or high density lipoprotein3 resulted in increased efflux of cholesterol and stimulation of reductase activity. Under similar conditions, the inhibitory effect of exogenous sphingomyelinase on reductase activity was prevented by incubation with small unilamellar vesicles of phosphatidylcholine or high density lipoprotein. These results support the hypothesis that alteration of the ratio of sphingomyelin:cholesterol in the plasma membrane plays a modulatory role on the flow of membrane cholesterol to a site where it may be converted to a putative regulatory molecule, possibly an oxysterol.  相似文献   

15.
The role of high density lipoprotein (HDL) phospholipid in scavenger receptor BI (SR-BI)-mediated free cholesterol flux was examined by manipulating HDL(3) phosphatidylcholine and sphingomyelin content. Both phosphatidylcholine and sphingomyelin enrichment of HDL enhanced the net efflux of cholesterol from SR-BI-expressing COS-7 cells but by two different mechanisms. Phosphatidylcholine enrichment of HDL increased efflux, whereas sphingomyelin enrichment decreased influx of HDL cholesterol. Although similar trends were observed in control (vector-transfected) COS-7 cells, SR-BI overexpression amplified the effects of phosphatidylcholine and sphingomyelin enrichment of HDL 25- and 2.8-fold, respectively. By using both phosphatidylcholine-enriched and phospholipase A(2)-treated HDL to obtain HDL with a graded phosphatidylcholine content, we showed that SR-BI-mediated cholesterol efflux was highly correlated (r(2) = 0.985) with HDL phosphatidylcholine content. The effects of varying HDL phospholipid composition on SR-BI-mediated free cholesterol flux were not correlated with changes in either the K(d) or B(max) values for high affinity binding to SR-BI. We conclude that SR-BI-mediated free cholesterol flux is highly sensitive to HDL phospholipid composition. Thus, factors that regulate cellular SR-BI expression and the local modification of HDL phospholipid composition will have a large impact on reverse cholesterol transport.  相似文献   

16.
Sphingomyelin and cholesterol play an important role in stabilising the plasma membranes architecture and in many physiological process such as cell growth and differentiation. Degradation of sphingomyelin by exogenous sphingomyelinase induces a decrease of cholesterol due either to an increase of esterification or to a reduced biosynthesis. Variations of sphingomyelin due to the presence of a neutral-sphingomyelinase and of sphingomyelin-synthase have been recently shown in rat liver nuclear membranes. The aim of this research is to study the relation between sphingomyelin and cholesterol in the nuclear membranes following sphingomyelinase activation and during cell proliferation. The nuclear membranes, isolated from liver nuclei, were analysed for their content in protein, nucleic acids, and lipids (sphingomyelin and cholesterol) before and after sphingomyelinase activation and during hepatic regeneration. The activities of nuclear membrane SM-syntase and sphingomyelinase were also determined. The results confirmed that also in the nuclear membranes sphingomyelinase, especially exogenous, causes a strong decrease in cholesterol. The increase observed of sphingomyelin during the first 18 h after hepatectomy followed by a decrease at 24 h, due to the different activity of the enzymes, is accompanied by similar behaviour of cholesterol. This confirms the effect of neutral-sphingomyelinase on cholesterol, due to an increase of esterification process. Changes in cholesterol content modify the nuclear membranes fluidity and, as consequence, mRNA transport as previously shown. It can therefore be concluded that the neutral sphingomyelinase, present in the nuclei, may, across this mechanism, regulate the cell function.  相似文献   

17.
Tetanus toxin (TeTx) is the protein, synthesized by the anaerobic bacteria Clostridium tetani, which causes tetanus disease. TeTx gains entry into target cells by means of its interaction with lipid rafts, which are membrane domains enriched in sphingomyelin and cholesterol. However, the exact mechanism of host membrane binding remains to be fully established. In the present study we used the recombinant carboxyl terminal fragment from TeTx (Hc-TeTx), the domain responsible for target neuron binding, showing that Hc-TeTx induces a moderate but rapid and sustained increase in the ceramide/sphingomyelin ratio in primary cultures of cerebellar granule neurons and in NGF-differentiated PC12 cells, as well as induces the formation of ceramide platforms in the plasma membrane. The mentioned increase is due to the promotion of neutral sphingomyelinase activity and not to the de novo synthesis, since GW4869, a specific neutral sphingomyelinase inhibitor, prevents neutral sphingomyelinase activity increase and formation of ceramide platforms. Moreover, neutral sphingomyelinase inhibition with GW4869 prevents Hc-TeTx-triggered signaling (Akt phosphorylation), as well as the protective effect of Hc-TeTx on PC12 cells subjected to oxidative stress, while siRNA directed against nSM2 prevents protection by Hc-TeTx of NSC-34 cells against oxidative insult. Finally, neutral sphingomyelinase activity seems not to be related with the internalization of Hc-TeTx into PC12 cells. Thus, the presented data shed light on the mechanisms triggered by TeTx after membrane binding, which could be related with the events leading to the neuroprotective action exerted by the Hc-TeTx fragment.  相似文献   

18.
We have studied the rate of phospholipid synthesis and turnover in mouse peritoneal macrophages in reaction to cholesterol influx and high density lipoprotein (HDL)-mediated cholesterol efflux, using three different radioactive precursors, 32PO4(3-), [3H]choline, and [14C]oleic acid. The cells were loaded with cholesterol for up to 18 h with acetyl-low density lipoprotein (LDL), and phospholipid synthesis was measured at various time intervals and compared with nonloaded macrophages. In the first 2 h of cholesterol loading, a twofold increase in the rate of synthesis for sphingomyelin, phosphatidylcholine, phosphatidylserine-inositol, and phosphatidylethanolamine was observed. After this initial up-regulation, the rate of phospholipid synthesis continuously declined upon further cholesterol loading, while the turnover rate of cellular phospholipids was not affected under the same conditions. The lysosomal inhibitor chloroquine abolished the down-regulation, revealing a strong correlation between phospholipid synthesis and lysosomal enzyme activity which was presumably dependent on the release of cholesterol from the lysosome. The reduction in phospholipid synthesis induced by cholesterol loading is reversible by the addition of HDL3 to the cells. When HDL3 was added to the culture medium, a two- to threefold increase in phosphatidylcholine synthesis and a twofold increase in sphingomyelin formation was observed after 3 h. Ca2+ antagonists of the dihydropyridine type, which down-regulate HDL-receptor activity and promote the formation and cellular release of lamellar bodies derived from the lysosomal compartment (Schmitz, G., et al. 1988. Arteriosclerosis. 8: 46-56, and Robenek, H., and G. Schmitz. 1988. Arteriosclerosis. 8: 57-67), specifically enhance the synthesis of sphingomyelin in cholesterol-loaded macrophages. Inhibitors of acyl-CoA:cholesterol acyltransferase (Octimibate, progesterone) increase both the synthesis of sphingomyelin and phosphatidylcholine, and enhance HDL-receptor activity. The results indicate that cholesterol and phospholipid metabolism are coordinately regulated in macrophages. Moreover, the formation of phosphatidylcholine and sphingomyelin seems to be an important factor for the promotion of HDL-receptor-mediated cellular cholesterol efflux.  相似文献   

19.
We previously reported that human Niemann-Pick Disease type B (NPD-B) is associated with low HDL. In this study, we investigated the pathophysiology of this HDL deficiency by examining both HDL samples from NPD-B patients and nascent high density lipoprotein (LpA-I) generated by incubation of lipid-free apolipoprotein A-I (apoA-I) with NPD-B fibroblasts. Interestingly, both LpA-I and HDL isolated from patient plasma had a significant increase in sphingomyelin (SM) mass ( approximately 50-100%). Analysis of LCAT kinetics parameters (V(max) and K(m)) revealed that either LpA-I or plasma HDL from NPD-B, as well as reconstituted HDL enriched with SM, exhibited severely decreased LCAT-mediated cholesterol esterification. Importantly, we documented that SM enrichment of NPD-B LpA-I was not attributable to increased cellular mass transfer of SM or unesterified cholesterol to lipid-free apoA-I. Finally, we obtained evidence that the conditioned medium from HUVEC, THP-1, and normal fibroblasts, but not NPD-B fibroblasts, contained active secretory sphingomyelinase (S-SMase) that mediated the hydrolysis of [(3)H]SM-labeled LpA-I and HDL(3). Furthermore, expression of mutant SMase (DeltaR608) in CHO cells revealed that DeltaR608 was synthesized normally but had defective secretion and activity. Our data suggest that defective S-SMase in NPD leads to SM enrichment of HDL that impairs LCAT-mediated nascent HDL maturation and contributes to HDL deficiency. Thus, S-SMase and LCAT may act in concert and play a crucial role in the biogenesis and maturation of nascent HDL particles.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号