首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We investigated the effects of acerogenin A, a natural compound isolated from Acer nikoense Maxim, on osteoblast differentiation by using osteoblastic cells. Acerogenin A stimulated the cell proliferation of MC3T3-E1 osteoblastic cells and RD-C6 osteoblastic cells (Runx2-deficient cell line). It also increased alkaline phosphatase activity in MC3T3-E1 and RD-C6 cells and calvarial osteoblastic cells isolated from the calvariae of newborn mice. Acerogenin A also increased the expression of mRNAs related to osteoblast differentiation, including Osteocalcin, Osterix and Runx2 in MC3T3-E1 cells and primary osteoblasts: it also stimulated Osteocalcin and Osterix mRNA expression in RD-C6 cells. The acerogenin A treatment for 3 days increased Bmp-2, Bmp-4, and Bmp-7 mRNA expression levels in MC3T3-E1 cells. Adding noggin, a BMP specific-antagonist, inhibited the acerogenin A-induced increase in the Osteocalcin, Osterix and Runx2 mRNA expression levels. These results indicated that acerogenin A stimulates osteoblast differentiation through BMP action, which is mediated by Runx2-dependent and Runx2-independent pathways.  相似文献   

2.
3.
4.
5.
The mechanisms whereby the parathyroid hormone (PTH) exerts its anabolic action on bone are incompletely understood. We previously showed that inhibition of ERK1/2 enhanced Smad3-induced bone anabolic action in osteoblasts. These findings suggested the hypothesis that changes in gene expression associated with the altered Smad3-induced signaling brought about by an ERK1/2 inhibitor would identify novel bone anabolic factors in osteoblasts. We therefore performed a comparative DNA microarray analysis between empty vector-transfected mouse osteoblastic MC3T3-E1 cells and PD98059-treated stable Smad3-overexpressing MC3T3-E1 cells. Among the novel factors, Tmem119 was selected on the basis of its rapid induction by PTH independent of later increases in endogenous TGF-β. The levels of Tmem119 increased with time in cultures of MC3T3-E1 cells and mouse mesenchymal ST-2 cells committed to the osteoblast lineage by BMP-2. PTH stimulated Tmem119 levels within 1 h as determined by Western blot analysis and immunocytochemistry in MC3T3-E1 cells. MC3T3-E1 cells stably overexpressing Tmem119 exhibited elevated levels of Runx2, osteocalcin, alkaline phosphatase, and β-catenin, whereas Tmem119 augmented BMP-2-induced Runx2 levels in mesenchymal cells. Tmem119 interacted with Runx2, Smad1, and Smad5 in C2C12 cells. In conclusion, we identified a Smad3-related factor, Tmem119, that is induced by PTH and promotes differentiation in mouse osteoblastic cells. Tmem119 is an important molecule in the pathway downstream of PTH and Smad3 signaling in osteoblasts.  相似文献   

6.
Spleen tyrosine kinase (Syk) is a non-receptor protein kinase present in abundance in a wide range of hematopoietic cells. Syk reportedly plays a crucial role in immune signaling in B cells and cells bearing Fcγ-activation receptors. The role of syk in osteoblastic differentiation has not been well elucidated. We report herein the role of syk in osteoblastic differentiation. We investigated the effects of two syk inhibitors on osteoblastic differentiation in mouse preosteoblastic MC3T3-E1 cells and bone marrow stromal ST2 cells. Expression of syk was detected in these two cell lines. Two syk inhibitors stimulated mRNA expression of osteoblastic markers (ALP, Runx2, Osterix). Mineralization of extracellular matrix was also promoted by treatment with syk inhibitors. Knockdown of Syk caused increased mRNA expression of osteoblastic markers. In addition, syk inhibitor and knockdown of Syk suppressed phosphorylation of mitogen-activated protein kinase (MAPK) and protein kinase Cα (PKCα). Our results indicate that syk might regulate osteoblastic differentiation through MAPK and PKCα.  相似文献   

7.
Tang SY  Xie H  Yuan LQ  Luo XH  Huang J  Cui RR  Zhou HD  Wu XP  Liao EY 《Peptides》2007,28(3):708-718
The aim of this study was to investigate the effects of apelin on proliferation and apoptosis of mouse osteoblastic MC3T3-E1 cells. APJ was expressed in MC3T3-E1 cells. Apelin did not affect Runx2 expression, alkaline phosphatase (ALP) activity, osteocalcin and type I collagen secretion, suggesting that it has no effect on osteoblastic differentiation of MC3T3-E1 cells. However, apelin stimulated MC3T3-E1 cell proliferation and inhibited cell apoptosis induced by serum deprivation. Our study also shows that apelin decreased cytochrome c release and caspase-3, capase-8 and caspase-9 activation in serum-deprived MC3T3-E1 cells. Apelin activated c-Jun N-terminal kinase (JNK) and Akt (phosphatidylinositol 3-kinase downstream effector), and the JNK inhibitor SP600125, the phosphatidylinositol 3-kinase (PI3-K) inhibitor LY294002 or the Akt inhibitor 1L-6-hydroxymethyl-chiro-inositol 2-(R)-2-O-methyl-3-O-octadecylcarbonate (HIMO) inhibited its effects on proliferation and serum deprivation-induced apoptosis. Furthermore, apelin protected against apoptosis induced by the glucocorticoid dexamethasone or TNF-alpha. Apelin stimulates proliferation and suppresses serum deprivation-induced apoptosis of MC3T3-E1 cells and these actions are mediated via JNK and PI3-K/Akt signaling pathways.  相似文献   

8.
Cheung WM  Ng WW  Kung AW 《FEBS letters》2006,580(1):121-126
Osteoblastic differentiation is an essential part of bone formation. Dimethyl sulfoxide (DMSO) is a water miscible solvent that is used extensively for receptor ligands in osteoblast studies. However, little is known about its effects on osteoblastogenic precursor cells. In this study, we have used a murine preosteoblast cell line MC3T3-E1 cells to demonstrate that DMSO effectively induces osteoblastic differentiation of MC3T3-E1 cells via the activation of Runx2 and osterix and is dependent upon the protein kinase C (PKC) pathways. We further demonstrated that prolonged activation of PKC pathways is sufficient to induce osteoblastic differentiation, possibly via the activation of PKD/PKCmu.  相似文献   

9.
10.
11.
Prolyl-hydroxyproline (Pro-Hyp) is one of the major constituents of collagen-derived dipeptides. We previously reported that Pro-Hyp promotes the differentiation of osteoblasts by increasing Runx2, osterix and Col1α1 mRNA expression levels. Here, to elucidate the mechanism of Pro-Hyp promotion of osteoblast differentiation, we focus on the involvement of Foxo1 in osteoblast differentiation via Runx2 regulation and the role of Foxg1 in Foxo1 regulation. The addition of Pro-Hyp had no effect on MC3T3-E1 cell proliferation in Foxo1- or Foxg1-knockdown cells. In Foxo1-knockdown cells, the addition of Pro-Hyp increased ALP activity, but in Foxg1-knockdown cells, it had no effect on ALP activity. An enhancing effect of Pro-Hyp on the Runx2 and osterix expression levels was observed in Foxo1-knockdown cells. However, no enhancing effect of Pro-Hyp on osteoblastic gene expression was observed when Foxg1 was knocked down. These results demonstrate that Pro-Hyp promotes osteoblastic MC3T3-E1 cell differentiation and upregulation of osteogenic genes via Foxg1 expression.  相似文献   

12.
Extracellular matrix proteins (ECMs) serve as both a structural support for cells and a dynamic biochemical network that directs cellular activities. ECM proteins such as those of the SIBLING family (small integrin-binding ligand glycoprotein) could possess inherent growth factor activity. In this study, we demonstrate that exon 5 of dentin matrix protein 3 (phosphophoryn (PP)), a non-collagenous dentin ECM protein and SIBLING protein family member, up-regulates osteoblast marker genes in primary human adult mesenchymal stem cells (hMSCs), a mouse osteoblastic cell line (MC3T3-E1), and a mouse fibroblastic cell line (NIH3T3). Quantitative real-time PCR technology was used to quantify gene expression levels of bone markers such as Runx2, Osx (Osterix), bone/liver/kidney Alp (alkaline phosphatase), Ocn (osteocalcin), and Bsp (bone sialoprotein) in response to recombinant PP and stably transfected PP. PP up-regulated Runx2, Osx, and Ocn gene expression. PP increased OCN protein production in hMSCs and MC3T3-E1. ALP activity and calcium deposition was increased by PP in hMSC. Furthermore, an alpha(v)beta(3) integrin-blocking antibody significantly inhibited recombinant PP-induced expression of Runx2 in hMSCs, suggesting that signaling by PP is mediated through the integrin pathway. PP was also shown to activate p38, ERK1/2, and JNK, three components of the MAPK pathway. These data demonstrate a novel signaling function for PP in cell differentiation beyond the hypothesized role of PP in biomineralization.  相似文献   

13.
Smad3, a critical component of the TGF-beta signaling pathways, plays an important role in the regulation of bone formation. However, how Smad3 affects osteoblast at the different differentiation stage remains still unknown. In the present study, we examined the effects of Smad3 on osteoblast phenotype by employing mouse bone marrow ST-2 cells and mouse osteoblastic MC3T3-E1 cells at the different differentiation stage. Smad3 overexpression significantly inhibited bone morphogenetic protein-2 (BMP-2)-induced ALP activity in ST-2 cells, indicating that Smad3 suppresses the commitment of pluripotent mesenchymal cells into osteoblastic cells. Smad3 increased the levels of COLI and ALP mRNA at 7 day cultures in MC3T3-E1 cells, and its effects on COL1 were decreased as the culture periods progress, although its effects on ALP were sustained during 21 day cultures. Smad3 overexpression enhanced the level of Runx2 and OCN mRNA at 14 day and 21 day cultures. Smad3 increased the levels of MGP and NPP-1 mRNA, although the extent of increase in MGP and NPP-1 was reduced and enhanced during the progression of culture period, respectively. Smad3 did not affect the level of ANK mRNA. On the other hand, Smad3 enhanced the level of MEPE mRNA at 14 and 21 day cultures, although Smad3 decreased it at 7 day cultures. In conclusion, Smad3 inhibits the osteoblastic commitment of ST-2 cells, while promotes the early stage of differentiation and maturation of osteoblastic committed MC3T3-E1 cells. Also, Smad3 enhanced the expression of mineralization-related genes at the maturation phase of MC3T3-E1 cells.  相似文献   

14.
15.
16.
Mechanical unloading conditions result in decreases in bone mineral density and quantity, which may be partly attributed to an imbalance in bone formation and resorption. To investigate the effect of mechanical unloading on osteoblast and osteoclast differentiation, and the expression of RANKL and OPG genes in osteoblasts, we used a three-dimensional (3D) clinostat system simulating microgravity to culture MC3T3-E1 and RAW264.7 cells. Long-term exposure (7 days) of MC3T3-E1 cells to microgravity in the 3D clinostat inhibited the expression of Runx2, Osterix, type I collagen alphaI chain, RANKL and OPG genes. Similarly, 3D clinostat exposure inhibited the enhancement of beta3-integrin gene expression, which normally induced by sRANKL stimulation in RAW264.7 cells. These results, taken together, demonstrate that long-term 3D clinostat exposure inhibits the differentiation of MC3T3-E1 cells together with suppression of RANKL and OPG gene expression, as well as the RANKL-dependent cellular fusion of RAW264.7 cells, suggesting that long-term mechanical unloading suppresses bone formation and resorption.  相似文献   

17.
18.
The effects of Ce on the proliferation, osteogenic differentiation and mineralization function of a murine preosteoblast cell line MC3T3-E1 in vitro were investigated at cell and molecular levels. The results showed that Ce promoted the proliferation, osteogenic differentiation and mineralization function of MC3T3-E1 cells at concentrations of 0.0001, 0.001, 0.01, 0.1 and 1???M, but turned to inhibit the proliferation, osteogenic differentiation and mineralization function at concentrations of 10, 100 and 1000???M. Ce displayed the up-regulation of Runx2, BMP2, ALP, BSP, Col I and OCN genes at concentrations of 0.0001 and 0.1???M; these genes were down-regulated in the MC3T3-E1 cells treated with 1000???M Ce. The expression of BMP2, Runx2 and OCN proteins was promoted by Ce at concentrations of 0.0001 and 0.1???M, but these proteins were down-regulated after 1000???M Ce treatment. The results suggest that Ce likely up-regulates or down-regulates the expression of Runx2, which subsequently up- or down-regulates OB marker genes Col I and BMP2 at early stages and ALP and OCN at later stages of differentiation, thus causing to promote or inhibit the proliferation, osteogenic differentiation and mineralization function of MC3T3-E1 cells.  相似文献   

19.
Intermittent parathyroid hormone (PTH) administration shows an anabolic effect on bone. However, the mechanisms are not fully studied. Recent studies suggest that Wnt signaling is involved in PTH-induced bone formation. The current study was to examine if Wnt/β-catenin pathway is required during PTH-induced osteoblast differentiation. Osteoblastic MC3T3-E1 cells were treated with human PTH (1-34) (hPTH [1-34]) and expression levels of osteoblast differentiation markers were detected by real-time PCR. RNA levels of β-catenin, Runx2, Osteocalcin, Alkaline phosphatase, and Bone sialoprotein were significantly up-regulated after treatment with 10(-8) M of hPTH (1-34) for 6 h. Alkaline phosphatase activity and protein expression of β-catenin were also increased after 6 days of intermittent treatment with hPTH (1-34) in MC3T3-E1 cells. hPTH (1-34) significantly enhanced Topflash Luciferase activity after 6 h of treatment. More important, PTH-induced Alkaline phosphatase activity was significantly inhibited by knocking down β-catenin expression in cells using siRNA. Real-time RT-PCR results further showed down regulation of Runx2, Osteocalcin, Alkaline phosphatase, Bone sialoprotein gene expression in β-catenin siRNA transfected cells with/without PTH treatment. These results clearly indicate that PTH stimulates Wnt/β-catenin pathway in MC3T3-E1 cells and osteoblast differentiation markers expression was up-regulated by activation of Wnt/β-catenin signaling. Our study demonstrated that PTH-induced osteoblast differentiation mainly through activation of Wnt/β-catenin pathway in osteoblastic MC3T3-E1 cells.  相似文献   

20.
We identified a cDNA encoding mouse Tenascin-W (TN-W) upregulated by bone morphogenetic protein (Bmp)2 in ATDC5 osteo-chondroprogenitors. In adult mice, TN-W was markedly expressed in bone. In mouse embryos, during endochondral bone formation TN-W was localized in perichondrium/periosteum, but not in trabecular and cortical bones. During bone fracture repair, cells in the newly formed perichondrium/periosteum surrounding the cartilaginous callus expressed TN-W. Furthermore, TN-W was detectable in perichondrium/periosteum of Runx2-null and Osterix-null embryos, indicating that TN-W is expressed in preosteoblasts. In CFU-F and -O cells, TN-W had no effect on initiation of osteogenesis of bone marrow cells, and in MC3T3-E1 osteoblastic cells TN-W inhibited cell proliferation and Col1a1 expression. In addition, TN-W suppressed canonical Wnt signaling which stimulates osteoblastic differentiation. Our results indicate that TN-W is a novel marker of preosteoblasts in early stage of osteogenesis, and that TN-W inhibits cell proliferation and differentiation of preosteoblasts mediated by canonical Wnt signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号