首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Based on the electron-transport properties on the reducing side of the reaction center, photosystem II (PS II) in green plants and algae occurs in two distinct forms. Centers with efficient electron-transport from QA to plastoquinone (QB-reducing) account for 75% of the total PS II in the thylakoid membrane. Centers that are photochemically competent but unable to transfer electrons from QA to QB (QB-nonreducing) account for the remaining 25% of total PS II and do not participate in plastoquinone reduction. In Dunaliella salina, the pool size of QB-nonreducing centers changes transiently when the light regime is perturbed during cell growth. In cells grown under moderate illumination intensity (500 E m-2s-1), dark incubation induces an increase (half-time 45 min) in the QB-nonreducing pool size from 25% to 35% of the total PS II. Subsequent illumination of these cells restores the steady-state concentration of QB-nonreducing centers to 25%. In cells grown under low illumination intensity (30 µE m–2s–1), dark incubation elicits no change in the relative concentration of QB-nonreducing centers. However, a transfer of low-light grown cells to moderate light induces a rapid (half-time 10 min) decrease in the QB-nonreducing pool size and a concomitant increase in the QB-reducing pool size. These and other results are explained in terms of a pool of QB-nonreducing centers existing in a steady-state relationship with QB-reducing centers and with a photochemically silent form of PS II in the thylakoid membrane of D. salina. It is proposed that QB-nonreducing centers are an intermediate stage in the process of damage and repair of PS II. It is further proposed that cells regulate the inflow and outflow of centers from the QB-nonreducing pool to maintain a constant pool size of QB-nonreducing centers in the thylakoid membrane.Abbreviations Chl chlorophyll - PS photosystem - QA primary quinone electron acceptor of PS II - QB secondary quinone electron acceptor of PS II - LHC light harvesting complex - Fo non-variable fluorescence yield - Fpl intermediate fluorescence yield plateau level - Fmax maximum fluorescence yield - Fi mitial fluorescence yield increase from Fo to Fpl(Fpl-Fo) - Fv total variable fluorescence yield (Fmax-Fo) - DCMU dichlorophenyl-dimethylurea  相似文献   

2.
Flash-induced absorbance measurements at 830 nm on both nanosecond and microsecond timescales have been used to characterise the effect of ultraviolet light on Photosystem II core particles. A combination of UV-A and UV-B, closely simulating the spectrum of sunlight below 350 nm, was found to have a primary effect on the donor side of P680. Repetitive measurements indicated reductions in the nanosecond components of the absorbance decay with a concomitant appearance and increase in the amplitude of a component with a 10 s time constant attributed to slow reduction of P680+ by Tyrz when the function of the oxygen evolving complex is inhibited. Single-flash measurements show that the nanosecond components have amplitudes which vary with S-state. Increasing UV irradiation inhibited the amplitude of these components without changing their S-state dependence. In addition, UV irradiation resulted in a reduction in the total amplitude, with no change in the proportion of the 10 s contribution.Abbreviations BBY- PS II membrane fragments - P680- primary electron donor of PS II - PS II- Photosystem II - QA and QB– primary and secondary quinone electron acceptors of PS II - S-state- redox state of the oxygenevolving complex - Tyrz– tyrosine residue in PS II - UV-A- ultraviolet radiation 320–400 nm - UV-B- ultraviolet radiation 280–320 nm  相似文献   

3.
High-temperature-induced inhibition of the acceptor side of Photosystem II (PS II) was studied in tobacco thylakoids using oxygen evolution, chlorophyll a (Chl a) fluorescence and redox potential measurements. When thylakoids were heated at 2 °C/min from 25 to 50 °C, the oxygen evolving complex became inhibited between 32 and 45 °C, whereas the acceptor side of PS II tolerated higher temperatures. Variable Chl a fluorescence decreased more slowly than oxygen evolution, suggesting that transitions between some S-states occurred even after heat-induced inhibition of the oxygen evolving activity. 77 K emission spectroscopy reveals that heating does not cause detachment of the light-harvesting complex II from PS II, and thus the heat-induced increase in the initial F0 fluorescence is due to loss of exciton trapping in the heated PS II centers. Redox titrations showed a heat-induced increase in the midpoint potential of the QA/QA -) couple from the control value of –80 mV to +40 mV at 50 °C, indicating a loss of the reducing power of QA -). When its driving force thus decreased, electron transfer from QA -) to QB in the PS II centers that still could reduce QA became gradually inhibited, as shown by measurements of the decay of Chl a fluorescence yield after a single turnover flash. Interestingly, the heat-induced loss of variable fluorescence and inhibition of electron transfer from QA -) to QB could be partially prevented by the presence of 5 mM bicarbonate during heating, suggesting that high temperatures cause release of the bicarbonate bound to PS II. We speculate that both the upshift in the redox potential of the QA/QA -) couple and the release of bicarbonate may be caused by a heat-induced structural change in the transmembrane D1 or D2 proteins. This structural change may, in turn, be caused by the inhibition of the oxygen evolving complex during heating.  相似文献   

4.
The influence of UV-B irradiation on photosynthetic oxygen evolution by isolated spinach thylakoids has been investigated using thermoluminescence measurements. The thermoluminescence bands arising from the S2QB - (B band) and S2QA (Q band) charge recombination disappeared with increasing UV-B irradiation time. In contrast, the C band at 50°C, arising from the recombination of QA - with an accessory donor of Photosystem II, was transiently enhanced by the UV-B irradiation. The efficiency of DCMU to block QA to QB electron transfer decreased after irradiation as detected by the incomplete suppression of the B band by DCMU. The flash-induced oscillatory pattern of the B band was modified in the UV-B irradiated samples, indicating a decrease in the number of centers with reduced QB. Based on the results of this study, UV-B irradiation is suggested to damage both the donor and acceptor sides of Photosystem II. The damage of the water-oxidizing complex does not affect a specific S-state transition. Instead, charge stabilization is enhanced on an accessory donor. The acceptor-side modifications decrease the affinity of DCMU binding. This effect is assumed to reflect a structural change in the QB/DCMU binding site. The preferential loss of dark stable QB - may be related to the same structural change or could be caused by the specific destruction of reduced quinones by the UV-B light.Abbreviations Chl chlorophyll - DCMU 3-(3,4,-dichlorophenyl)-1,1-dimethylurea - PS II Photosystem II - QA first quinone electron acceptor of PS II - QB second quinone electron acceptor of PS II - Tyr-D accessory electron donor of PS II - S0-S4 charge storage states of the water-oxidizing complex  相似文献   

5.
The green alga Chlamydomonas reinhardtii is a facultative heterotroph and, when cultured in the presence of acetate, will synthesize chlorophyll (Chl) and photosystem (PS) components in the dark. Analysis of the thylakoid membrane composition and function in dark grown C. reinhardtii revealed that photochemically competent PS II complexes were synthesized and assembled in the thylakoid membrane. These PS II centers were impaired in the electron-transport reaction from the primary-quinone electron acceptor, QA, to the secondary-quinone electron acceptor, QB (QB-nonreducing centers). Both complements of the PS II Chl a–b light harvesting antenna (LHC II-inner and LHC II-peripheral) were synthesized and assembled in the thylakoid membrane of dark grown C. reinhardtii cells. However, the LHC II-peripheral was energetically uncoupled from the PS II reaction center. Thus, PS II units in dark grown cells had a -type Chl antenna size with only 130 Chl (a and b) molecules (by definition, PS II units lack LHC II-peripheral). Illumination of dark grown C. reinhardtii caused pronounced changes in the organization and function of PS II. With a half-time of about 30 min, PS II centers were converted froma QB-nonreducing form in the dark, to a QB-reducing form in the light. Concomitant with this change, PS II units were energetically coupled with the LHC II-peripheral complement in the thylakoid membrane and were converted to a PS II form. The functional antenna of the latter contained more than 250 Chl(a+b) molecules. The results are discussed in terms of a light-dependent activation of the QA-QB electron-transfer reaction which is followed by association of the PS II unit with a LHC II-peripheral antenna and by inclusion of the mature form of PS II (PS II) in the membrane of the grana partition region.Abbreviations Chl chlorophyll - PS photosystem - QA primary quinone electron acceptor of PS II - QB secondary quinone electron acceptor of PS II - LHC light harvesting complex - F0 non-variable fluorescence yield - Fplf intermediate fluorescence yield plateau leyel - Fmax maximum fluorescence yield - Fi initial fluorescence yield increase from F0 to Fpl (Fpl–F0) - Fv total variable fluorescence yield (Fm–F0) - DCMU dichlorophenyl-dimethylurea  相似文献   

6.
The effect of desiccation and rehydration on the function of Photosystem II has been studied in the desiccation tolerant lichen Cladonia convoluta by thermoluminescence. We have shown that in functional fully hydrated thalli thermoluminescence signals can be observed from the recombination of the S2(3)QB (B band), S2QA (Q band), Tyr-D+QA (C band) and Tyr-Z+(His+)QA (A band) charge stabilization states. These thermoluminescence signals are completely absent in desiccated thalli, but rapidly reappear on rehydration. Flash-induced oscillation in the amplitude of the thermoluminescence band from the S2(3)QB recombination shows the usual pattern with maxima after 2 and 6 flashes when rehydration takes place in light. However, after rehydration in complete darkness, there is no thermoluminescence emission after the 1 st flash, and the maxima of the subsequent oscillation are shifted to the 3rd and 7th flashes. It is concluded that desiccation of Cladonia convoluta converts PS II into a nonfunctional state. This state is characterized by the lack of stable charge separation and recombination, as well as by a one-electron reduction of the water-oxidizing complex. Restoration of PS II function during rehydration can proceed both in the light and in darkness. After rehydration in the dark, the first charge separation act is utilized in restoring the usual oxidation state of the water-oxidizing comples.Abbreviations Chl chlorophyll - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - DT desiccation tolerant - PS II Photosystem II - TL thermoluminescence - P680 reaction center Chl of PS II - QA and QB puinone electron acceptors of PS II - S0,...,S4 the redox states of the water-oxidizing complex - Tyr-Z and Tyr-D redox-active tyrosine electron donors of PS II  相似文献   

7.
The pH dependence of emission peak temperature and decay time of thermoluminescence arising from S2QB and S2QA recombinations demonstrates that a stabilization of S2QB occurs at low pH whereas stabilization of S2QA occurs at high pH. Based on comparative analysis of thermoluminescence parameters of the two types of recombination, we suggest that in the pH range between 5.3 and 7.5, Em(S2/S1) and Em(QA/QA ) are constant, but Em(QB/QB ) gradually increases with decreasing pH, while in the pH range between 7.5 and 8.5, an unusual change occurs on S2QA charge pair, which is interpreted as either a decrease in Em(S2/S1) or an increase in Em(QA/QA ).  相似文献   

8.
Inhibition of Photosystem II (PS II) activity by single turnover visible light flashes was studied in thylakoid membranes isolated form spinach. Flash illumination results in decreased oxygen evolving activity of PS II, which effect is most pronounced when the water-oxidizing complex is in the S2 and S3 states, and increases with increasing time delay between the subsequent flashes. By applying the fluorescent spin-trap DanePy, we detected the production of singlet oxygen, whose amount was increasing with increasing flash spacing. These findings were explained in the framework of a model, which assumes that recombination of the S2QB and S3QB states generate the triplet state of the reaction center chlorophyll and lead to the production of singlet oxygen.  相似文献   

9.
It is shown that step-scan Fourier transform infrared spectroscopy can be applied to resolve the QA QB QAQB transition in Rhodobacter sphaeroides reaction centres with a 5 µs time resolution. In the mid-infrared region (1900 – 1200 cm–1), transient signals previously assigned to QA/B and QA/B vibrations, respectively (Brudler et al. 1994; Brudler et al. 1995; Breton and Nabedryk 1996), can be resolved with this new technique. In addition, the three small positive bands in the spectral region of the carboxylic C=O stretching modes of acidic amino acid side chains are also resolved at 1730, 1719 and 1704 cm–1. A global fit analysis yields two exponentials with half-times of 150 µs and 1.2 ms in agreement with IR spectroscopic studies at single wavenumbers (Hienerwadel et al. 1995), in the UV/VIS and near IR (Tiede et al. 1996, Li et al. 1996). The establishement of the step-scan technique enables a new approach to elucidate the molecular mechanism of this transition.  相似文献   

10.
11.
A method to determine photosynthetic electron transport in thylakoid membranes is described for Gossypium barbadense (cv. Pima S-7) and G. hirsutum (cv. DP 5415). These cultivars differed markedly in tolerance to prometryn, a PS II inhibitor. The rates of photosynthetic electron transport obtained were 245 mole oxygen mg–1 chl h1. Plant age and leaf size influenced the activity of the thylakoid preparations. Thylakoids from leaves of plants 24 to 37 d and 50–70 mm in diameter had the highest activities; thylakoids from cotyledons, fully expanded leaves and young leaves had low activity. Thylakoids from both species had similar photosynthetic activities and I50's for prometryn, atrazine and diuron. Thus, tolerance to prometryn was not due to differential binding at D1 protein.Abbreviations PSII photosystem II - DAP day after planting - DQ duroquinone - DBMIB dibromothymoquinone - DMBQ 2,5-dimethyl-p-benzoquinone - I50 concentration to inhibit reaction by 50% - QA quinone A - QB quinone B  相似文献   

12.
Direct EPR evidence of the photo-generation of superoxide radicals (O2 –.) was obtained by using a novel spin trapping probe in spinach Photosystem II (PS II) membrane fragments. The production of O2 –. was detected by following the formation of 5-diethoxyphosphoryl-5-methyl-1-pyrroline-N-oxide (DEPMPO) superoxide adducts (DEPMPO-OOH). The inhibition of O2 –. formation by 3-(3,4-dichlorophenyl) -1,1-dimethylurea (DCMU) and the 77 K fluorescence spectrum indicated that O2 –. were generated from PS II, not from PS I. The inhibition of O2 –. formation by DCMU also suggested that O2 –. were generated from the QBbinding site, not at a site prior to DCMU blockage. The extrinsic proteins and Mn are very important to eliminate O2 –., showing that the oxygen-evolving system is involved in O2 –. removal rather than production.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

13.
Inhibition of electron transport and damage to the protein subunits by ultraviolet-B (UV-B, 280–320 nm) radiation have been studied in isolated reaction centers of the non-sulfur purple bacterium Rhodobacter sphaeroides R26. UV-B irradiation results in the inhibition of charge separation as detected by the loss of the initial amplitude of absorbance change at 430 nm reflecting the formation of the P+(QAQB) state. In addition to this effect, the charge recombination accelerates and the damping of the semiquinone oscillation increases in the UV-B irradiated reaction centers. A further effect of UV-B is a 2 fold increase in the half- inhibitory concentration of o-phenanthroline. Some damage to the protein subunits of the RC is also observed as a consequence of UV-B irradiation. This effect is manifested as loss of the L, M and H subunits on Coomassie stained gels, but not accompanied with specific degradation products. The damaging effects of UV-B radiation enhanced in reaction centers where the quinone was semireduced (QB ) during UV-B irradiation, but decreased in reaction centers which lacked quinone at the QB binding site. In comparison with Photosystem II of green plant photosynthesis, the bacterial reaction center shows about 40 times lower sensitivity to UV-B radiation concerning the activity loss and 10 times lower sensitivity concerning the extent of reaction center protein damage. It is concluded that the main effect of UV-B radiation in the purple bacterial reaction center occurs at the QAQB quinone acceptor complex by decreasing the binding affinity of QB and shifting the electron equilibration from QAQB to QA QB. The inhibitory effect is likely to be caused by modification of the protein environment around the QB binding pocket and mediated by the semiquinone form of QB. The UV-resistance of the bacterial reaction center compared to Photosystem II indicates that either the QAQB acceptor complex, which is present in both types of reaction centers with similar structure and function, is much less susceptible to UV damage in purple bacteria, or, more likely, that Photosystem II contains UV-B targets which are more sensitive than its quinone complex.Abbreviations Bchl bacteriochlorophyll - P Bchl dimer - QA primary quinone electron acceptor - QB secondary quinone electron acceptor - RC reaction center - UV-B ultraviolet-B  相似文献   

14.
Many of the core proteins in Photosystem II (PS II) undergo reversible phosphorylation. It is known that protein phosphorylation controls the repair cycle of Photosystem II. However, it is not known how protein phosphorylation affects the partial electron transport reactions in PS II. Here we have applied variable fluorescence measurements and EPR spectroscopy to probe the status of the quinone acceptors, the Mn cluster and other electron transfer components in PS II with controlled levels of protein phosphorylation. Protein phosphorylation was induced in vivo by varying illumination regimes. The phosphorylation level of the D1 protein varied from 10 to 58% in PS II membranes isolated from pre-illuminated spinach leaves. The oxygen evolution and QA to QB(QB ) electron transfer measured by flash-induced fluorescence decay remained similar in all samples studied. Similar measurements in the presence of DCMU, which reports on the status of the donor side in PS II, also indicated that the integrity of the oxygen-evolving complex was preserved in PS II with different levels of D1 protein phosphorylation. With EPR spectroscopy we examined individual redox cofactors in PS II. Both the maximal amplitude of the charge separation reaction (measured as photo-accumulated pheophytin) and the EPR signal from the QA Fe2+ complex were unaffected by the phosphorylation of the D1 protein, indicating that the acceptor side of PS II was not modified. Also the shape of the S2 state multiline signal was similar, suggesting that the structure of the Mn-cluster in Photosystem II did not change. However, the amplitude of the S2 multiline signal was reduced by 35% in PS II, where 58% of the D1 protein was phosphorylated, as compared to the S2 multiline in PS II, where only 10% of the D1 protein was phosphorylated. In addition, the fraction of low potential Cyt b 559 was twice as high in phosphorylated PS II. Implications from these findings, were precise quantification of D1 protein phosphorylation is, for the first time, combined with high-resolution biophysical measurements, are discussed. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

15.
The protein-pigment complex of photosystem 2 (PS2) localized in the thylakoid membranes of higher plants, algae, and cyanobacteria is the main source of oxygen on Earth. The light-induced functioning of PS2 is directly linked to electron and proton transfer across the membrane, which results in the formation of transmembrane electric potential difference (ΔΨ). The major contribution to ΔΨ of the PS2 reaction center is due to charge separation between the primary chlorophyll donor P680 and the quinone acceptor QA, accompanied by re-reduction of P 680 + by the redox-active tyrosine residue YZ. The processes associated with the uptake and release of protons on the acceptor and donor sides of the enzyme, respectively, are also coupled with ΔΨ generation. The objective of this work was to describe the mechanisms of ΔΨ generation associated with the S-state transitions of the water-oxidizing complex in intact PS2 complex and in PS2 preparation depleted of Mn4Ca cluster in the presence of artificial electron donors. The findings elucidate the mechanisms of electrogenic reactions on the PS2 donor side and may be a basis for development of an effective solar energy conversion system.  相似文献   

16.
Current structural models indicate that the D1 and D2 polypeptides of the Photosystem two reaction center complex (PS II RC) each span the thylakoid membrane five times. In order to assess the importance of the lumenal extrinsic loop that connects transmembrane helices I and II of D1 we have constructed five deletion mutants and two double mutants in the cyanobaterium Synechocystic sp. PCC 6803. Four of the deletion mutants (59–65, 69–74, 79–86 and 109–110) are obligate photoheterotrophs unable to accumulate D1 in the membrane as assayed by immunoblotting experiments or pulse-labelling experiments using [35S]-methionine. In contrast deletion mutant 100 which lacks A100 behaved very similarly to the WT control strain in terms of photoautotrophic growth rate, saturated rates of oxygen evolution, flash-induced oxygen evolution, fluorescence induction and decay, and thermoluminescence. 100 is the first example of an internal deletion on the lumenal side of the D1 polypeptide that is benign to photosystem two function. Double mutant D103G/E104A also behaves similarly to the WT control strain leading to the conclusion that residues D103 and E104 are unlikely to be involved in ligating the metal ions Mn or Ca2+, which are needed for photosynthetic oxygen evolution. Double mutant, G109A/G110A, was constructed to assess the significance of this GlyGly motif which is also conserved in the L subunit of purple bacterial reaction centres. The G109A/G110A mutant is able to evolve oxygen at approximately 50–70% of WT rates but is unable to grow phatoautotrophically apparently because of an enhanced sensitivity to photoinactivation than the WT control strain. A photoautotropic revertant was isolated from this strain and shown to result from a mutation that restored the WT codon at position 109. Pulse-chase experiments in cells using [35S]-methionine showed that resistance to photoinhibition in the revertant correlated with an enhanced rate of incorporation of D1 into the membrane compared to mutant G109A/G110A. The sensitivity to photoinhibition shown by the G109A/G110A mutant is therefore consistent with a perturbation to the D1 repair cycle possibly at the level of D1 synthesis or incorporation of D1 into the PS II complex.Abbreviations DCMU- 3-(3,4-dichlorophenyl)-1,1-dimethylurea - Hepes- 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid - Mes- 4-morpholineethanesulfonic acid - PCR- polymerase chain reaction - PS II- Photosystem II - TL- thermoluminescence - PQ- plastoquinone - PS II- absence of PS II activity - PS- incapable of photoautotrophic growth - QA- primary plastoquinone electron acceptor - QB- secondary plastoquinone electron acceptor - SDS- sodium dodecyl sulphate  相似文献   

17.
Characteristics of thermoluminescence (TL) glow curves were studied in thylakoids (isolated from pea leaves) or in intact pea leaves after an exposure to very high light for 2 min in the TL device. The inhibition of photosynthesis was detected as decreases of oxygen evolution rates and/or of variable fluorescence.In thylakoids exposed to high light, then dark adapted for 5 min, a flash regime induced TL glow curves which can be interpreted as corresponding to special B bands since: 1) they can be fitted by a single B band (leaving a residual band at –5°C) with a lower activation energy and a shift of the peak maximum by –5 to –6°C and, 2) the pattern of oscillation of their amplitudes was normal with a period of 4 and maxima on flashes 2 and 6. During a 1 h dark adaptation, no recovery of PS II activity occurred but the shift of the peak maximum was decreased to –1 to –2°C, while the activation energy of B bands increased. It is supposed that centers which remained active after the photoinhibitory treatment were subjected to reversible and probably conformational changes.Conversely, in intact leaves exposed to high light and kept only some minutes in the dark, TL bands induced by a flash regime were composite and could be deconvoluted into a special B band peaking near 30°C and a complex band with maximum at 2–5°C. In the case of charging bands by one flash, this low temperature band was largely decreased in size after a 10 min dark adaptation period; parallely, an increase of the B band type component appeared. Whatever was the flash number, bands at 2–5°C were suppressed by a short far red illumination given during the dark adaptation period and only remained a main band a 20°C; therefore, the origin of the low temperature band was tentatively ascribed to recombinations in centers blocked in state S2QA QB 2–. In vivo, the recovery of a moderately reduced state in the PQ pool, after an illumination, would be slow and under the dependence of a poising mechanism, probably involving an electron transfer between cytosol and chloroplasts or the so-called chlororespiration process.Abbreviations Ea- activation energy - FR- far-red - MV- methylviologen - pBQ- p-benzoquinone - PQ- plastoquinone - PS II- Photosystem II - QA- primary quinone electron acceptor of PS II - QB- secondary quinone electron acceptor of PS II - TL- thermoluminescence  相似文献   

18.
The effect of iron deficiency on photosynthetic electron transport in Photosystem II (PS II) was studied in leaves and thylakoid membranes of lettuce (Lactuca sativa, Romaine variety) plants. PS II electron transport was characterized by oxygen evolution and chlorophyll fluorescence parameters. Iron deficiency in the culture medium was shown to affect water oxidation and the advancement of the S-states. A decrease of maximal quantum yield of PS II and an increase of fluorescence intensity at step J and I of OJIP kinetics were also observed. Thermoluminescence measurements revealed that charge recombination between the quinone acceptor of PS II, QB, and the S2 state of the Mn-cluster was strongly perturbed. Also the dark decay of Chl fluorescence after a single turnover white flash was greatly retarded indicating a slower rate of QA reoxidation.  相似文献   

19.
The effects of low temperature acclimation and photoinhibitory treatment on Photosystem 2 (PS 2) have been studied by thermoluminescence and chlorophyll fluorescence decay kinetics after a single turnover saturating flash. A comparison of unhardened and hardened leaves showed that, in the hardened case, a decrease in overall and B-band thermoluminescence emissions occurred, indicating the presence of fewer active PS 2 reaction centers. A modification in the form of the B-band emission was also observed and is attributed to a decrease in the apparent activation energy of recombination in the hardened leaves. The acclimated leaves also produced slower QA reoxidation kinetics as judged from the chlorophyll fluorescence decay kinetics. This change was mainly seen in an increased lifetime of the slow reoxidation component with only a small increase in its amplitude. Similar changes in both thermoluminescence and fluorescence decay kinetics were observed when unhardened leaves were given a high light photoinhibitory treatment at 4°C, whereas the hardened leaves were affected to a much lesser extent by a similar treatment. These results suggest that the acclimated plants undergo photoinhibition at 4°C even at low light intensities and that a subsequent high light treatment produces only a small additive photoinhibitory effect. Furthermore, it can be seen that photoinhibition eventually gives rise to PS 2 reaction centers which are no longer functional and which do not produce thermoluminescence or variable chlorophyll fluorescence.Abbreviations D1 The 32 kDa protein of Photosystem 2 reaction center - Fm maximum chlorophyll fluorescence yield - F0 minimal chlorophyll fluorescence yield obtained when all PS 2 centers are open - Fi intermediate fluorescence level corresponding to PS 2 centers which are loosely or not connected to plastoquinone (non-B centers) - Fv maximum variable chlorophyll fluorescence yield (Fv=Fm–F0) - PS 2 Photosystem 2 - QA and QB respectively, primary and secondary quinonic acceptors of PS 2 - S1, S2 and S3 respectively, the one, two and three positively charged states of the oxygen evolving system - Z secondary donor of PS 2  相似文献   

20.
Effects of photoinhibition at 0 °C on the PS II acceptor side have been analyzed by comparative studies in isolated thylakoids, PS II membrane fragments and PS II core complexes from spinach under conditions where degradation of polypeptide(s) D1(D2) is highly retarded. The following results were obtained by measurements of the transient fluorescence quantum and oxygen yield, respectively, induced by a train of short flashes in dark-adapted samples: (a) in the control the decay of the fluorescence quantum yield is very rapid after the first flash, if the dark incubation was performed in the presence of 300 M K3[Fe(CN)6]; whereas, a characteristic binary oscillation was observed in the presence of 100 M phenyl-p-benzoquinone with a very fast relaxation after the even flashes (2nd, 4th. . . ) of the sequence; (b) illumination of the samples in the presence of K3[Fe(CN)6] for only 5 min with white light (180 W m-2) largely eliminates the very fast fluorescence decay after the first flash due to QA - reoxidation by preoxidized endogenous non-heme Fe3+, while a smaller effect arises on the relaxation kinetics of the fluorescence transients induced by the subsequent flashes; (c) the extent of the normalized variable fluorescence due to the second (and subsequent) flash(es) declines in all sample types with a biphasic time dependence at longer illumination. The decay times of the fast (6–9 min) and the slow degradation component (60–75 min) are practically independent of the absence or presence of K3[Fe(CN)6] and of anaerobic and aerobic conditions during the photo-inhibitory treatment, while the relative extent of the fast decay component is higher under anaerobic conditions. (d) The relaxation kinetics of the variable fluorescence induced by the second (and subsequent) flash(es) become retarded due to photoinhibition, and (e) the oscillation pattern of the oxygen yield caused by a flash train is not drastically changed due to photoinhibition.Based on these findings, it is concluded that photoinhibition modifies the reaction pattern of the PS II acceptor side prior to protein degradation. The endogenous high spin Fe2+ located between QA and QB is shown to become highly susceptible to modification by photoinhibition in the presence of K3[Fe(CN)6] (and other exogenous acceptors), while the rate constant of QA - reoxidation by QB(QB -) and other acceptors (except the special reaction via Fe3+) is markedly less affected by a short photoinhibition. The equilibrium constant between QA - and QB(QB -) is not drastically changed as reflected by the damping parameters of the oscillation pattern of oxygen evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号