首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Interactions of porphyrins with nucleic acids   总被引:24,自引:0,他引:24  
The interactions of nucleic acids with water-soluble porphyrins and metalloporphyrins have been investigated by stopped-flow and temperature-jump techniques. Both natural DNA (calf thymus) and synthetic homopolymers [poly(dG-dC) and poly(dA-dT)] have been employed. The porphyrins studied belong to the tetrakis(4-N-methylpyridyl)porphine (H2TMpyP-4) series and can be divided into two groups: (i) those which have no axial ligands when bound to nucleic acids [e.g., Ni(II), Cu(II), and the nonmetallic derivatives] and (ii) those which maintain axial ligands upon binding [e.g., Mn(III), Fe(III), Co(III), and Zn(II) derivatives]. The reaction of both axially and nonaxially liganded porphyrins at AT sites is too rapid to be measured by the kinetic methods utilized, whereas at GC sites the interaction of the nonaxially liganded porphyrins is in the millisecond time range and can be monitored by both stopped-flow and temperature-jump techniques. These results corroborate previous static studies, utilizing visible spectroscopy and circular dichroism, which indicate that the formation of an intercalated complex occurs only at GC base pair sites with porphyrins which do not possess axial ligands. With all the porphyrins investigated, the complexes formed at AT sites are envisioned as being of an "external" type involving some degree of overlap between the porphyrin and the bases of the duplex. In relaxation experiments of poly-(dG-dC) with H2TMpyP-4, a large, reproducible effect is observed which can be analyzed as a single exponential. Rate constants for association and dissociation of the H2TMpyP-4/poly(dG-dC) complex are 3.7 X 10(5) M-1 s-1 and 1.8 s-1, respectively. Relaxation studies of mixtures of poly(dA-dT) and poly(dG-dC) with H2TMpyP-4 indicate that the transfer of the porphyrin from one homopolymer to another occurs via a mechanism involving dissociation rather than direct transfer.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The base pair selectivity of the intercalative binding of the copper porphyrin, copper (II) tetrakis(4-N-methylpyridyl)porphine (Cu(II)TMpyP-4), to DNA has been investigated using a variety of DNA types and the synthetic polynucleotides poly(dG-dC)2 and poly(dA-dT)2. The studies utilize electron paramagnetic resonance of concentrated gels which are thought to mimic the closely packed state of nuclear DNA. The results indicate that intercalation of this porphyrin is preferred for sites containing two adjacent G-C base pairs, irrespective of sequence.  相似文献   

3.
Interactions of water soluble porphyrins with Z-poly(dG-dC).   总被引:1,自引:1,他引:0       下载免费PDF全文
The water soluble porphyrin tetrakis(4-N-methylpyridyl)porphine (H2TMpyP) and its copper(II) derivative (CuTMpyP) convert Z-poly(dG-dC) to the B-form. For H2TMpyP, the fraction Z character (fr-Z) is given by fr-Z = 1.0 - 21 rO and for CuTMpyP, fr-Z = .94 - 12 rO where rO identical to [Porphyrin]O/[DNA]O. Neither the manganese(III) derivative of of this porphyrin (MnTMpyP) nor tetrakis(2-N-methylpyridyl)porphine (H2TMpyP-2) is nearly as effective at causing the conversion. The former two porphyrins have been shown to intercalate into B-poly(dG-dC) whereas the latter two porphyrins do not. The kinetics of the Z----B conversion are independent of porphyrin or poly(dG-dC) concentration for 1/rO greater than 6. At smaller values of 1/rO, the conversion rate is greatly increased for H2TMpyP and CuTMpyP. The interaction of these porphyrins with Z-poly(dG-dC) follows simple first order kinetics in this latter concentration range. It is proposed that for small values of 1/rO the sequence of events begins with a porphyrin-unassisted distortion of the Z-duplex (with a rate constant of 0.6 s-1) followed by a rapid uptake of porphyrin in what may be an intercalative mode. The porphyrin thus located in Z-regions brings about rapid conversion to the B-form. Binding of H2TMpyP or CuTMpyP to B-regions of a predominantly Z-strand leads to conversion of Z to B. However, this conversion process is considerably slower than when the porphyrins bind directly to Z-regions.  相似文献   

4.
The interactions of the free base porphyrin, tetra-(4N-methylpyridyl)porphyrin and its copper(II), manganese(III) and zinc(II) complexes with brewer's yeast type V phenylalaninyl tRNA were evaluated by UV-visible spectroscopy, circular dichroism and melting temperature studies over a range of magnesium ion concentrations and ionic strengths. Scatchard analysis of absorption spectra of the porphyrins in the presence of tRNA showed the free base, copper and zinc porphyrins to have binding constants of 7.3 X 10(7), 1.7 X 10(6) and 2.3 X 10(8), respectively; the manganese(III) complex did not demonstrate changes in its electronic spectra that enable the calculation of a binding constant. The results of the spectroscopic studies indicate a mode of binding for the free base, copper(II) and zinc(II) complexes that is neither intercalative nor simply outside electrostatic. The magnitude of the binding constants and the UV-visible results support intercalation, but the analyses of the thermal denaturation studies and the circular dichroism evaluations suggest that the porphyrins are associating at a single site in a fold of the tertiary structure of the tRNA close to several crucial hydrogen bonds, perhaps in the vicinity of the P10 loop. That the manganese(III) complex does not bind in this site points to constraints on the axial thickness of a molecule that may be accommodated in this locus.  相似文献   

5.
Metal-substituted protoporphyrin IXs (Co(III)PPIX (1), Cr(III)PPIX (2), Mn(III)PPIX (3), Cu(II)PPIX (4), Mg(II)PPIX (5), Zn(II)PPIX (6) and Sn(IV)PPIX (7)), phthalocyanine tetrasulfonates (PcS (8) and Ni(II)PcS (9)), and anionic and cationic porphyrins (meso-tetra(4-sulfonatophenyl)porphine (TPPS4, 10), meso-tetra(4-carboxyphenyl)porphine (TPPC4, 11), tetrakis(4-N-trimethylaminophenyl)porphine (TMAP, 12) and meso-tetra(N-methyl-4-pyridyl)porphine (TMPyP4, 13)) have been used as probes to compare two different assays for the inhibition of beta-hematin formation. The results demonstrate that the efficacy of these probes in either the beta-hematin inhibition assay (9, 7, 6, 5>4>11, 3>10, 8>2, 1; 12 and 13 did not inhibit.) or the bionucleating template assay (8>1>11>9, 2>4>3>7>10>5>6; 12 and 13 did not inhibit.) differ significantly. These differences are examined in light of possible interactions between the inhibitor probes, heme, beta-hematin and the bionucleating template. This detailed analysis highlights the fact that while dominant modes of interactions may be occasionally identified, the precise mechanism of inhibition undoubtedly consists of the interplay between multiple interactions.  相似文献   

6.
The interactions of the water-soluble porphyrins M(TMpy-P4) [M = H2, Cu(II), Ni(II), and Co(III); TMpy-P4 = tetrakis(4-N-methylpyridyl)porphyrinato ion], with the hexadeoxyribonucleotides d(CGTACG)2, d(TACGTA)2, d(GCATGC)2, d(TGTGCA)2, and d(CTATAG)2 have been investigated by resonance Raman and/or UV-visible spectroscopy. The results indicate that all hexamers containing the 5'CG3' as well as the 5'GC3' site, and also the mismatched hexamer d(TGTGCA)2, are capable of intercalating the H2, Cu(II) and Ni(II) porphyrins. 1H nuclear magnetic resonance spectra of d(CGTACG)2 mixed with Cu(TMpy-P4) have provided further evidence for the intercalation. For the other cases, outside binding by localized electrostatic interaction is suggested. There is no evidence of groove binding to any of the hexamers. Possible reasons for different binding properties of long and short helices are discussed.  相似文献   

7.
The interaction of the Cu(II), Ni(II) and Co(III) complexes of the following six water-soluble cationic porphyrins with calf thymus DNA, poly(dG-dC)2 and poly(dA-dT)2 was studied by UV-visible and resonance Raman spectroscopy: tetrakis(2-N-) and (3-N-methylpyridyl) porphyrin (1, 2); monophenyl-tris(4-N-methylpyridyl)porphyrin (4); cis- and trans-diphenyl-bis (4-N-methylpyridyl)porphyrin (5, 6). The binding to nucleic acids was compared with that of tetrakis(4-N-methylpyridyl)porphyrin (3). If the N(+)-CH3 group is moved from the para (3) to the meta position (2), binding of the free porphyrin as well as that of the metal complexes is only gradually modified; thus, the square-planar Cu- and Ni-2 are intercalated at the G-C site whereas Co-2 is groove-bound at A-T. Additionally, Ni-2 is probably also intercalated at the A-T site. When the N(+)-CH3 group is located at ortho position (1), the high rotation barrier of the 2-N-methylpyridyl group prevents intercalation of Cu- and Ni-1, resulting in weak outside binding. At ionic strength mu = 0.2, there is no evidence of significant interaction of Co-1 with any of the polynucleotides. When the charged N-methylpyridyl groups in 3 are subsequently replaced by phenyl groups (4, 5/6), the tendency of the Cu(II) and Ni(II) complexes to bind to the outside of the helix or to intercalate only partially increases at the expense of full intercalation. The coulombic attraction remains strong, no significant differences can be detected between 3, 4, 5, and 6. Ni-4 binds to poly(dA-dT)2 in the same complicated manner as Ni-3. The outside-binding in Co-4, -5 and -6 differs slightly from that in Co-2 and Co-3.  相似文献   

8.
Solution properties of three manganese porphyrins, in monomeric form, were investigated. These were the 'picket-fence-like' porphyrin Mn(III)-alpha,alpha,alpha,beta- tetra-ortho(N-methylisonicotinamidophenyl)porphyrin (Mn(III)PFP) and two 'planar unhindered' porphyrins, the Mn(III)TMPyP (tetrakis (4-N-methylpyridyl)porphyrin) and Mn(III)TAP (tetra(4-N,N,N-trimethylanilinium)porphyrin). The porphyrin properties studied were: the absorption spectra in their manganic and manganous forms; acid/base properties of the aquo complexes; the effect of potential axial ligands (up to a concentration of 0.1 mol dm-3) and their one electron reduction potentials. Knowing these properties, the reaction of the Mn(III) porphyrins with the superoxide radical and other reducing radicals were studied using the pulse radiolysis technique. The second-order reaction rate constant of O2- with the Mn(III) porphyrins, which governs the catalytic efficiency of the metalloporphyrins upon the disproportionation of the superoxide radical, was 5.1 X 10(7) to 4.0 X 10(5) dm3 mol-1 s-1, depending on the pH and the nature of the metalloporphyrin. These values are at least one order of magnitude lower than found for Fe(III)TMPyP. One electron reduction of the three Mn(III) porphyrins by eaq-, CO2-, CH2OH and (CH3)2COH had similar second-order rate constants (10(9)-10(10) dm3 mol-1 s-1). That for (CH3)2(CH2)COH was about 10(5) dm3 mol-1 s-1. Reduction in all cases produced the corresponding Mn(II) porphyrin and no intermediate was found. The oxidation reaction of the Mn(II) porphyrins by O2- was approximately two orders of magnitude faster when compared to the reduction of Mn(III) porphyrins with the same radical. Since the reactivities of O2- towards the three manganese (III) compounds follow their reduction potentials, it is suggested that these reactions are governed by an outer-sphere mechanism. This suggestion is corroborated by the finding that water molecules acting as axial ligands, in these aqueous solution systems, are not replaced by another potential ligand when the latter is in the concentration range of 100 mM or less.  相似文献   

9.
We have investigated the protective effects of water-soluble cationic Mn(III) porphyrins against peroxynitrite (ONOO-)-induced DNA damage in the cells of Salmonella typhimurium TA4107/pSK1002 and lipid peroxidation of red blood cell membranes. Mn(III) tetrakis (N-methylpyridinium-4-yl) porphine (TMPyP) and the brominated form, Mn(III) octabromo-tetrakis (N-methylpyridinium-4-yl) porphine (OBTMPyP) effectively reduced the damage and peroxidation induced by N-morpholino sydnonimine (SIN-1), which gradually generates ONOO- from O2*- and *NO produced through hydrolysis. Mn(III)OBTMPyP became 10-fold more active than the non-brominated form. In the presence of authentic ONOO-, the Mn(III) porphyrins were ineffective against damage and strongly enhanced lipid peroxidation, while the coexistence of ascorbic acid inhibited peroxidation. Using a diode array spectrophotometry, the reactions of Mn(III)TMPyP with authentic ONOO- and SIN-1 were measured. Mn(III)TMPyP is known to be catalytic for ONOO- decomposition in the presence of antioxidants. OxoMn(IV)TMPyP with SIN-1 was rapidly reduced back to Mn(III) without adding any oxidants. Further, in the SIN-1 system, the concentration of NO2- and NO3- were colorimetrically determined by Griess reaction based on the two-step diazotization. NO2- increased by addition of Mn(III) porphyrin and the ratio of NO2- to NO3- was 4-7 times higher than that (1.05) of SIN-1 alone. This result suggests that O2*- from SIN-1 acts as a reductant and *NO cogenerated is oxidized to NO2-, a primarily decomposition product of *NO. Under the pathological conditions where biological antioxidants are depleted and ONOO- and O2*- are extensively generated, the Mn(III) porphyrins will effectively cycle ONOO- decomposition using O2*-.  相似文献   

10.
The water soluble porphyrins H2TMpyP-2, H2TMpyP-4, and CuTMpyP-4 are found to bind to Z-form poly(dG-dC)2 in 60% ethanol (v/v) and to facilitate the conversion of the polymer to the B form. Metalloporphyrins with axial ligands (MnTMpyP-4, ZnTMpyP-4) interact to some degree with the Z form, but do not lead to extensive conversion to the B form. The conversion of the Z form into the B form was determined by CD titration experiments, which were used to quantitate the fraction of poly(dG-dC)2 present in each conformation. Under all conditions each bound porphyrin molecule converts multiple base pairs from Z to B. The kinetics of porphyrin reactions with Z-poly(dG-dC)2 in 60% ethanol were measured using two different detection techniques. Stopped flow spectrophotometry was used to observe the time-dependent spectral changes associated with the porphyrins during the reaction. Time-dependent changes in the poly(dG-dC)2 conformation were observed directly using CD. The porphyrin absorbance changes under the conditions of these experiments have a much shorter half time (t1/2 approximately 0.1 to 2 sec) than the CD changes (t1/2 approximately 10 sec). Thus it could be determined that a complex with spectral characteristics similar to those of the porphyrin intercalated into B-form poly(dG-dC)2 is produced while the polymer is predominantly in the Z form.  相似文献   

11.
Resonance Raman, NMR, and visible spectroscopies, as well as viscosity and equilibrium dialysis studies were used to assess the effect of the N-alkyl substituent of meso-tetrakis(4-N-alkylpyridinium-4-yl)porphyrin cations on DNA binding. The DNAs studied include the native DNA, calf thymus DNA (CT DNA), the synthetic polynucleotides [poly(dGdC)]2 and [poly(dAdT)]2, and the oligonucleotide d(TATACGTATA)2. Both the porphyrins and the metalloporphyrins containing Ni(II) were examined with the N-alkyl = propyl (TPrpyP(4) and NiTPrpyP(4)) and 2-hydroxyethyl (TEtOHpyP(4) and NiTEtOHpyP(4)). The results were compared to those from the parent porphyrins with the N-methyl substituent (TMpyP(4) and NiTMpyP(4)). For almost all the comparisons made, the new porphyrin cations gave results very similar to those for the TMpyP(4) species. The resonance Raman study indicated that for the three DNA polymers all the Ni species were in the four-coordinate form when bound to all three polymers. It is suggested that both TPrpyP(4) and TEtOHpyP(4) bind to GC regions of DNA in the same intercalative manner as TMpyP(4) with the N-alkyl substituent extended into the solvent. For AT regions of DNA, the binding of TPrpyP(4) and TEtOHpyP(4) is nonintercalative, as found previously for TMpyP(4). The NiPrpy(4) and NiTEtOHpyP(4) cations bind to these polymers in a similar manner to the apo-porphyrins. The similar Raman spectral changes for the three Ni porphyrins upon addition of [poly(dAdT)]2 suggest that partial intercalation is not occurring because models indicate that it would be difficult to accommodate the bulkier N-alkyl substituents.  相似文献   

12.
The differential binding of a number of water-soluble cationic porphyrins to a branched DNA molecule is reported. Tetrakis(4-N-methylpyridiniumyl)porphine (H2TMpyP-4) interacts near the branch point with an immobile DNA junction formed from four 16-mer strands. Its Cu(II) and Ni(II) derivatives show stronger preferential binding in the neighborhood of the branch point. Axially liganded derivatives, Zn, Co, and Mn, also interact near this branch point, but in a different way. We use the reagents methidiumpropyl-EDTA.Fe(II) [MPE.Fe(II)] and bis(o-phenanthroline)copper(I) [(OP)2Cu(I)] to cleave complexes of DNA duplex controls and the junction with these porphyrins. The resulting cleavage patterns are consistent with previous evidence that the branch point provides a strong site for intercalative binding agents, which is not available in unbranched duplexes of identical sequence. The preferential scission by (OP)2Cu(I) in the presence of Ni and Cu porphyrins near the branch point exceeds that seen for any agents we have studied. This hyperreactivity is not seen in the case of porphyrins with axial ligands, ZnTMpyP-4, CoTMpyP-4, and MnTMpyP-4, although these also interact near the branch point. The Zn derivative tends to protect sites close to the branch point from cutting, while the Co and Mn porphyrins moderately enhance cleavage of sites in this region.  相似文献   

13.
The interactions of two positional isomers and one analogue of meso-tetra (4-N-methylpyridyl) porphine, with the synthetic polynucleotides poly[d(A-T)] . poly[d(A-T)] and poly[d(G-C)] . poly[d(G-C)] have been investigated by circular dichroism. All four porphyrins were found to bind to the polynucleotides as shown by the induction of circular dichroism in their Soret bands. Furthermore, the sign of the induced ellipticity reflects selective occupation of binding sites by the porphyrin ligands. The conformational lability of poly[d(A-T)] X poly[d(A-T)] was found to be appreciable as micromolar amounts of meso-substituted 4-N-methylpyridyl, 3-N-methylpyridyl, and p-N-trimethylanilinium porphines induced a CD spectrum similar but not identical to that of DNA in the Z-form, i.e. a negative band at 280 nm and a positive band at 259 nm. The effect of porphyrin binding to poly[d(G-C)] X poly[d(G-C)] was less pronounced and dissimilar to that seen in the AT polymer.  相似文献   

14.
The large meso-substituted porphine, meso-tetra(4-N-methylpyridyl)porphine has been identified as a DNA-interactive ligand with a capacity for intercalation (1,2). Subsequently, the 2-N-methyl, 3-N-methyl and N-trimethylanilinium analogues of this porphyrin intercalator have been obtained for physico-chemical analyses (absorption spectroscopy, viscometry, circular dichroism, unwinding of supercoiled DNA). In this paper we discuss the factors affecting the character of porphyrin binding (intercalative, as is the case for the 4-N-methyl and 3-N-methyl porphines, versus non-intercalative, as is the case for the 2-N-methyl and N-trimethylanilinium porphines) and the impact that porphyrins' binding has upon the structure of DNA. The molecular conformation of the porphyrin ligand varies slightly within this series so that the ability of a given porphyrin to intercalate may be correlated with the arrangement of charged groups, the planarity of the porphine ring and the effective width of the individual molecules. The results from these studies indicate that sequence selective binding occurs within a small aperture of solution conditions.  相似文献   

15.
The influence of water-soluble cationic meso-tetra-(4?N-oxyethylpyridyl)porphyrin (H2TOEPyP4) and it’s metallocomplexes with Ni, Cu, Co, and Zn on hydrodynamic and spectral behavior of DNA solutions has been studied by UV/Vis absorption and viscosity measurement. It was shown that the presence of planar porphyrins such as H2TOEPyP4, NiTOEPyP4, and СuTOEPyP4 leads to an increase in viscosity at relatively small concentrations, and then decrease to stable values. Such behavior is explained by intercalation of these porphyrins in DNA structure because the intercalation mode involves the insertion of a planar molecule between DNA base pairs which results in a decrease in the DNA helical twist and lengthening of the DNA. Further decrease of viscosity is explained by the saturation intercalation sites and occurs outside the binding mode. But, in the case of porphyrins with axial ligands such as CoTOEPyP4 and ZnTOEPyP4, the hydrodynamic parameters decrease, which is explained by self-stacking of these porphyrins in DNA surface. This data are proved by spectral measurements. The results obtained from titration experiments were used for calculation of binding parameters: the binding constant K b and the number of binding sites per base pair n. Obtained data reveal that K b varies between 3.4 and 5.4?×?106?M?1 for a planar porphyrins, a range typical for intercalation mode interactions, and 5.6?×?105?M?1 and 1.8?×?106?M?1 for axial porphyrins. In addition, the exclusion parameter n also testifies that at intercalation, (n~2) the adjacent base pairs are removed to place the planar molecules, and for outside binders to pack on the surface needs too few places (n~0.5–1). It is apparent that the binding is somewhat stronger at intercalation. The viscometric and spectrophotometric measurements are in good agreement.  相似文献   

16.
The geometrical parameters and static electric properties of several metal porphyrin halides, including Fe(III) porphine chloride (FePCl), Fe(III) porphine bromide (FePBr), Fe(III) tetraphenylporphine chloride (FeTPPCl), aluminum phthalocyanine chloride (AlPcCl), gallium(III) phthalocyanine chloride (GaPcCl), and manganese(III) phthalocyanine chloride (MnPcCl), were investigated using density functional theory (DFT) methods. It was observed that FePBr and MnPcCl showed the highest total hyperpolarisabilities among the studied porphyrins. To investigate the effect of substituted phenyl groups on the nonlinear optical (NLO) responses of porphyrins, the optical properties of FeTPPCl and FePCl were compared using UBLYP/cc-pVDZ+LanL2DZ level of theory. Moreover, the polarised continuum model (PCM) was employed to study the influence of solvation on the optical properties of FePCl.  相似文献   

17.
Porphyrins and porphines strongly inhibit the action of the RNA subunit of the Escherichia coli ribonuclease P (M1 RNA). Meso-tetrakis(N-methyl-pyridyl)porphine followed linear competitive kinetics with pre-tRNA(Gly1) from E. coli as variable substrate (Ki 0.960 microM). Protoporphyrin IX showed linear competitive inhibition versus pre-tRNA(Gly1) from E. coli (Ki 1.90 microM). Inhibition by meso-tetrakis[4-(trimethylammonio)phenyl]porphine versus pre-tRNA(Gly1) from E. coli followed non-competitive kinetics (Ki 4.1 microM). The porphyrins bound directly to E. coli tRNAVal, E. coli pre-tRNAGly1 and M1 RNA and dissociation constants for the 1:1 complexes were determined using fluorescence spectroscopy. Dissociation constants (microM) against E. coli tRNAVal and E. coli pre-tRNAGly were: meso-tetrakis(N-methyl-pyridyl)porphine 1.21 and 0.170; meso-tetrakis[4-(trimethylammonio)phenyl]porphine, 0.107 and 0.293; protoporphyrin IX, 0.138 and 0.0819. For M1 RNA, dissociation constants were 32.8 nM for meso-tetrakis(N-methyl-pyridyl)porphine and 59.8 nM for meso-tetrakis[4-(trimethylammonio)phenyl]porphine and excitation and emission spectra indicate a binding mode with strong pi-stacking of the porphine nucleus and base pairs in a rigid low-polarity environment. Part of the inhibition of ribonuclease P is from interaction with the pre-tRNA substrate, resulting from porphyrin binding to the D-loop/T-loop region which interfaces with M1 RNA during catalysis, and part from the porphyrin binding to the M1 RNA component.  相似文献   

18.
Thirty-three porphyrins or metalloporphyrins corresponding to the general formula [meso-[N-methyl-4(or 3 or 2)-pyridiniumyl]n(aryl)4-nporphyrin]M (M = H2, CuII, or ClFeIII), with n = 2-4, have been synthesized and characterized by UV-visible and 1H NMR spectroscopy and mass spectrometry. These porphyrins differ not only in the number (2-4) and position of their cationic charges but also in the steric requirements to reach even temporarily a completely planar geometry. In particular, they contain 0, 1, 2, 3, or 4 meso-aryl substituents not able to rotate. Interaction of these porphyrins or metalloporphyrins with calf thymus DNA has been studied and their apparent affinity binding constants have been determined by use of a competition method with ethidium bromide which was applicable not only for all the free base porphyrins but also for their copper(II) or iron(III) complexes. Whatever their mode of binding may be, their apparent affinity binding constants were relatively high (Kapp between 1.2 x 10(7) and 5 x 10(4) M-1 under our conditions), and a linear decrease of log Kapp with the number of porphyrin charges was observed. Studies of porphyrin-DNA interactions by UV and fluorescence spectroscopy, viscosimetry, and fluorescence energy transfer experiments showed that not only the tetracationic meso-tetrakis[N-methyl-4(or 3)-pyridiniumyl]porphyrins, which both involved four freely rotating meso-aryl groups, but also the corresponding tri- and dicationic porphyrins were able to intercalate into calf thymus DNA. Moreover, the cis dicationic meso-bis(N-methyl-2-pyridiniumyl)diphenylporphyrin, which involved only two freely rotating meso-aryl groups in a cis position, was also able to intercalate. The other meso-(N-methyl-2-pyridiniumyl)n(phenyl)4-nporphyrins, which involved either zero, one, or two trans freely rotating meso-aryl groups, could not intercalate into DNA. These results show that only half of the porphyrin ring is necessary for intercalation to occur.  相似文献   

19.
Seven new nitrogen heterocycle porphyrins, 5,10,15,20-tetra[4-(N-pyrrolidinyl)phenyl]porphine (TBPPH(2)), 5,10,15,20-tetra[4-(4'-ethylpiperazinyl)phenyl]porphine (TEPPH(2)), 5,10,15,20-tetra [4-(4'-butylpiperazinyl)phenyl]porphine (TUPPH(2)), 5,10,15,20-tetra[4-(4'-heptylpiperazinyl) phenyl]porphine (THPPH(2)), 5-[4-(4'-ethylpiperazinyl)phenyl]-10,15,20-triphenylporphine (MEPPH(2)), 5-[4-(4'-buthylpiperazinyl)phenyl]-10,15,20-triphenylporphine (MUPPH(2)) and piperazine bridge porphine dimer N,N'-di(5,10,15,20-tetraphenylporphinato)piperazine (DiPPH(2)) have been synthesized by the direct condensation of nitrogen heterocycle substituted benzaldehydes with pyrrole. Each porphine bears one or four substituted pyrrolidine or piperazine moieties that have been used as drugs. Their structures were characterized by elementary analysis, MS, 1H NMR, IR and UV-vis. These nitrogen heterocycle porphyrins aggregates in water and THF solution were studied by the spectrophotofluorimetry. The anticancer activity of these porphines for the liver cancer cells, the stomach tumor cells and the nasopharyngeal carcinoma cancer cells were tested by the MTT assay. Compared with cis-platinum (cis-Pt) and 5-Fluorouracil (5-Fu), the nitrogen heterocycle porphyrins have the better biological activity and might have potential application in medicine.  相似文献   

20.
In this paper, we present a study about the influence of the porphyrin metal center and meso ligands on the biological effects of meso-tetrakis porphyrins. Different from the cationic meso-tetrakis 4-N-methyl pyridinium (Mn(III)TMPyP), the anionic Mn(III) meso-tetrakis (para-sulfonatophenyl) porphyrin (Mn(III)TPPS4) exhibited no protector effect against Fe(citrate)-induced lipid oxidation. Mn(III)TPPS4 did not protect mitochondria against endogenous hydrogen peroxide and only delayed the swelling caused by tert-BuOOH and Ca2+. Fe(III)TPPS4 exacerbated the effect of the tert-BuOOH, and both porphyrins did not significantly affect Fe(II)citrate-induced swelling. Consistently, Fe(III)TPPS4 predominantly promotes the homolytic cleavage of peroxides and exhibits catalytic efficiency ten-fold higher than Mn(III)TPPS4. For Mn(III)TPPS4, the microenvironment of rat liver mitochondria favors the heterolytic cleavage of peroxides and increases the catalytic efficiency of the manganese porphyrin due to the availability of axial ligands for the metal center and reducing agents such as glutathione (GSH) and proteins necessary for Compound II (oxomanganese IV) recycling to the initial Mn(III) form. The use of thiol reducing agents for the recycling of Mn(III)TPPS4 leads to GSH depletion and protein oxidation and consequent damages in the organelle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号