首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Mitochondrial permeability transition is commonly characterized as a Ca2+ -dependent non-specific increase in inner membrane permeability that results in swelling of mitochondria and their de-energization. In the present study, the effect of different inhibitors of phospholipase A2--p-bromophenacyl bromide, dibucaine, and aristolochic acid--on hydroperoxide-induced permeability transitions in rat liver mitochondria was tested. p-Bromophenacyl bromide completely prevented the hydroperoxide-induced mitochondrial permeability transition while the effects of dibucaine or aristolochic acid were negligible. Organic hydroperoxides added to mitochondria undergo reduction to corresponding alcohols by mitochondrial glutathione peroxidase. This reduction occurs at the expense of GSH which, in turn, can be reduced by glutathione reductase via oxidation of mitochondrial pyridine nucleotides. The latter is considered a prerequisite step for mitochondrial permeability transition. Among all the inhibitors tested, only p-bromophenacyl bromide completely prevented hydroperoxide-induced oxidation of mitochondrial pyridine nucleotides. Interestingly, p-bromophenacyl bromide had no affect on mitochondrial glutathione peroxidase, but reacted with mitochondrial glutathione that prevented pyridine nucleotides from being oxidized. Our data suggest that p-bromophenacyl bromide prevents hydroperoxide-induced deterioration of mitochondria via interaction with glutathione rather than through inhibition of phospholipase A2.  相似文献   

2.
During anoxic incubation, depletion of mitochondrial ATP was followed by release of Ca2+ with concomitant increase in the rate of state 4 respiration due to disruption of the diffusion barrier against protons. The external addition of ATP and its non-metabolizable analog, beta,gamma-methylene adenosine 5'-triphosphate, prevented both the release of Ca2+ and increase in the rate of state 4 respiration. Addition of EGTA, which did not prevent release of the ion, resulted in little increase in the respiration rate. Addition of an inhibitor of mitochondrial phospholipase A2, such as quinacrine, dibucaine, or chlorpromazine, also prevented increase in the respiration rate without affecting Ca2+ release from mitochondria during anoxic incubation. Non-esterified polyunsaturated fatty acids were also found to be liberated from anoxic mitochondria. External addition of the ATP-analog, EGTA, and inhibitors of phospholipase A2 suppressed the liberation of non-esterified polyunsaturated fatty acids. Melittin and Ca2+, which activate phospholipase A2, increased the rate of state 4 respiration and the liberation of fatty acids. These findings support the hypothesis proposed previously that the following sequence changes occurs in mitochondria during anoxia; depletion of ATP, liberation of free calcium from mitochondria, and disruption of the diffusion barrier against H+ of the inner membrane. The results also indicate another event; activation of phospholipase A2 by release Ca2+ which results in H+ leakiness of the inner membrane.  相似文献   

3.
Sendai virus-mediated permeability changes in cells are affected by extracellular Ca2+ or Mn2+ as follows: the lag period to onset of permeability changes is lengthened and the subsequent extent of leakage is reduced. Drugs that block Ca2+ action in excitable cells, such as verapamil and prenylamine, and drugs that inhibit the action of calmodulin, such as trifluoperazine and R24571, have an effect opposite to that of Ca2+: lag is shortened and extent of leakage is increased. The concentration at which either type of drug shows 50% of maximal effect is similar to the concentration at which 50% of binding by drug to calmodulin is achieved. It is concluded that calmodulin may be involved in protecting cells against virally-mediated membrane damage; alternatively the action of calmodulin-binding drugs may not be as specific as currently thought.  相似文献   

4.
Lidoflazine strongly inhibited the equilibrium exchange of uridine in human erythrocytes (Ki approximately 16 nM). Uridine zero-trans influx was similarly inhibited by lidoflazine in cultured HeLa cells (IC50 approximately to 80 nM), whereas P388 mouse leukemia and Novikoff rat hepatoma cells were three orders of magnitude more resistant (IC50 greater than 50 microM). Uridine transport was also inhibited by nifedipine, verapamil, diltiazem, prenylamine and trifluoperazine, but only at similarly high concentrations in both human erythrocytes and the cell lines. IC50 values ranged from about 10 microM for nifedipine and about 20 microM for verapamil to more than 100 microM for diltiazem, prenylamine and trifluoperazine. The concentrations required for inhibition of nucleoside transport are several orders higher than those blocking Ca2+ channels. Lidoflazine competitively inhibited the binding of nitrobenzylthioinosine to high-affinity sites in human erythrocytes, but did not inhibit the dissociation of nitrobenzylthioinosine from these sites on the transporter as is observed with dipyridamole and dilazep.  相似文献   

5.
The ability of alpha-adrenergic agonists and vasopressin to increase the mitochondrial volume in hepatocytes is dependent on the presence of extracellular Ca2+. Addition of Ca2+ to hormone-treated cells incubated in the absence of Ca2+ initiates mitochondrial swelling. In the presence of extracellular Ca2+, A23187 (7.5 microM) induces mitochondrial swelling and stimulates gluconeogenesis from L-lactate. Isolated liver mitochondria incubated in KCl medium in the presence of 2.5 mM-phosphate undergo energy-dependent swelling, which is associated with electrogenic K+ uptake and reaches an equilibrium when the volume has increased to about 1.3-1.5 microliter/mg of protein. This K+-dependent swelling is stimulated by the presence of 0.3-1.0 microM-Ca2+, leading to an increase in matrix volume at equilibrium that is dependent on [Ca2+]. Ca2+-activated K+-dependent swelling requires phosphate and shows a strong preference for K+ over Na+, Li+ or choline. It is not associated with either uncoupling of mitochondria or any non-specific permeability changes and cannot be produced by Ba2+, Mn2+ or Sr2+. Ca2+-activated K+-dependent swelling is not prevented by any known inhibitors of plasma-membrane ion-transport systems, nor by inhibitors of mitochondrial phospholipase A2. Swelling is inhibited by 65% and 35% by 1 mM-ATP and 100 microM-quinine respectively. The effect of Ca2+ is blocked by Ruthenium Red (5 micrograms/ml) at low [Ca2+]. Spermine (0.25 mM) enhanced the swelling seen on addition of Ca2+, correlating with its ability to increase Ca2+ uptake into the mitochondria as measured by using Arsenazo-III. Mitochondria derived from rats treated with glucagon showed less swelling than did control mitochondria. In the presence of Ruthenium Red and higher [Ca2+], the mitochondria from hormone-treated animals showed greater swelling than did control mitochondria. These data imply that an increase in intramitochondrial [Ca2+] can increase the electrogenic flux of K+ into mitochondria by an unknown mechanism and thereby cause swelling. It is proposed that this is the mechanism by which alpha-agonists and vasopressin cause an increase in mitochondrial volume in situ.  相似文献   

6.
The seleno-organic compound ebselen mimics the glutathione-dependent, hydroperoxide reducing activity of glutathione peroxidase. The activity of glutathione peroxidase determines the rate of hydroperoxide-induced Ca2+ release from mitochondria. Ebselen stimulates Ca2+ release from mitochondria, accelerates mitochondrial respiration and uncoupling, and induces mitochondrial swelling, indicating a deterioration of mitochondrial function. These manifestations are abolished by cyclosporine A, a potent inhibitor of the mitochondrial permeability transition. However, when ebselen-induced Ca2+ cycling is prevented with ruthenium red, an inhibitor of the Ca2+ uniporter, or by chelation of extramitochondrial Ca2+ by EGTA, no detectable elevation of swelling or uncoupling is observed. The release of Ca2+ from mitochondria is delayed in the absence of rotenone, i.e. when pyridine nucleotides are maintained in the reduced state due to succinate-driven reversed electron flow. We suggest that ebselen induces Ca2+ release from intact mitochondria via an NAD+ hydrolysis-dependent mechanism.  相似文献   

7.
When rat liver mitochondria are allowed to accumulate Ca2+, treated with ruthenium red to inhibit reverse activity of the Ca2+ uniporter, and then treated with an uncoupler, they release Ca2+ and endogenous Mg2+ and undergo large amplitude swelling with ultrastructural expansion of the matrix space. These effects are not produced by Ca2+ plus uncoupler alone. Like other "Ca2+-releasing agents" (i.e. N-ethylmaleimide, t-butylhydroperoxide, oxalacetate, etc.), the development of nonspecific permeability produced by ruthenium red plus uncoupler requires accumulated Ca2+ specifically and is antagonized by inhibitors of phospholipase A2. The permeability responses are also antagonized by ionophore A23187, indicating that a rapid pathway for Ca2+ efflux from deenergized mitochondria is necessary to prevent the development of nonspecific permeability. EGTA can be substituted for ruthenium red to produce the nonspecific permeability change in Ca2+-loaded, uncoupler-treated mitochondria. The permeability responses to EGTA plus uncoupler again require accumulated Ca2+ specifically and are antagonized by inhibitors of phospholipase A2 and by ionophore A23187. The equivalent effects of ruthenium red and EGTA on uncoupled, Ca2+-containing mitochondria indicate that reducing the extramitochondrial Ca2+ concentration to the subnanomolar range produces inhibition of reverse uniport activity. It is proposed that inhibition reflect regulation of the uniporter by a Ca2+ binding site which is available from the cytoplasmic side of the inner membrane. EDTA cannot substitute for EGTA to induce nonspecific permeability in Ca2+-loaded, uncoupled mitochondria. Furthermore, EDTA inhibits the response to EGTA with an I50 value of approximately 10 microM. These data suggest that the uniporter regulatory site also binds Mg2+. The data suggest further that Mg2+ binding to the regulatory site is necessary to inhibit reverse uniport activity, even when the site is not occupied by Ca2+.  相似文献   

8.
Ca2+ release from mitochondria induced by oxalacetate or t-butyl hydroperoxide is accompanied by loss of endogenous Mg2+ and K+, swelling, loss of membrane potential, and other alterations which indicate that Ca2+ release is a result of increased inner membrane permeability. When ruthenium red is added after Ca2+ uptake, but before the releasing agent, the extent of Ca2+ release is diminished as is the extent of Mg2+ and K+ depletion and the extent of swelling. Under these conditions, the membrane potential appears to remain at a high value. When Ca2+ release is induced by oxalacetate or t-butyl hydroperoxide and ruthenium red is added subsequently, an apparent regeneration of membrane potential is observed providing that the associated swelling and Mg2+ loss had not been completed at the time ruthenium red was added. Under these conditions subsequent swelling and Mg2+ loss are inhibited.l Ultrastructural observations show the mitochondria become permeable in response to Ca2+ plus oxalacetate or Ca2+ plus t-butyl hydroperoxide in a heterogeneous manner. Conditions which appear to separate Ca2+ release from a decline in membrane potential or to produce an apparent recovery of membrane potential following partial collapse are shown to prevent a subpopulation of the mitochondria from becoming permeable. It is shown that membrane potential probes will not indicate a decline in potential or the presence of a permeable fraction under these conditions. It is concluded that the presence of Ca2+ accumulation inhibitors does not separate Ca2+ release from the development of increased inner membrane permeability.  相似文献   

9.
Bongkrekic acid and atractyloside, inhibitors of adenine nucleotide translocase, do not inhibit Ca2+ uptake and H+ production by pig heart mitochondria. However, bongkrekic acid, but not atractyloside, inhibits dinitrophenol-induced Ca2+ efflux and H+ uptake. Conversely, ruthenium red blocks Ca2+ uptake and H+ production but does not prevent dinitrophenol-induced Ca2+ efflux and H+ uptake by mitochondria. These results suggest that mitochondrial Ca2+ uptake and release exist as two independent pathways. The efflux of Ca2+ from mitochondria is mediated by a bongkrekic acid sensitive component which is apparently not identical to the ruthenium red sensitive Ca2+ uptake carrier.  相似文献   

10.
The uncoupler-induced release of accumulated Ca2+ from heart mitochondria can be separated into two components, one sensitive and one insensitive to ruthenium red. In mitochondria maintaining reduced NAD(P)H pools and adequate levels of endogenous adenine nucleotides, the release of Ca2+ following addition of an uncoupler is virtually all inhibited by ruthenium red and can be presumed to occur via reversal of the Ca2+ uniporter. When ruthenium red is added to block efflux via this pathway, high rates of Ca2+ efflux can still be induced by an uncoupler, provided either NADH is oxidized or mitochondrial adenine nucleotide pools are depleted by prior treatment. This ruthenium red-insensitive Ca2+-efflux pathway is dependent on the level of Ca2+ accumulated and is accompanied by swelling of the mitochondria and loss of endogenous Mg2+. Loss of Ca2+ by this relatively nonspecific pathway is strongly inhibited by Sr2+ and by nupercaine, as well as by oligomycin and exogenous adenine nucleotides. The loss of Ca2+ from uncoupled heart mitochondria occurs via a combination of these two mechanisms except under conditions chosen specifically to limit efflux to one or the other pathway.  相似文献   

11.
Ruthenium red and/or EGTA prevent cyclic uptake and release of Ca2+ in mitochondria. These compounds inhibit but do not prevent the swelling of liver mitochondria induced by Ca2+ plus t-butyl hydroperoxide or Ca2+ plus N-ethylmaleimide. Ruthenium red and/or EGTA have complex effects on the release rate of Ca2+ and other cations induced by t-butyl hydroperoxide or N-ethylmaleimide. To determine the relationship between permeability changes and Ca2+ release in the absence of Ca2+ cycling, a novel method of data collection and analysis is developed which allows the relative time courses of Ca2+ release and Mg2+ release or swelling to be accurately and quantitatively compared. This method eliminates errors in time course comparisons which arise from the aging of mitochondrial preparations and allows data from different preparations to be directly contrasted. Using the method, it is shown that permeability changes caused by Ca2+-releasing agents are not secondary effects arising from Ca2+ cycling between uptake and release carriers. In the absence of Ca2+-cycling inhibitors, Ca2+ release induced by t-butyl hydroperoxide or N-ethylmaleimide is, in part, carrier-mediated. In the presence of EGTA and ruthenium red, Ca2+ release induced by either agent is mediated solely by the permeability pathway. No differences are apparent in the solute selectivity of the inner membrane permeability defect induced by Ca2+ plus t-butyl hydroperoxide or Ca2+ plus N-ethylmaleimide. A novel type of Ca2+ release from energized liver mitochondria is reported. This release is induced by EGTA, occurs in the absence of other releasing agents or nonspecific permeability changes, and is rapid (greater than or equal to 50 nmol/min/mg protein).  相似文献   

12.
The mitochondrial role opening (MPT) induced by Ca2+ has been studied in isolated rat heart mitochondria. MPT was characterized as cyclosporine A-inhibited swelling accompanied by the loss of membrane potential (deltapsim) and Ca2+ efflux after the Ca2+ -loading which was followed spectrophotometrically after the Ca2+ -arsenaso-III complex formation. It has been shown that in suspension of isolated mitochondria MPT was activated by low (with maximum at about 20 microM Ca2+) and high concentrations of Ca2+ (the concentration curve shows a saturation at about 1.0-1.5 mM). In all the cases an access of Ca2+ ions to the matrix space of the mitochondria was necessary for MPT induction. MPT activated by low concentrations of Ca2+ was accompanied by slow decrease of deltapsim and slow release of Ca2+, enhanced by ruthenium red (RR), and was independent of the substrate used (glutamate or succinate). It had not been observed if the respiratory chain was inhibited, even if the Ca2+ access to the inner mitochondrial membrane was provided by Ca2+ -ionophore A23187. At high Ca2+ concentrations rapid Ca2+ -uptake and release via Ca2+ -uniporter (inhibited by ruthenium red) followed by extensive swelling (pore formation) have been observed. It had been supposed that rapid MPT at high concentrations of Ca2+ was the result of Ca2+ entrance to the mitochondrial matrix and depolarisation of the mitochondrial membrane. The data obtained show two different mechanisms of Ca2+ -induced MPT. The one is sensitive to the redox-state of the electron transport chain and is abolished if the respiration is inhibited. The other is independent of mitochondrial respiration and needs only Ca2+ access to the inner mitochondrial membrane and Ca2+ binding to some specific sites leading to MPT opening.  相似文献   

13.
For the study of Ca2+ handling by mitochondria of an insulin secretory tissue, a method for the isolation of functionally intact insulinoma mitochondria is described. The mitochondria had a respiratory control ratio of 6.3 +/- 0.3 with succinate as a substrate. The regulation of extramitochondrial [Ca2+]o concentration by suspensions of insulinoma mitochondria was studied using Ca2+-selective minielectrodes. The mitochondria were found to maintain an ambient free Ca2+ concentration of about 0.3 and 0.9 microM in the absence or presence of Mg2+ (1 mM), respectively. The addition of Na+ resulted in a dose-dependent (half-maximal 4 mM Na+) increase in steady state [Ca2+]o. Na+ accelerated the ruthenium red-induced Ca2+ efflux, suggesting the existence of a Ca2+/2Na+ antiporter, as described in mitochondria of excitable tissues. Experiments were performed to study the effects of various agents on the steady state extramitochondrial free Ca2+. cAMP, 3-isobutyl-1-methylxanthine, and NADH were found to have no effect, whereas phosphoenolpyruvate induced a net Ca2+ efflux, the kinetic of which suggests deleterious effects on mitochondrial functions. A small decrease in pH (0.1 unit) of the incubation buffer resulted in an increase of the extramitochondrial Ca2+ steady state that was reversible upon restoration of the pH to its initial value. In conclusion, insulinoma mitochondria were able to maintain an extramitochondrial [Ca2+]o steady state in the submicromolar range that was markedly influenced by the ionic composition of the incubation medium. Thus, mitochondria may play a role in the regulation of cellular calcium homeostasis and insulin release.  相似文献   

14.
The mechanism by which a number of agents such as hydroperoxides, inorganic phosphate, azodicarboxylic acid bis(dimethylamide) (diamide), 2-methyl-1,4-naphthoquinone (menadione) and aging, induce Ca2+ release from rat liver mitochondria has been analyzed by following Ca2+ fluxes in parallel with K+ fluxes, matrix swelling and triphenylmethylphosphonium fluxes (as an index of transmembrane potential). Addition of hydroperoxides causes a cycle of Ca2+ efflux and reuptake and an almost parallel cycle of delta psi depression. The hydroperoxide-induced delta psi depression is biphasic. The first phase is rapid and insensitive to ATP and is presumably due to activation of the transhydrogenase reaction during the metabolization of the hydroperoxides. The second phase is slow and markedly inhibited by ATP and presumably linked to the activation of a Ca2+-dependent reaction. The slow phase of delta psi depression is paralleled by matrix K+ release and mitochondrial swelling. Nupercaine and ATP reduce or abolish also K+ release and swelling. Inorganic phosphate, diamide, menadione or aging also cause a process of Ca2+ efflux which is paralleled by a slow delta psi depression, K+ release and swelling. All these processes are reduced or abolished by Nupercaine and ATP. The slow delta psi depression following addition of hydroperoxide and diamide is largely reversible at low Ca2+ concentration but tends to become irreversible at high Ca2+ concentration. The delta psi depression increases with the increase of hydroperoxide, diamide and menadione concentration, but is irreversible only in the latter case. Addition of ruthenium red before the hydroperoxides reduces the extent of the slow but not of the rapid phase of delta psi depression. Addition of ruthenium red after the hydroperoxides results in a slow increase of delta psi. Such an effect differs from the rapid increase of delta psi due to ruthenium-red-induced inhibition of Ca2+ cycling in A23187-supplemented mitochondria. Metabolization of hydroperoxides and diamide is accompanied by a cycle of reversible pyridine nucleotide oxidation. Above certain hydroperoxide and diamide concentrations the pyridine nucleotide oxidation becomes irreversible. Addition of menadione results always in an irreversible nucleotide oxidation. The kinetic correlation between Ca2+ efflux and delta psi decline suggests that hydroperoxides, diamide, menadione, inorganic phosphate and aging cause, in the presence of Ca2+, an increase of the permeability for protons of the inner mitochondrial membrane. This is followed by Ca2+ efflux through a pathway which is not the H+/Ca2+ exchange.  相似文献   

15.
Isolated rat liver mitochondria, energized either by succinate oxidation or by ATP hydrolysis, present a transient increase in the rate of Ca2+ efflux concomitant to NAD(P)H oxidation by hydroperoxides when suspended in a medium containing 3 mM ATP, 4 mM Mg2+ and acetate as permeant anion. This is paralleled by an increase in the steady-state concentration of extramitochondrial Ca2+, a small decrease in delta psi and an increase in the rate of respiration and mitochondrial swelling. With the exception of mitochondrial swelling all other events were found to be reversible. If Ca2+ cycling was prevented by ruthenium red, the changes in delta psi, the rate of respiration and the extent of mitochondrial swelling were significantly diminished. In addition, there was no significant decrease in the content of mitochondrial pyridine nucleotides. Mitochondrial coupling was preserved after a cycle of Ca2+ release and re-uptake under these experimental conditions. It is concluded that hydroperoxide-induced Ca2+ efflux from intact mitochondria is related to the redox state of pyridine nucleotides.  相似文献   

16.
The immunosuppressive peptide cyclosporin A is a powerful inhibitor of the Ca2+-dependent permeability transition in rat liver mitochondria. When swelling is used to monitor the transition, the inhibitor is effective regardless of whether N-ethylmaleimide, Hg2+, WY-14643, t-butyl hydroperoxide, oxalacetate, rhein, phosphate, phosphoenolpyruvate, or ruthenium red plus uncoupler is used as the inducing agent. Twenty-five to fifty pmol/mg protein of cyclosporin A reduces the swelling response by 50% with complete inhibition obtained at about 150 pmol/mg protein. The compound, which does not inhibit Ca2+ uptake or mitochondrial phospholipase A2, is effective when added before or after the transition promoting agent. These findings, together with the shape of the inhibition dose-response curve, suggest that cyclosporin A essentially titrates a mitochondrial component which is present at 80-90 pmol/mg protein. It is proposed that this component is a solute unselective, regulated pore or a factor involved in controlling such a structure.  相似文献   

17.
The mitochondrial permeability transition pore (PTP) may operate as a physiological Ca2+ release mechanism and also contribute to mitochondrial deenergization and release of proapoptotic proteins after pathological stress, e.g. ischemia/reperfusion. Brain mitochondria exhibit unique PTP characteristics, including relative resistance to inhibition by cyclosporin A. In this study, we report that 2-aminoethoxydiphenyl borate blocks Ca2+-induced Ca2+ release in isolated, non-synaptosomal rat brain mitochondria in the presence of physiological concentrations of ATP and Mg2+. Ca2+ release was not mediated by the mitochondrial Na+/Ca2+ exchanger or by reversal of the uniporter responsible for energy-dependent Ca2+ uptake. Loss of mitochondrial Ca2+ was accompanied by release of cytochrome c and pyridine nucleotides, indicating an increase in permeability of both the inner and outer mitochondrial membranes. Under these conditions, Ca2+-induced opening of the PTP was not blocked by cyclosporin A, antioxidants, or inhibitors of phospholipase A2 or nitric-oxide synthase but was abolished by pretreatment with bongkrekic acid. These findings indicate that in the presence of adenine nucleotides and Mg2+,Ca2+-induced PTP in non-synaptosomal brain mitochondria exhibits a unique pattern of sensitivity to inhibitors and is particularly responsive to 2-aminoethoxydiphenyl borate.  相似文献   

18.
The ultrastructural transformations of mitochondria in isolated crayfish neurons were studied after incubation of the cells in saline media containing different Ca2+ and Mg2+ concentrations. Incubation in a 5-fold higher Ca concentration resulted in the swelling of mitochondria that was prevented by the addition of the calcium channel blocker, verapamil. Exposure of the cells to Mg2+-depleted medium induced swelling of all the mitochondria, followed by substantial shrinkage of most of them. The absence of Ca as well as the presence of verapamil in Mg2+-free medium led to the inhibition of mitochondrial swelling and to a strong contraction of the mitochondria after 1 h incubation. The omission of Ca2+ from the saline medium or the addition of Ca2+-ionophore A23187 in the presence of Ca2+ resulted in strong mitochondrial shrinkage. These structural alterations of mitochondria are interpreted as an osmotic response of the inner mitochondrial membranes to changes in their potassium transport, induced by a disturbance in the cellular and mitochondrial Ca2+-Mg2+ homeostasis.  相似文献   

19.
Ba2+ ions inhibit the release of Ca2+ ions from rat liver mitochondria   总被引:1,自引:0,他引:1  
The release of Ca2+ from respiring rat liver mitochondria following the addition of either ruthenium red or an uncoupler was measured by a Ca2+-selective electrode or by 45Ca2+ technique. Ba2+ ions are asymmetric inhibitors of both Ca2+ release processes. Ba2+ ions in a concentration of 75 microM inhibited the ruthenium red and the uncoupler induced Ca2+ release by 80% and 50%, respectively. For the inhibition, it was necessary that Ba2+ ions entered the matrix space: Ba2+ ions did not cause any inhibition of Ca2+ release if addition of either ruthenium red or the uncoupler preceded that of Ba2+. The time required for the development of the inhibition of the Ca2+ release and the time course of 140Ba2+ uptake ran in parallel. Ba2+ accumulation is mediated through the Ca2+ uniporter as 140Ba2+ uptake was competitively inhibited by extramitochondrial Ca2+ and prevented by ruthenium red. Due to the inhibition of the ruthenium red insensitive Ca2+ release, Ba2+ shifted the steady-state extramitochondrial Ca2+ concentration to a lower value. Ba2+ is potentially a useful tool to study mitochondrial Ca2+ transport.  相似文献   

20.
Rapid entry of Ca(2+) or Zn(2+) kills neurons. Mitochondria are major sites of Ca(2+)-dependent toxicity. This study examines Zn(2+)-initiated mitochondrial cell death signaling. 10 nm Zn(2+) induced acute swelling of isolated mitochondria, which was much greater than that induced by higher Ca(2+) levels. Zn(2+) entry into mitochondria was dependent upon the Ca(2+) uniporter, and the consequent swelling resulted from opening of the mitochondrial permeability transition pore. Confocal imaging of intact neurons revealed entry of Zn(2+) (with Ca(2+)) to cause pronounced mitochondrial swelling, which was far greater than that induced by Ca(2+) entry alone. Further experiments compared the abilities of Zn(2+) and Ca(2+) to induce mitochondrial release of cytochrome c (Cyt-c) or apoptosis-inducing factor. In isolated mitochondria, 10 nm Zn(2+) exposures induced Cyt-c release. Induction of Zn(2+) entry into cortical neurons resulted in distinct increases in cytosolic Cyt-c immunolabeling and in cytosolic and nuclear apoptosis-inducing factor labeling within 60 min. In comparison, higher absolute [Ca(2+)](i) rises were less effective in inducing release of these factors. Addition of the mitochondrial permeability transition pore inhibitors cyclosporin A and bongkrekic acid decreased Zn(2+)-dependent release of the factors and attenuated neuronal cell death as assessed by trypan blue staining 5-6 h after the exposures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号