首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. The solitary wasp Ampulex compressa stings a cockroach, Periplaneta americana, twice. 2. The first sting into the ventral thorax results in a transient paralysis. During this paralysis the wasp stings the suboesophageal ganglion, which gradually results in a permanent deactivation. 3. The venom gland is a paired and highly branched organ, with a common ductus venatus. The large lumen is lined with a folded cuticula. No venom reservoir is present. 4. Extract of the venom gland induces a slow contraction of the guinea pig ileum. 5. The agonist present in the venom cannot be identified with a known agonist. 6. Venom gland extract blocks synaptic transmission from the cercal nerve to giant neurons in the sixth abdominal ganglion of the cockroach. 7. The block develops gradually, like the gradual appearance of the effects of the sting into the suboesophageal ganglion on the behaviour of the cockroach.  相似文献   

2.
Wasps are a diverse group of insects that possess a sting apparatus associated with a venom gland, which is used for predation and colony defense. The biochemistry of Hymenoptera venom has been evaluated in relation to allergy and immunology, and proteomics has been shown to be a powerful tool for the identification of compounds with pharmacological potential. Data on wasps venom the of genus Apoica are scarce, so the objective of the present work was to identify the venom proteins of the eusocial wasp Apoica pallens, as a first step towards further investigation of applied uses of the venom and its protein constituents. The venom proteins were separated by two-dimensional gel electrophoresis, followed by MALDI-TOF/TOF mass spectrometry. A total of 259 spots were detected, with molecular weights from 4.9 to 141 kDa. Thirty of these proteins were identified and classified into eight functional categories: allergen, enzyme, metabolism, structural, environmental response, proteoglycan, active in DNA and RNA, and unknown function. Due to the few available proteomic data for wasp venom, many proteins could not be identified, which makes studies with proteomic analysis of Hymenoptera venom even more important.  相似文献   

3.
Keeping  M. G. 《Insectes Sociaux》1995,42(3):317-320
Summary The hypothesis thatBelonogaster petiolata (fam. Vespidae) is able to communicate alarm chemically, using odours released with the venom, was tested in bioassays involving presentation of artificial targets to a wasp colony, simultaneously with crushed venom apparatuses. The odour of venom did not lower the threshold of attack and visual stimuli alone (particularly a black, moving object) were sufficient to release attack. Venom odour on a previously stung target probably does not play a role in focusing further attacks on such a target. The results therefore support the null hypothesis that a venom-based alarm pheromone is absent in this species.  相似文献   

4.
Colonies ofParachartergus colobopterus do not defend against vertebrates by attacking and stinging. Instead, defending workers bend the gaster forward and spray a fine mist of venom in the direction of nearby moving objects. Although venom spraying has been reported forP. fraternus, a species that does sting, we found that this occurred only during sting attempts. We conclude that defensive behavior inP. colobopterus is unique among wasps in that (1) venom is sprayed at intruders by workers standing on the nest and (2) the spray is an atomized mist rather than a stream. We suggest that nest crypticity restricts vertebrate predators on this wasp to small, insect gleaning birds, against which a spray of venom in the eyes, mouth, and nasal passages is more effective than is a stinging defense.  相似文献   

5.
The use of venom to subdue prey or deter predators has evolved multiple times in numerous animal lineages. Catfishes represent one of the most easily recognized, but least studied groups of venomous fishes. Venom glands surround spines on the dorsal and pectoral fins that serve as venom delivery structures. Species of madtom catfishes in the genus Noturus were found to each have one of four venom delivery morphologies: (1) smooth spine with no venom gland; (2) smooth spine with venom gland associated with shaft of spine; (3) serrated spine with venom gland associated with shaft of spine; and (4) serrated spine with venom gland associated with shaft of spine and posterior serrations. Analyses accounting for the phylogenetic history of Noturus species suggest that a serrated pectoral spine with a venom gland is the ancestral condition for the genus. The presence of serrations and a venom gland have been largely conserved among Noturus species, but sting morphology has changed at least five times within the genus. Four of these changes have resulted in a loss of morphological complexity, including the loss of posterior serrations, loss of venom glands associated with the posterior serrations, and one complete loss of the venom gland. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 102 , 115–129.  相似文献   

6.
The sting of the parasitoid wasp Ampulex compressa is unusual, as it induces a transient paralysis of the front legs followed by grooming behavior and then by a long-term hypokinesia of its cockroach prey. Because the wasp's goal is to provide a living meal for its newborn larva, the behavioral changes in the prey are brought about by manipulating the host behavior in a way beneficial to the wasp and its offspring. To this end, the wasp injects its venom cocktail with two consecutive stings directly into the host's central nervous system. The first sting in the thorax causes a transient front leg paralysis lasting a few minutes. This paralysis is due to the presence of a venom component that induces a postsynaptic block of central cholinergic synaptic transmission. Following the head sting, dopamine identified in the venom appears to induce 30 min of intense grooming. During the long-term hypokinesia that follows the grooming, specific behaviors of the prey are inhibited while others are unaffected. We propose that the venom represses the activity of head ganglia neurons thereby removing the descending excitatory drive to the thoracic neurons.Abbreviations CNS central nervous system - DA dopamine - GI giant interneuron - PSP postsynaptic potential - SEG sub-esophageal ganglion - TI thoracic interneuron  相似文献   

7.
Abstract.  The active and coordinating capacity of defending the nest is a key feature of social insects. The present study investigates the presence of alarm pheromones in the venom of workers of the social wasp, Polistes dominulus . Laboratory experiments were performed with caged colonies of P. dominulus using a wind tunnel apparatus to test the behavioural response of workers to venom released by other workers and to venom extracts. Contrary to that previously reported for European paper wasps, the present results show that the venom is the source of alarm pheromones. Field experiments combining a visual (black target) and a chemical stimulus (venom extract) were performed to test the effect of the venom on the reaction of colonies. Wasps leave the nest, land on the visual target and attack the target significantly more once exposed to venom extract plus target than to solvent plus target. This work shows that the venom of P. dominulus workers elicits an alarm response, reduces the threshold for attack and acts as an attractant on targets. These results using P. dominulus indicate that, in both American and European species, colony defence is based on the same features, suggesting that chemical alarm is a widespread trait in the genus Polistes .  相似文献   

8.
The tubiform Dufour gland in the digger wasp species Liris niger is about 1.0 mm long ( 0.15 mm). An alternating arrangement of longitudinal and circumferential bundles of striated muscle fibers surrounds the gland. The Dufour gland, together with the venom gland, enters the sting base and terminates in the sting. The glandular epithelium is monolayered. Glands about 3 day after imaginal ecdysis have an empty lumen but a thick lining epithelium. The gland cells are characterized by a well-developed vesicular smooth endoplasmic reticulum, sparse rough ER and numerous free ribosomes. They also exhibit several electron-lucent vesicles and autophagic vacuoles. Secretion of electron-dense material via the gland cuticle into the gland lumen is apparent. Glands more than 20 days after imaginal ecdysis display a large lumen and a thin epithelium. The cells show signs of degeneration with numerous cytolytic inclusions. Dufour gland liquid contains numerous polypeptides of molecular weights ranging from 14 to about 200 kDa. In addition the secretion consists predominantly of straight-chain hydrocarbons, accompanied by small amounts of esters. The major hydrocarbons are pentadecane and (Z)-8-heptadecene. Dufour gland secretion may have several functions: (1) the polypeptides might be involved in the gluing process of the eggs, while (2) the hydrocarbon oils may function as lubricants for the lancets and (3) might soften the secretion, thus allowing easier application of the glue. The lipophilic volatile material (4) might also be involved in pheromonal signaling.  相似文献   

9.
To determine differential gene expression profiles in the venom gland and sac (gland/sac) of a solitary hunting wasp species, Orancistrocerus drewseni Saussure (1857), a subtractive cDNA library was constructed by suppression subtractive hybridization. A total of 498 expressed sequence tags (EST) were clustered and assembled into 205 contigs (94 multiple sequences and 111 singletons). About 65% (134) of the contigs had matched BLASTx hits (E≤10?4). Among these, 115 contigs had similarity to proteins with assigned molecular function in the Gene Ontology database, and most of them (112 contigs, 83%) were homologous to genes from Hymenoptera, particularly to Apis mellifera (98 contigs). The contigs encoding hyaluronidase and phospholipase A2, known to be main components of wasp venoms, were found in high frequencies (27 and 4%, respectively, as judged by the number of ESTs) in the gene ontology category of catalytic activity. Full‐length open reading frames of hyaluronidase and phospholipase A2 were characterized and their abundance in the venom gland/sac was confirmed by quantitative real‐time PCR. Several contigs encoding enzymes, including zinc‐metallopeptidases that are likely involved in the processing and activation of venomous proteins or peptides, were also identified from the library. Discovery of venom gland/sac‐specific genes should promote further studies on biologically active components in the venom of O. drewseni. © 2009 Wiley Periodicals, Inc.  相似文献   

10.
The endoparasitoid wasp Asobara japonica has highly poisonous venom: the host Drosophila larvae are killed by envenomation at a dose that is naturally injected by the female wasp at parasitism. This insecticidal venom is neutralized, however, because A. japonica introduces lateral oviduct components soon after venom injection at oviposition. Although the venom and lateral oviduct components of this parasitoid have been partially characterized, how the venom components favor successful development of wasp eggs and larvae in the host remains ambiguous. Here, we demonstrated that A. japonica venom did not affect host humoral immune responses, determined as expression of antimicrobial peptide (AMP) genes, but significantly diminished two cellular responses, spreading and phagocytosis, by host hemocytes. Moreover, venom components drastically elevated a serine protease‐like activity 4 h after its injection. The lateral oviduct components did not negate the detrimental effects of the venom on host cellular immunities, but significantly reduced the venom‐induced elevation of protease activity. Both active factors in venom and lateral oviduct components were roughly characterized as heat‐labile substances with a molecular mass of at least 10 kDa. Finally, venom of A. japonica, with a wide host range, was found to be much more toxic than that of Asobara rossica, which has a limited host range. These results reveal that A. japonica venom toxicity allows exploitation of a broader range of host insects because it is essential to overcome cellular immune responses of the host for successful parasitism.  相似文献   

11.
12.
Direct injection of venom by a predatory wasp into cockroach brain   总被引:4,自引:0,他引:4  
In this article, we provide direct evidence for injection of venom by a wasp into the central nervous system of its cockroach prey. Venomous predators use neurotoxins that generally act at the neuromuscular junction, resulting in different types of prey paralysis. The sting of the parasitoid wasp Ampulex compressa is unusual, as it induces grooming behavior, followed by a long-term lethargic state of its insect prey, thus ultimately providing a living meal for the newborn wasp larvae. These behavioral modifications are induced only when a sting is inflicted into the head. These unique effects of the wasp venom on prey behavior suggest that the venom targets the insect's central nervous system. The mechanism by which behavior modifying compounds in the venom transverse the blood-brain barrier to induce these central and long-lasting effects has been the subject of debate. In this article, we demonstrate that the wasp stings directly into the target ganglia in the head of its prey. To prove this assertion, we produced "hot" wasps by injecting them with (14)C radiolabeled amino acids and used a combination of liquid scintillation and light microscopy autoradiography to trace radiolabeled venom in the prey. To our knowledge, this is the first direct evidence documenting targeted delivery of venom by a predator into the brain of its prey.  相似文献   

13.
浅论城市害蜂的危害与治理   总被引:6,自引:0,他引:6  
蜂害是我国城市化发展过程中出现的新问题。该文综述了国内外螫人害蜂的种类、习性与危害 ,蜂毒的成分与毒理 ,被蜂螫伤者的救治及蜂害的治理方法 ,分析了目前我国所面临的城市蜂害问题 ,并提出了应采取的相应对策  相似文献   

14.
Females of the parasitoid digger wasp species Liris niger hunt crickets as food for their future brood. The wasps paralyse the prey by injecting their venom directly into the CNS. The venom is produced in a gland consisting of two ramified glandular tubules terminating in a common reservoir. The reservoir contents enter the sting bulb via a ductus venatus. Secretory units of dermal gland type III line the two free gland tubules, the afferent ducts to the reservoir and the cap region within the reservoir. Secretion products of tubules reach the reservoir through the cuticle-lined central funnel. Secretory cells in the distal and middle parts of the tubules contain extensive rough endoplasmic reticulum and numerous electron-dense vesicles, whereas secretory cells of the afferent ducts and the cap region of the reservoir lack electron-dense vesicles and the endoplasmic reticulum is poorly developed. The secretory apparatus undergoes age-related changes. The secretory units in the venom gland tubules and inside the reservoir complete differentiation 1 day after imaginal ecdysis. After 30 days, massive autolytic processes occur in the secretory cells and in the epithelial cells of the reservoir. Analysis of the polypeptide composition demonstrates that the venom reservoir contains numerous proteins ranging from 3.4 to 200 kDa. A dominant component is a glycoprotein of about 90 kDa. In contrast the polypeptide composition of Dufour's gland is completely different and contains no glycoproteins. Comparison of the venom reservoir contents with the polypeptide pattern of venom droplets reveals that all of the major proteinaceous constituents become secreted. Thus the secreted venom contains exclusively proteins present in the soluble contents of the venom gland.  相似文献   

15.
Females of the solitary parasitoid Diadromus collaris (Insecta: Hymenoptera: Ichneumonidae) lay eggs in the pupae of Plutella xylostella (Lepidoptera: Plutellidae), and the venom is synchronously injected into hosts. The venom apparatus consists of two glandular tubules terminating in a common reservoir, A ductule connects the reservoir with the sting apparatus, by which the reservoir content enters the latter. Secretory units line the two glandular tubules. All secretory cells belong to dermal gland type Ⅲ. Dermal gland cells in glandular tubules are more abundant and developed than those in the reservoir. There are extensive rough endoplasmic reticulum and electrondense vesicles, and the microvilli are well developed. By the cuticle-lined central funnel secretion products of secretory units reach the reservoir. Moreover, the secretory apparatus undergoes age-related changes. The secretory units in the venom gland are better developed and more vigorous 7 days after eclosion than those 1 day after eclosion; autolytic processes occur 15 days after eclosion, and the tissue of the reservoir is more prostrate 15 day after eclosion than those 1 day after eclosion. The ovipostion peak of this parasitoid, about 3-7 days after eclosion, corresponds with the period when the venom gland is highly developed in the life span of the wasp.  相似文献   

16.
Unlike predators, which immediately consume their prey, parasitoid wasps incapacitate their prey to provide a food supply for their offspring. We have examined the effects of the venom of the parasitoid wasp Ampulex compressa on the metabolism of its cockroach prey. This wasp stings into the brain of the cockroach causing hypokinesia. We first established that larval development, from egg laying to pupation, lasts about 8 days. During this period, the metabolism of the stung cockroach slows down, as measured by a decrease in oxygen consumption. Similar decreases in oxygen consumption occurred after pharmacologically induced paralysis or after removing descending input from the head ganglia by severing the neck connectives. However, neither of these two groups of cockroaches survived more than six days, while 90% of stung cockroaches survived at least this long. In addition, cockroaches with severed neck connectives lost significantly more body mass, mainly due to dehydration. Hence, the sting of A. compressa not only renders the cockroach prey helplessly submissive, but also changes its metabolism to sustain more nutrients for the developing larva. This metabolic manipulation is subtler than the complete removal of descending input from the head ganglia, since it leaves some physiological processes, such as water retention, intact.  相似文献   

17.
18.
Pteromalus puparum is a predominant endoparasitoid wasp of Pieris rapae. Its venom is the only active factor injected into host associated with oviposition. In this report, we explored whether the venom alone from this wasp affects the endocrine system of its host or not. We monitored the changes of hemolymph juvenile hormone (JH; only JH III detected), ecdysteroid, and juvenile hormone esterase activity (JHE) over 72 h in parasitized and venom‐microinjected P. rapae pupae. Non‐parasitized and PBS‐microinjected P. rapae served as controls. Results showed that JH titers were significantly higher in parasitized and venom‐microinjected pupae than that in control pupae during 24 to 72 h. After 12 h, JH titers were significantly promoted by parasitization and venom microinjection. JHE activities of non‐parasitized and PBS‐microinjected pupae were significantly higher than that of parasitized and venom‐microinjected pupae, which was with a peak at 12 h (parasitized pupae) or 24 h (venom‐microinjected pupae) during 6 to 48 and 12 to 36 h, respectively. The hemolymph titers of ecdysteroid in non‐parasitized and PBS‐microinjected pupae increased rapidly during 12 to 36 h with a peak at 36 h, and were higher than treatments before 48 h, while presenting a significant difference at 24 to 48 h between the treatments and controls. The results demonstrate that venom alone of this parasitoid wasp can disrupt its host's endocrine system. © 2009 Wiley Periodicals, Inc.  相似文献   

19.
The females of the spider wasps (Hymenoptera: Pompilidae) hunt spiders to provision their larvae. The genital structures of pompilid females are modified in a sting that is used for paralyzing the prey (spiders) and defense. The skeleto‐muscular structure of the sting apparatus of a typical representative of the family (Cryptocheilus versicolor) is examined. The shape of sclerites, their relative positions and articulations are described. Some morphological adaptations are described for the first time. The wide anal arc of the tergum IX provides a stiff support for the muscles that move the valvulae. The resilin structures in the areas of articulation support the work of muscles and in some cases replace them. The 1st valvulae form a venom duct along their entire length, which provides the delivery of the venom to a specific point. An unpaired flap in the venom duct provides a dose of venom in the sting. This mechanism probably enhances the speed and accuracy of the wasp's sting movements. Functions of muscles and interactions of the structures of the sting apparatus of C. versicolor are discussed.  相似文献   

20.
The digger wasp species Ampulex compressa produces its venom in two branched gland tubules. They terminate in a short common duct, which is bifurcated at its proximal end. One leg is linked with the venom reservoir, the other one extends to the ductus venatus. Each venom gland tubule possesses, over its entire length, a cuticle-lined central duct. Around this duct densely packed class 3 gland units each composed of a secretory cell and a canal cell are arranged. The position of their nuclei was demonstrated by DAPI staining. The brush border of the secretory cells surrounds the coiled end-apparatus. Venom is stored in a bladder like reservoir, which is surrounded by a thin reticulated layer of muscle fibres. The reservoir as a whole is lined with class 3 gland units. The tubiform Dufour's gland has a length of about 350 μm (∅ 125 μm) only and is surrounded by a network of pronounced striated muscle fibres. The glandular epithelium is mono-layered belonging to the class 1 type of insect epidermal glands. The gland cells are characterized by conspicuous lipid vesicles. Secretion of material via the gland cuticle into the gland lumen is apparent. Analysis of the polypeptide composition demonstrated that the free gland tubules and the venom reservoir contain numerous proteins ranging from 3.4 to 200 kDa. The polypeptide composition of the Dufour's gland is completely different and contains no lectin-binding glycoproteins, whereas a dominant component of the venom droplets is a glycoprotein of about 80 kDa. Comparison of the venom reservoir contents with the polypeptide pattern of venom droplets revealed that all of the major proteinaceous constituents are secreted. The secreted venom contains exclusively proteins present in the soluble contents of the venom gland. The most abundant compound class in the Dufour's gland consisted of n-alkanes followed by monomethyl-branched alkanes and alkadienes. Heptacosane was the most abundant n-alkane. Furthermore, a single volatile compound, 2-methylpentan-3-one, was identified in various concentrations in the lipid extract of the Dufour's gland.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号