首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Flow cytometric measurements were made on acridine orange (AO) and 7-diethylamino-3-(4'-maleimidylphenyl)-4-methyl-coumarin (CPM)-stained epididymal- and vas deferens-derived spermatozoal nuclei to follow the course of chromatin condensation and oxidation of free sulfhydryl groups, respectively, during passage through mouse and rat posttesticular reproductive tracts. Alterations of mouse and rat spermatozoal chromatin during transition from a testicular elongated spermatids to epididymal caput spermatozoa resulted in a threefold loss of DNA stainability with AO. Passage of spermatozoa from the caput to corpus epididymis was accompanied by an approximate 15% loss of DNA stainability, which was maintained at that level throughout passage into the vas deferens. AO stainability of epididymal spermatozoal nuclei was generally independent of -SH group stainability. CPM stainability of rat spermatozoal nuclei free -SH groups was 83%, 18%, and 11% of caput spermatozoal values for corpus, cauda epididymis, and vas deferens, respectively. Comparable values for mice were 69%, 20%, and 18%. CPM stainability was relatively homogeneous for these mouse and rat reproductive tract regions, except mouse corpus epididymis spermatozoal nuclei stained very heterogeneously. Rat spermatozoa detained by ligature up to 7 days in the caput, corpus, and cauda epididymi had CPM staining values equal to or below those of normal vas spermatozoa, indicating that disulfide (S-S) bonding is intrinsic to the spermatozoa and is independent of the epididymal environment. These data suggest that chromatin condensation and loss of spermatozoal DNA stainability during passage from the testis to the vas deferens are independent of S-S bonding.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Changes in the chromatin structure of boar late spermatids maturing to spermatozoa were studied by chemical modification of their nuclei with dansyl (Dns) chloride. Protamine was isolated from the dansylated boar spermatid and sperm nuclei, and its dansylated sites and degrees of dansylation were determined by sequence analysis. The N-terminal Ala-1, Tyr-3 and Tyr-42 of the protamine molecule in cauda epididymal sperm nuclei were dansylated 27%, 22% and 40%, respectively, whereas the respective residues in late spermatid nuclei were about 1.5-times as reactive as those in cauda epididymal sperm nuclei. However, the dansyl ratio of Tyr-3 to Tyr-42 remained unchanged from the late spermatid to mature sperm nuclei. SDS treatment did not affect the reactivity of cauda epididymal protamine and that of Ala-1 of caput epididymal protamine, but raised that of Tyr-3 and Tyr-42 of caput epididymal protamine by a factor of about 1.5. As a result of the SDS treatment, caput epididymal protamine came to have almost the same reactivity as late spermatid protamine. These facts suggest that the fundamental structure, in terms of DNA-protamine interaction, of sperm chromatin was already formed at the stage of the late spermatid, and then during epididymal transit the sperm chromatin was more tightly condensed, with increasing disulfide cross-links, thereby acquiring insensitivity towards the SDS-treatment.  相似文献   

3.
It has recently been shown in mice that the plasma membrane Ca2+-ATPase isoform 4 (PMCA4) is essential for sperm fertilization capacity. We analyzed whether sperm PMCA4 is formed in the rat during spermatogenesis or is synthesized in the epididymis and transferred onto sperm during sperm maturation. We could show that PMCA4 is conserved in sperm from testis to epididymis. In testis, PMCA4 mRNA was restricted to spermatogonia and early spermatocytes, while the PMCA4 protein was detected in spermatogonia, late spermatocytes, spermatids and in epididymal sperm. In epididymis PMCA4 mRNA was localized in basolateral plasma membranes of epithelial cells of the caput, corpus and cauda epididymidis. In contrast, the protein was only detectable in the epithelial cells of the caput, indicating that PMCA4 mRNA is only translated into protein in caput epithelium. In the epididymal corpus and cauda, PMCA4 mRNA and protein, respectively, was localized and in peritubular cells. Furthermore, we detected an identical distribution of PMCA4a and b splice variants in rat testis, epididymal corpus and cauda. In the caput epididymidis, where PMCA4 is located in the epithelium splice variant 4b was more prominent. Further experiments have to clarify the functional importance of the differences in the PMCA4 distribution.  相似文献   

4.
Maturation of spermatozoa in the epididymis of the Chinese hamster   总被引:4,自引:0,他引:4  
Chinese hamster spermatozoa gain their ability to move when they descend from the testis to the distal part of the caput epididymis, but it is not until they enter the corpus epididymis that they become capable of fertilizing eggs. The maturation of the spermatozoa proceeds as they further descend the tract and perhaps continues even in the vas deferens. During transit between the distal caput and proximal cauda epididymides, small membrane-limited vesicles (and tubules) appear on the plasma membrane over the acrosomes of the spermatozoa. The number of vesicles appearing on the sperm brane reaches a maximum when the spermatozoa are in the proximal cauda epididymis. It declines sharply in the distal cauda epididymis. Spermatozoa in the vas deferens are free of the vesicles. The origin, chemical nature, and functional role of the vesicles that appear on the sperm surface during epididymal transit must be the subject of further investigation.  相似文献   

5.
We found an intra-acrosomal antigen of about 155,000 daltons (155 kDa) in a survey using the monoclonal antibody MC101 raised against mouse cauda epididymal spermatozoa. Morphological studies by means of indirect immunofluorescence and immunogold electron microscopy localized the antigen to the cortex region of the anterior acrosome. Avidin biotin complex immunocytochemistry initially demonstrated a faint signal at the anterior acrosome in the testis spermatozoa that increased in intensity as the sperm moved toward the distal epididymis. This incremental immunoreactivity was also confirmed by immunoblotting following one-dimensional SDS-PAGE. The 155 kDa protein band was immunostained, and it was much more intense in the cauda epididymal than in the caput and corpus epididymal spermatozoa. Only a trace or no immunostain was evident in the caput or testis spermatozoa. The antigen localization did not change during passage through the epididymis, being confined at the cortex region of the anterior acrosome. The epididymal epithelial cells were not immunostained. These findings suggested that the 155 kDa protein is biochemically modified, further implying that the biochemical alteration of intra-acrosomal material is involved in sperm maturation in the epididymis. © 1995 wiley-Liss, Inc.  相似文献   

6.
Changes in the number and distribution of spermatozoa in the epididymis of the adult brown marsupial mouse were examined during July/August in mated and unmated males. The effects of mating on epididymal sperm populations were studied in 2 groups of males each mated 3 times and compared with the number and distribution of spermatozoa in the epididymides of 4 unmated control groups. One testis and epididymis were removed from each animal (hemicastration) either before or early in the mating season to provide information on initial sperm content and distribution. The contralateral side was removed later in the mating season to examine the effects of mating or sexual abstinence on epididymal sperm distribution. Epididymal sperm number peaked in both the distal caput and distal corpus/proximal cauda epididymidis in late July. The total number of spermatozoa, including those remaining in the testis, available to each male at the beginning of the mating season in early August was approximately 4.4 x 10(6)/side. Although recruitment of spermatozoa into the epididymis from the testis continued until mid-August, sperm content of the epididymis reached a peak of about 3.5 x 10(6)/epididymis in early August. At this time approximately 0.9 x 10(6) spermatozoa remained in the testis which had ceased spermatogenic activity. Throughout the mating season, epididymal spermatozoa were concentrated in the distal corpus/proximal cauda regions of the epididymis and were replenished by spermatozoa from upper regions of the duct. Relatively few spermatozoa were found in the distal cauda epididymidis, confirming a low sperm storage capacity in this region. A constant loss of spermatozoa from the epididymis, probably via spermatorrhoea, occurred throughout the mating season and very few spermatozoa remained in unmated males in late August before the annual male die-off. Mating studies showed that an average of 0.23 x 10(6) spermatozoa/epididymis were delivered per mating in this species, but the number of spermatozoa released at each ejaculation may be as few as 0.04 x 10(6)/epididymis when sperm loss via spermatorrhoea is taken into account. We suggest that the unusual structure of the cauda epididymidis, which has a very restricted sperm storage capacity, may function to limit the numbers of spermatozoa available at each ejaculation and thus conserve the dwindling epididymal sperm reserves in order to maximize the number of successful matings which are possible during the mating season.  相似文献   

7.
The CRES (cystatin-related epididymal spermatogenic) protein is a member of the cystatin superfamily of cysteine protease inhibitors and exhibits highly restricted expression in the reproductive tract. We have previously shown that CRES protein is present in elongating spermatids in the testis and is synthesized and secreted by the proximal caput epididymal epithelium. The presence of CRES protein in developing germ cells and in the luminal fluid surrounding maturing spermatozoa prompted us to examine whether CRES protein is associated with spermatozoa. In the studies presented, indirect immunofluorescence, immunogold electron microscopy, and Western blot analysis demonstrated that CRES protein is localized in sperm acrosomes and is released during the acrosome reaction. Interestingly, while the 19- and 14-kDa CRES proteins were present in testicular and proximal caput epididymal spermatozoa, the 14-kDa CRES protein was the predominant form present in mid-caput to cauda epididymal spermatozoa. Furthermore, following the ionophore-induced acrosome reaction, CRES protein localization was similar to that of proacrosin/acrosin in that it was detected in the soluble fraction as well as associated with the acrosome-reacted spermatozoa. The presence of CRES protein in the sperm acrosome, a site of high hydrolytic and proteolytic activity, suggests that CRES may play a role in the regulation of intraacrosomal protein processing or may be involved in fertilization.  相似文献   

8.
We have recently observed that a polyclonal antibody raised against a mouse epididymal luminal fluid protein (MEP 9) recognizes a 25-kDa antigen in mouse testis and epididymis [Rankin et al., Biol Reprod 1992; 46:747-766]. This antigen was localized by light and electron microscopic immunohistochemistry. The immunoreactivity in the testis was found in the residual cytoplasm of the elongated spermatids, in the residual bodies, and in the cytoplasmic droplets of spermatozoa. In the epididymis, the epithelial principal cells were stained from the distal caput to the distal cauda. Immunogold labeling in the principal cells showed diffuse distribution without preferential accumulation in either the endocytic or the secretory apparatus of the cells. In the epididymal lumen, the immunoreactivity was restricted to the sperm cytoplasmic droplets. No membrane-specific labeling was observed in luminal spermatozoa, cytoplasmic droplets, or isolated sperm plasma membranes. Three weeks after hemicastration or severance of the efferent ducts, a normal distribution of the immunoreactive sites was found in the epididymis. Immunoreactivity, was also detected in the epididymal epithelium of immature mice as well as in that of XXSxr male mice having no spermatozoa in the epididymis. These results suggest that the immunoreactivity seen in the principal cells originates from synthesis rather than endocytosis of the testicular protein from disrupted cytoplasmic droplets. Furthermore, these results suggest that the 25-kDa protein is synthesized independently by both testis and epididymis.  相似文献   

9.
In this study we have used acridine orange staining, as described by Evenson (1990), to follow changes in DNA packaging as they occur in hamster spermatozoa which have left the testis and are undergoing maturation in the epididymis. Measurement of the green and red fluorescent intensities of hamster sperm nuclei by flow cytometry demonstrated a decrease in acridine orange binding to DNA as sperm made their way from proximal corpus epididymis to the vas deferens. Using sperm from the cauda epididymis of the mature hamster as the standard, a method was developed for estimating the % of cells in a given sample that have matured with regard to DNA packaging. Staining with bromobimane was used to determine the extent of sulfhydryl oxidation in the nuclei. It was seen that sulfhydryl oxidation occurred mainly in the cauda epididymis whereas another process in chromatin condensation occurred earlier, during sperm passage through the caput epididymis. This earlier process could be mimicked by incubating sperm nuclei with alkaline phosphatase, suggesting that it consists of removal of phosphate in protamine. © 1994 Wiley-Liss, Inc.  相似文献   

10.
Glioma pathogenesis‐related 1‐like protein1 (GliPr1L1) was identified by liquid chromatography‐tandem mass spectrometry analyses of proteins associated to bovine sperm lipid raft membrane domains. This protein belongs to the CAP superfamily including cysteine‐rich secretory proteins, Antigen 5 and pathogenesis‐related 1 protein. PCR analysis revealed that GliPr1L1 is expressed in testis and, at a much lower level, all along the epididymis. Western blotting showed a similar distribution of GliPr1L1 in testicular and epididymal tissue extracts. In the epididymal lumen, GliPr1L1 was associated with the maturing spermatozoa and epididymosomes all along the excurrent duct but was undetectable in the soluble fraction of epididymal fluid. The protein was detectable as multiple isoforms with a higher MW form in the testis and proximal caput. Treatments with PNGase F revealed that N‐glycosylation was responsible of multiple bands detected on Western blots. These results suggest that the N‐glycosylation moiety of GliPr1L1 is processed during the transit in the caput. Western blots demonstrated that GliPr1L1 was associated with the sperm plasma membrane preparation. GliPr1L1 is glycosyl phosphatidyl inositol (GPI) anchored to caput and cauda spermatozoa as demonstrated by the ability of phosphatidylinositol specific phospholipase C to release GliPr1L1 from intact sperm cells. Lipid raft membrane domains were separated from caput and cauda epididymal spermatozoa. GliPr1L1 was immunodetectable in the low buoyant density fractions where lipid rafts are distributed. GliPr1L1 was localized on sperm equatorial segment and neck. In vitro fertilization performed in presence of anti‐GliPr1L1 showed that this protein is involved in sperm–zona pellucida interaction. J. Cell. Physiol. 227: 3876–3886, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

11.
Proacrosin from guinea pig cauda epididymal sperm has a lower molecular weight compared with the testicular zymogen. In this study, we have examined the structural basis of this change and where the conversion in proacrosin molecular weight occurs during sperm maturation. Immunoblotting of trifluoromethanesulfonic acid-deglycosylated testicular and cauda epididymal sperm extracts with antibody to guinea pig testicular proacrosin demonstrated that the polypeptide backbones of proacrosins from the testis and cauda epididymal sperm had the same molecular weights (approximately 44,000). Keratanase, an endo-beta-galactosidase specific for lactosaminoglycans, partially digested testicular proacrosin but had no effect on proacrosin from cauda epididymal sperm. In extracts of testis, caput epididymis, and corpus epididymis analyzed by immunoblotting, anti-proacrosin recognized a major antigen with an apparent molecular weight (Mr) of 55,000, although a 50,000-Mr minor antigen began to appear in the corpus epididymis. By contrast, extracts of cauda epididymis, vas deferens, and cauda epididymal sperm had the 50,000 Mr protein as the only immunoreactive antigen. By enzymography following electrophoresis, the major bands of proteolytic activity in extracts of testis, caput epididymis, and corpus epididymis had 55,000 Mr. A band of protease activity with 55,000 Mr also appeared in extracts of the corpus epididymis. However, the most prominent bands of proteolytic activity in cauda epididymis, vas deferens, and cauda epididymal sperm had 50,000 Mr. In addition, two other major protease activities were detected with 32,000 and 34,000 Mr; the relationships of these proteases to proacrosin are unclear. From these results, we conclude that the oligosaccharides of proacrosin are altered during epididymal transit and that this modification occurs in the corpus epididymis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
In the current study we investigated the progesterone receptor exposure on the sperm from the testis and different parts of the epididymis, the relation to the sperm maturation stage, the functionality of the progesterone receptor and the capacity of sperm to undergo acrosome reaction. Exposed progesterone receptors on spermatozoa were detected using Progesterone-BSA conjugate labeled with fluorescein isothiocyanate (P-BSA-FITC) or a monoclonal antibody against progesterone receptor, C-262. Either progesterone or calcium ionophore was used to induce acrosome reaction. A high percentage (69 +/- 8%; mean +/- SD) of spermatozoa from the cauda epididymis showed P-BSA-FITC labeling at the onset of incubation, whereas only 0.1 +/- 1 and 4 +/- 2%, of spermatozoa from the testes, caput, and corpus epididymis, respectively, were labeled. There was no significant increase in P-BSA-FITC binding during the course of a 6 hr incubation. Treatment with either 10 microM progesterone or 5 microM calcium ionophore induced acrosome reaction in cauda epididymal sperm but not in testicular sperm, caput or corpus epipidymal sperm. It is concluded that the matured sperm of the dog from cauda epididymis and freshly ejaculated sperm demonstrate a functional membrane-bound progesterone receptor while less matured spermatozoa from the testicle, caput, and corpus epididymis fail to demonstrate such a receptor. Acrosome reaction of dog sperm can be induced using either progesterone or calcium ionophore; however, the maturation stages of spermatozoa influence this occurrence.  相似文献   

13.
DNA stability and thiol-disulphide status of rat sperm nuclei was observed in vivo during maturation in the epididymis and penetration of oocytes. When spermatids and spermatozoa were stained with acridine orange after fixation with acetic alcohol, the red/green fluorescence ratio observed under a confocal microscope was not different between spermatids (3.81 +/- 0.16) and testicular spermatozoa (4.03 +/- 0.34), and then decreased sharply (p < 0.01) as the spermatozoa descended the epidymis to the caput epididymis (1.13 +/- 0.03). However, the ratio was not different among corpus (0.69 +/- 0.01), cauda epididymis (0.68 +/- 0.11) and ejaculated spermatozoa (0.63 +/- 0.01). On the other hand, when spermatozoa were labelled with monobromobimane (mBBr), the fluorescence intensities gradually decreased (p < 0.01) during passage of spermatozoa from testis (4.74 +/- 0.16) through epididymis (caput, 2.72 +/- 0.08; corpus, 1.07 +/- 0.03; cauda, -0.05 +/- 0.05; ejaculated, 0.08 +/- 0.03). The acridine orange red/green fluorescence ratio increased (p < 0.01) during zona penetration (binding sperm, 0.52 +/- 0.09; perivitelline sperm, 0.64 +/- 0.16) and sperm decondensation (decondensed sperm, 0.69 +/- 0.12). When spermatozoa in the perivitelline space were labelled with mBBr, the fluorescence was detected. These results demonstrate that DNA stability against acid appears to be ahead of the oxidation of protamine during sperm maturation in the epididymis and is an initial event of the unpackaging process in rat genome occurring during or just after zona penetration but before ooplasm penetration.  相似文献   

14.
Mammalian spermatozoa mature while passing through the epididymis. Maturation is accompanied by thiol oxidation to disulfides. In rats, sperm become motile and fertile in the cauda. We have previously demonstrated that rat caput sperm contain mostly thiols and that upon passage from the corpus to the cauda epididymidis, sperm protein thiols are oxidized. The present work was undertaken to study the role of the regions of the epididymis in sperm maturation as reflected in the thiol status, fertility, and motility of the spermatozoa. The distal caput epididymidis of mature albino rats was ligated on one side. After 5 days, sperm were isolated from the ligated caput and from caput and cauda of the control side. Thiol groups in sperm, epididymal luminal fluid (EF), and epididymal tissue were labeled using the fluorescent thiol-labeling agent monobromobimane. After ligation, changes were observed in a) sperm proteins, sperm nuclear proteins, and epididymal fluid by electrophoresis; b) epididymal tissues by histochemistry; c) progressive motility by phase microscopy; and d) fertilizing ability after insemination into uteri of immature females. We found that after ligation, caput sperm thiols, especially protamine thiols, are oxidized, rendering them similar to mature sperm isolated from the cauda epididymidis. Spermatozoa from ligated caput epididymidis gain progressive motility and partial fertilizing ability. Morphology of epithelial cells of ligated caput is similar to that of cauda cells. However, other changes in caput EF and epithelium induced by ligation render the ligated caput epididymidis different from either control caput or cauda. Hence, sperm thiol oxidation, along with the development of fertilizing ability, can occur in sperm without necessity for sperm transit through the corpus and cauda epididymidis.  相似文献   

15.
Spermatozoa, fluids, and principal cells from different regions of the epididymis were characterized by two-dimensional electrophoresis. Rete testis fluid was collected after 36-h efferent duct ligation, and cauda epididymal fluid was collected by retrograde perfusion through the vas deferens. Spermatozoa were collected after their exudation from minced caput and corpus epididymal tissue. Principal cells were recovered after enzymatic disaggregation and centrifugal elutriation of epididymides. Two-dimensional polyacrylamide gel electrophoresis was used to prepare protein profiles of all samples. Comparison of the proteins found in rete testis fluid versus those found in cauda epididymal fluid revealed a dramatic change in composition, including the loss, addition, or retention of specific proteins as well as changes in the relative concentrations of certain proteins. Prominent cauda epididymal fluid proteins, possibly contributed by the epididymal epithelium, were detected at 16, 23, and 34 kDa. After epididymal transit, a considerable decrease was observed in the number of aqueous-soluble sperm proteins. Differences in the protein composition of epididymal epithelial principal cells from the caput versus corpus epididymidis were also noted, suggesting that functional differences exist for these epididymal regions. Of particular interest was the occurrence of a prominent protein of approximately 20-23 kDa found in all sperm samples, in fluids, and in caput and corpus principal cells. However, this protein was absent in cauda epididymal sperm after 36-h efferent duct ligation. The rapid loss of this protein from sperm after efferent duct ligation suggests that this surgical intervention may affect spermatozoa residing within the epididymis.  相似文献   

16.
Effect of diabetes mellitus on epididymal enzymes of adult rats.   总被引:1,自引:0,他引:1  
Diabetes mellitus caused significant reduction in serum testosterone and accessory sex glands weight. The sperm content of epididymal regions also decreased. Among the epididymal regions, the cauda epididymidal tissue alone showed significant reduction in Na(+)-K+ ATPase activity. However, Mg2+ ATPase activity was lowered in caput epididymidis only. Specific activity of Ca2+ ATPase significantly decreased in caput and cauda epididymides. All three ATPases decreased significantly in caput epididymidal spermatozoa leaving cauda epididymidal spermatozoa unaffected. Specific activity of alkaline phosphatase was suppressed in caput epididymidis and in the spermatozoa collected from caput and cauda epididymides, while the acid phosphatase was unaffected. In general, the results are suggestive of definite influence of diabetes on epididymal phosphatases which is region specific. Diabetes induced decrease in phosphatases may have an impact on secretory and absorptive functions of epididymis and thus on sperm maturation.  相似文献   

17.
Ram spermatozoa were obtained from different regions (caput, corpus, and cauda) of the epididymis and their plasma membrane was removed using a nitrogen cavitation treatment (750 psi, 10 min equilibration at 4 degrees C). Membrane was recovered after sucrose gradient centrifugation and identified using 125I-succinylated concanavalin A (125I-succConA) as a surface marker. Based on fluorescein isothiocyanate-succConA (FITC-succConA) labeling and electron microscopy, cavitation removed plasma membrane from the anterior sperm head in the area overlying the acrosome. Cholesterol was the major sterol in plasma membrane, with desmosterol present in sperm entering the epididymis (caput sperm) but negligible in sperm after epididymal transit (cauda sperm). Ethanolamine and choline phosphoglycerides represented 70-80% of membrane phospholipids, with the ethanolamine fraction decreasing relative to choline phosphoglycerides during epididymal transit. The molar ratio of cholesterol to phospholipid increased in the plasma membrane during maturation. The bulk phospholipid-bound fatty acids consisted primarily of palmitoyl acyl groups (16:0) in caput sperm and docosahexaenoyl acyl groups (22:6) in cauda sperm. The choline phosphoglyceride fraction was purified and analyzed. It consisted of a mixture of ether acyl glycero-3-phosphocholine and diacyl phosphoglyceride, with the dominant acyl residue, at all stages of epididymal maturation, being 22:6 throughout epididymal transit. The significance of these findings relative to acquisition of fertilization capacity by sperm during epididymal maturation is discussed.  相似文献   

18.
The selenoenzyme phospholipid hydroperoxide glutathione peroxidase (PHGPx) is regarded as the major molecular target of selenodeficiency in rodents, accounting for most of the histopathological and structural abnormalities of testicular tissue and male germ cells. PHGPx exists as a cytosolic form, mitochondrial form, and nuclear form (nPHGPx) predominantly expressed in late spermatids and spermatozoa. Here, we demonstrate that mice with a targeted deletion of the nPHGPx gene were, unlike mice with the full knockout (KO) of PHGPx, not only viable but also, surprisingly, fully fertile. While both morphological analysis of testis and epididymis and sperm parameter measurements did not show any apparent abnormality, toluidine blue and acridine orange stainings of spermatozoa indicated defective chromatin condensation in the KO sperm isolated from the caput epididymis. Furthermore, upon drying and hydrating, KO sperm exhibited a significant proportion of morphologically abnormal heads. Monobromobimane labeling and protein-free thiol titration revealed significantly less extensive oxidation in the cauda epididymis when compared to that in the wild type. We conclude that nPHGPx, by acting as a protein thiol peroxidase in vivo, contributes to the structural stability of sperm chromatin.  相似文献   

19.
Modifications in rabbit sperm plasma membranes during epididymal passage and after ejaculation were investigated by used of three lectins: concanavalin A (Con A); Ricinus communis I (RCA(I)); and wheat germ agglutinin (WGA). During sperm passage from caput to cauda epididymis, agglutination by WGA drastically decreased, and agglutination by RCA(I) slightly decreased, although agglutination by Con A remained approximately unchanged. After ejaculation, spermatozoa were agglutinated to a similar degree or slightly less by Con A, WGA, and RCA(I), compared to cauda epididymal spermatozoa. Ultrastructural examination of sperm lectin-binding sites with ferritin- lectin conjugates revealed differences in the densities of lectin receptors in various sperm regions, and changes in the same regions during epididymal passage and after ejaculation. Ferritin-RCA(I) showed abrupt changes in lectin site densities between acrosomal and postacrosomal regions of sperm heads. The relative amounts of ferritin-RCA(I) bound to heads of caput epididymal or ejaculated spermatozoa. Tail regions were labeled by ferritin RCA(I) almost equally on caput and cauda epididymal spermatozoa, but the middle-piece region of ejaculated spermatozoa was slightly more densely labeled than the principal-piece region, and these two regions on ejaculated spermatozoa were labeled less than on caput and cuada epididymal spermatozoa. Ferritin-WGA densely labeled the acrosomal region of caput epididymal spermatozoa, although labeling of cauda epidiymal spermatozoa was relatively sparse except in the apical area of the acrosomal region. Ejaculated spermatozoa bound only a few molecules of ferritin-WGA, even at the highest conjugate concentrations used. Caput epididymal, but not cauda epididymal or ejaculated spermatozoa, bound ferritin-WGA in the tail regions. Dramatic differences in labeling densities during epididymal passage and after ejaculation were not found with ferritin-Con A.  相似文献   

20.
In previous studies we identified an epididymal gene that exhibits homology to the cystatin family of cysteine protease inhibitors. The expression of this gene, termed CRES (cystatin-related epididymal and spermatogenic), was shown to be highly restricted to the proximal caput epididymal epithelium with less expression in the testis and no expression in the 24 other tissues examined. In this report, studies were carried out to examine CRES gene expression in the testis as well as to characterize the CRES protein in the testis and epididymis. In situ hybridization experiments revealed that within the testis CRES gene expression is stage-specific during spermatogenesis and is exclusively expressed by the round spermatids of Stages VII-VIII and the early elongating spermatids of Stages IX and X. Immunohistochemical studies demonstrated that CRES protein was transiently expressed in both the testis and epididymis. Within the testis the protein was localized to the elongating spermatids, whereas within the epididymis CRES protein was exclusively synthesized by the proximal caput epithelium and then secreted into the lumen. Surprisingly, the secreted CRES protein had completely disappeared from the epididymal lumen by the distal caput epididymidis. Western blot analysis of testicular and epididymal proteins showed that the CRES antibody specifically recognized a predominant 19 kDa CRES protein and a less abundant 14 kDa form. These observations suggest that the CRES protein performs a specialized role during sperm development and maturation. © 1995 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号