首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
2.
Concepts and issues in marine ecosystem management   总被引:2,自引:0,他引:2  
Ecosystem management means different things to different people, but the underlying concept is similar to that of the long-standing ethic of conservation. Current interest in marine ecosystem management stems from concerns about overexploitation of world fisheries and the perceived need for broader perspectives in fisheries management. A central scientific question is whether the effects of harvesting (top down) or changes in the physical environment (bottom up) are responsible for major changes in abundance.Historically, ecology, fisheries biology, oceanography, fisheries management and the fishing industry have gone somewhat separate ways. Since the 1980s, increasing attention has been given to multispecies aspects of fisheries, the linkages between oceanography and fish abundance and more holistic approaches to fisheries management.Sorting out the causes and effects of fluctuations in fish abundance is complicated by the lack of reliability of fisheries statistics. Discards, dishonesty and the inherent logistic difficulties of collecting statistics all combine to confuse interpretation. The overcapacity of fishing fleets and their unrestricted use are widely recognized as a contributing cause to overfishing and declines in fish stocks in many parts of the world.Ecosystem management, as shorthand for more holistic approaches to resource management, is, from a fisheries management perspective, centred on multispecies interactions in the context of a variable physical and chemical environment. Broader perspectives include social, economic and political elements which are best considered pragmatically as a part of the context of fisheries management.Objectives in marine ecosystem management are varied. From a biological perspective, an underlying principle of management is commonly assumed to be a sustained yield of products for human consumption. Whether that should be taken to mean that the yield should always be of the same products is less certain. Fishing commonly changes the relative abundance of species of fishes. Thus, a biological objective should specify the species mix that is desired.Concern for the maintenance of global diversity has generated a substantial literature on threatened and endangered species. In general, it has not been considered likely that marine fish species could be rendered extinct and greatest attention has been given to marine mammals, sea birds and sea turtles. The provision of marine parks and sanctuary areas are obvious first steps in providing a measure of protection, at least for the less widely ranging species.Related to the current concepts of ecosystem management are expressions such as ecosystem health and ecosystem integrity which are given a wide range of different meanings, none of which are readily translated into operational language for resource management. These and similar expressions are best assessed as rhetorical devices. The essential components of ecosystem management are sustainable yield, maintenance of biodiversity and protection from the effects of pollution and habitat degradation.Theory for marine ecosystem management has a long history in fisheries and ecological literature. Ecological models such as Lotka-Volterra equations, ECOPATH, trophic cascades and chaos theory do not give practical guidance for management. Fleet interaction and multispecies virtual population analysis models hold more promise for fisheries managers.Alaska provides particular opportunities for developing new concepts in fisheries management. Statistics of catch are good, stock assessments are at the state-of-the-art level and management has been prudent. Debate is active on the causes of substantial changes in abundance of many species including marine mammals, because substantial changes in the fisheries have been accompanied by major changes in oceanographic conditions.As elsewhere, the resultant changes may be a consequence of top-down and bottom-up effects. The bottom part is beyond human control, and ecosystem management is centred on managing the top-down or fisheries component in the context of special measures of protection for particular species.Whether that is a realistic goal depends in part on how much special protection is to be afforded to which species. Marine mammals, for example, are given high priority for special protection, but like fisheries they too may have significant roles in shaping the structure of marine ecosystems. Eventually, ecosystem management must come to grips with the question of how much protection of particular species is desirable in achieving optimal use of living marine resources.  相似文献   

3.
Despite growing awareness of the significance of body-size and predator-prey body-mass ratios for the stability of ecological networks, our understanding of their distribution within ecosystems is incomplete. Here, we study the relationships between predator and prey size, body-mass ratios and predator trophic levels using body-mass estimates of 1313 predators (invertebrates, ectotherm and endotherm vertebrates) from 35 food-webs (marine, stream, lake and terrestrial). Across all ecosystem and predator types, except for streams (which appear to have a different size structure in their predator-prey interactions), we find that (1) geometric mean prey mass increases with predator mass with a power-law exponent greater than unity and (2) predator size increases with trophic level. Consistent with our theoretical derivations, we show that the quantitative nature of these relationships implies systematic decreases in predator-prey body-mass ratios with the trophic level of the predator. Thus, predators are, on an average, more similar in size to their prey at the top of food-webs than that closer to the base. These findings contradict the traditional Eltonian paradigm and have implications for our understanding of body-mass constraints on food-web topology, community dynamics and stability.  相似文献   

4.
Confronting Feedbacks of Degraded Marine Ecosystems   总被引:1,自引:0,他引:1  
In many coastal areas, marine ecosystems have shifted into contrasting states having reduced ecosystem services (hereafter called degraded). Such degraded ecosystems may be slow to revert to their original state due to new ecological feedbacks that reinforce the degraded state. A better understanding of the way human actions influence the strength and direction of feedbacks, how different feedbacks could interact, and at what scales they operate, may be necessary in some cases for successful management of marine ecosystems. Here we synthesize interactions of critical feedbacks of the degraded states from six globally distinct biomes: coral reefs, kelp forests, seagrass beds, shallow soft sediments, oyster reefs, and coastal pelagic food webs. We explore to what extent current management captures these feedbacks and propose strategies for how and when (that is, windows of opportunity) to influence feedbacks in ways to break the resilience of the degraded ecosystem states. We conclude by proposing some challenges for future research that could improve our understanding of these issues and emphasize that management of degraded marine states will require a broad social–ecological approach to succeed.  相似文献   

5.
The paper reviews the main findings of rocky shore and subtidal nearshore experimental marine ecology (EME) in cold and temperate marine ecosystems during the past four decades. It analyzes the role of EME in coastal management and conservation. The historical development of strategies for managing single or multispecies fisheries are reviewed. The published results show over-exploitation and depletion of more than 60% of the fish stocks and a lack of connection between the management of fisheries and results derived from experimental marine ecology. This is mainly due to: (a) the different temporal and spatial scale at which most marine ecologists and fishery managers operate; (b) the lack of long-term fishery monitoring and adaptive techniques for management; and (c) limitations in the design of experiments on fisheries. Large-scale oceanic perturbations, due to combinations of excessive resource exploitation and environmental variability coupled with present trends in management approaches are discussed. Modern approaches and tools for management of fisheries, such as Adaptive Management (AM), Territorial User Rights in Fisheries (TURFs), Individual Transferrable Quotas and Non-Transferrable Quotas (ITQs, INTQs) are discussed in the context of small-scale fisheries and EME. Published views on limits of applied ecological research with regards to management of fisheries are discussed. Linkages between EME, marine conservation and the establishment of Marine Protected Areas (MPAs) and experimental exclusions of humans are highlighted. Results derived from MPAs, such as: (a) species or community trophic cascades, and (b) the role of key-stone species and species interaction strengths, are discussed. It is concluded that the role of EME in conservation has been greater than has been the case in management of fisheries. The potential to link EME, conservation and the management of fisheries is exemplified through the proposed establishment in Chile of a connected network of Scientific Reserves, MPAs and TURFs sites. The final conclusion is that to cross-fertilize EME, conservation and management, there are three main challenges: (1) to end the traditional view of approaching the management of fisheries and marine conservation as contradictory/antagonizing issues; (2) to improve communications between experimental marine ecology and the management of fisheries through the implementation of experimentation and adaptive management; (3) to improve linkages between marine conservation, the management of fisheries and social sciences.  相似文献   

6.
Artificial habitats in marine ecosystems are employed on a limited basis to restore degraded natural habitats and fisheries, and more extensively for a broader variety of purposes including biological conservation and enhancement as well as social and economic development. Included in the aims of human-made habitats classified as artificial reefs are: Aquaculture/marine ranching; promotion of biodiversity; mitigation of environmental damage; enhancement of recreational scuba diving; eco-tourism development; expansion of recreational fishing; artisanal and commercial fisheries production; protection of benthic habitats against illegal trawling; and research. Structures often are fabricated according to anticipated physical influences or life history requirements of individual species. For example, many of the world’s largest reefs have been deployed as part of a national fisheries program in Japan, where large steel and concrete frameworks have been carefully designed to withstand strong ocean currents. In addition, the differing ecological needs of porgy and sea bass for shelter guided the design of the Box Reef in Korea as a device to enhance productivity of marine ranching. The effect of these and other structures on fisheries catch is positive. But caution must be exercised to avoid using reefs simply as fishing devices to heavily exploit species attracted to them. No worldwide database for artificial habitats exists.The challenge to any ecological restoration effort is to define the condition or possibly even the historic baseline to which the system will be restored; in other words, to answer the question: “Restoration to what?” Examples of aquatic ecosystem restoration from Hong Kong (fisheries), the Pacific Ocean (kelp beds), Chesapeake Bay (oysters) and the Atlantic Ocean (coral reefs) are discussed. The degree to which these four situations consider or can approach a baseline is indicated and compared (e.g., four plants per 100 m2 are proposed in one project). Measurement of performance is a key factor in restoration planning. These situations also are considered for the ecosystem and fishery contexts in which they are conducted. All use ecological data as a basis for physical design of restoration structures. The use of experimental, pilot and modeling practices is indicated.A context for the young field of marine restoration is provided by reviewing major factors in ecosystem degradation, such as high stress on 70% of commercially valuable fishes worldwide. Examples of habitat disruption include an extensive hypoxic/anoxic zone in the Gulf of Mexico and nutrient and contaminant burdens in the North Sea. Principles of ecological restoration are summarized, from planning through to evaluation. Alternate approaches to facilitate ecological recovery include land-use and ecosystem management and determining levels of human population, consumption and pollution.  相似文献   

7.
'Back-to-the-future' (BTF) is an integrative approach to a restoration ecology of the oceans that attempts to solve the fisheries crisis. To this end, it harnesses the latest understanding of ecosystem processes developments in whole ecosystem simulation modelling, and insight into the human dimension of fisheries management. BTF includes new methods for describing past ecosystems, designing fisheries that meet criteria for sustainability and responsibility, and evaluating the costs and benefits of fisheries in restored ecosystems. Evaluation of alternative policy choices, involving trade-offs between conservation and economic values, employs a range of economic, social and ecological measures. Automated searches maximize values of objective functions, and the methodology includes analyses of model parameter uncertainty. Participatory workshops attempt to maximize compliance by fostering a sense of ownership among all stakeholders. Some challenges that have still to be met include improving methods for quantitatively describing the past, reducing uncertainty in ecosystem simulation techniques and in making policy choices robust against climate change. Critical issues include whether past ecosystems make viable policy goals, and whether desirable goals may be reached from today's ecosystem. Examples from case studies in British Columbia, Newfoundland and elsewhere are presented.  相似文献   

8.
In developing regions, coastal communities are particularly dependent on small-scale fisheries for food security and income. However, information on the scale and impacts of small-scale fisheries on coastal marine ecosystems are frequently lacking. Large marine vertebrates (marine mammals, sea turtles and chondrichthyans) are often among the first species to experience declines due to fisheries. This paper reviews the interactions between small-scale fisheries and vulnerable marine megafauna in the southwestern Indian Ocean. We highlight an urgent need for proper documentation, monitoring and assessment at the regional level of small-scale fisheries and the megafauna affected by them to inform evidence-based fisheries management. Catch and landings data are generally of poor quality and resolution with compositional data, where available, mostly anecdotal or heavily biased towards easily identifiable species. There is also limited understanding of fisheries effort, most of which relies on metrics unsuitable for proper assessment. Management strategies (where they exist) are often created without strong evidence bases or understanding of the reliance of fishers on resources. Consequently, it is not possible to effectively assess the current status and ensure the sustainability of these species groups; with indications of overexploitation in several areas. To address these issues, a regionally collaborative approach between government and non-governmental organisations, independent researchers and institutions, and small-scale fisheries stakeholders is required. In combination with good governance practices, appropriate and effective, evidence-based management can be formulated to sustain these resources, the marine ecosystems they are intrinsically linked to and the livelihoods of coastal communities that are tied to them.  相似文献   

9.
Susan Hanna 《Ecosystems》2001,4(8):736-741
The field of resource management integrates human and ecological systems. It is currently undergoing a difficult transition as it broadens to accommodate new values and interests. Some of the problems associated with this transition are evident in marine ecosystems, where the management of the ecological–human interface has been hindered by a lack of basic understanding. Using marine fisheries as examples, this paper describes the proximate and underlying causes of the human–ecological problem. It identifies areas in which basic research is needed on the behavioral dynamics of marine resource use, including incentives, feedbacks, management scale, monitoring and evaluation, alternative management approaches, the role of history, and human capital. It discusses the cost of failing to invest in social science research and identifies barriers to interdisciplinary research. Priorities for interdisciplinary research are listed. Received 30 November 2000; accepted 20 April 2001.  相似文献   

10.
Synergistic Effects of Climate and Fishing in a Marine Ecosystem   总被引:1,自引:0,他引:1  
Current climate change and overfishing are affecting the productivity and structure of marine ecosystems. This situation is unprecedented for the marine biosphere and it is essential to understand the mechanisms and pathways by which ecosystems respond. We report that climate change and overfishing are likely to be responsible for a rapid restructuring of a highly productive marine ecosystem with effects throughout the pelagos and the benthos. In the mid-1980s, climate change, consequent modifications in the North Sea plankton, and fishing, all reduced North Sea cod recruitment. In this region, production of many benthic species respond positively and immediately to temperature. Analysis of a long-term, spatially extensive biological (plankton and cod) and physical (sea surface temperature) dataset suggests that synchronous changes in cod numbers and sea temperature have established an extensive trophic cascade favoring lower trophic level groups over economic fisheries. A proliferation of jellyfish that we detect may signal the climax of these changes. This modified North Sea ecology may provide a clear indication of the synergistic consequences of coincident climate change and overfishing. The extent of the ecosystem restructuring that has occurred in the North Sea suggests we are unlikely to reverse current climate and human-induced effects through ecosystem resource management in the short term. Rather, we should understand and adapt to new ecological regimes. This implies that fisheries management policies will have to be fully integrated with the ecological consequences of climate change to prevent a similar collapse in an exploited marine ecosystem elsewhere. Author Contributions  RRK conceived the project and GB analysed the data. RRK, GB and JAL co-wrote the paper.  相似文献   

11.
Rapid climate changes are currently driving substantial reorganizations of marine ecosystems around the world. A key question is how these changes will alter the provision of ecosystem services from the ocean, particularly from fisheries. To answer this question, we need to understand not only the ecological dynamics of marine systems, but also human adaptation and feedbacks between humans and the rest of the natural world. In this review, we outline what we have learned from research primarily in continental shelf ecosystems and fishing communities of North America. Key findings are that marine animals are highly sensitive to warming and are responding quickly to changes in water temperature, and that such changes are often happening faster than similar processes on land. Changes in species distributions and productivity are having substantial impacts on fisheries, including through changing catch compositions and longer distances traveled for fishing trips. Conflicts over access to fisheries have also emerged as species distributions are no longer aligned with regulations or catch allocations. These changes in the coupled natural-human system have reduced the value of ecosystem services from some fisheries and risk doing so even more in the future. Going forward, substantial opportunities for more effective fisheries management and operations, marine conservation, and marine spatial planning are likely possible through greater consideration of climate information over time-scales from years to decades.  相似文献   

12.
The mapping of ecosystem service supply has become quite common in ecosystem service assessment practice for terrestrial ecosystems, but land cover remains the most common indicator for ecosystems ability to deliver ecosystem services. For marine ecosystems, practice is even less advanced, with a clear deficit in spatially-explicit assessments of ecosystem service supply. This situation, which generates considerable uncertainty in the assessment of ecosystems’ ability to support current and future human well-being, contrasts with increasing understanding of the role of terrestrial and marine biodiversity for ecosystem functioning and thereby for ecosystem services. This paper provides a synthesis of available approaches, models and tools, and data sources, that are able to better link ecosystem service mapping to current understanding of the role of ecosystem service providing organisms and land/seascape structure in ecosystem functioning. Based on a review of literature, models and associated geo-referenced metrics are classified according to the way in which land or marine use, ecological processes and especially biodiversity effects are represented. We distinguish five types of models: proxy-based, phenomenological, niche-based, trait-based and full-process. Examples from each model type are presented and data requirements considered. Our synthesis demonstrates that the current understanding of the role of biota in ecosystem services can effectively be incorporated into mapping approaches and opens avenues for further model development using hybrid approaches tailored to available resources. We end by discussing ways to resolve sources of uncertainty associated with model representation of biotic processes and with data availability.  相似文献   

13.
Cities are challenging environments for human life, because of multiple environmental issues driven by urbanization. These can sometimes be mitigated through ecosystem services provided by different functions supported by biodiversity. However, biodiversity in cities is affected by numerous factors, namely habitat loss, degradation, and fragmentation, as well as pollution, altered climate, and new biotic challenges. To better understand the link between biodiversity and ecosystem functions and services, we need to improve our mechanistic knowledge of these relationships. Trait-based ecology is a promising approach for unravelling the causes and consequences of biodiversity filtering on ecosystem processes and underlying services, but large gaps remain unexplored.Here, we present a series of research directions that are aimed at extending the current knowledge of the relationship between trait-based biodiversity and ecosystem functions and services in cities. These directions are based on: (1) improving urban habitat mapping; (2) considering often neglected urban habitats and ecological niches; (3) integrating multiple urban gradients; (4) using trait-based approaches to improve our mechanistic understanding of the relationships between biodiversity and ecosystem functions and services; and (5) extending the involvement of citizens.Pursuing these research directions may support the sustainable management of urban ecosystems and the long-term provision of ecosystem services, ultimately enhancing the well-being of urban populations.  相似文献   

14.
It has been widely acknowledged that fishery discard practices constitute a purposeless waste of valuable living resources, which plays an important role in the depletion of marine populations. Furthermore, discarding may have a number of adverse ecological impacts in marine ecosystems, provoking changes in the overall structure of trophic webs and habitats, which in turn could pose risks for the sustainability of current fisheries. The present review aims to describe the current state-of-the-art in discards research, with particular emphasis on the needs and challenges associated with the implementation of the Ecosystem Approach to Fisheries Management (EAFM) in European waters. We briefly review the international and European policy contexts of discarding, how discard data are collected and incorporated into stock assessments, selectivity in fishing and the main consequences of discarding for ecosystem dynamics. We then review implementation issues related to reducing discards under the EAFM and the associated scientific challenges, and conclude with some comments on lessons learned and future directions.  相似文献   

15.
Marine fisheries as ecological experiments   总被引:1,自引:0,他引:1  
There are many examples of ecological theory informing fishery management. Yet fisheries also provide tremendous opportunities to test ecological theory through large-scale, repeated, and well-documented perturbations of natural systems. Although treating fisheries as experiments presents several challenges, few comparable tests exist at the ecosystem scale. Experimental manipulations of fish populations in lakes have been widely used to develop and test ecological theory. Controlled manipulation of fish populations in open marine systems is rarely possible, but fisheries data provide a valuable substitute for such manipulations. To highlight the value of marine fisheries data, we review leading ecological theories that have been empirically tested using such data. For example, density dependence has been examined through meta-analysis of spawning stock and recruitment data to show that compensation (higher population growth) occurs commonly when populations are reduced to low levels, while depensation (the Allee effect) is rare. As populations decline, spatial changes typically involve populations contracting into high-density core habitats while abandoning less productive habitats. Fishing down predators may result in trophic cascades, possibly shifting entire ecosystems into alternate stable states, although alternate states can be maintained by both ecological processes and continued fishing pressure. Conversely, depleting low trophic level groups may affect central-place foragers, although these bottom–up effects rarely appear to impact fish—perhaps because many fish populations have been reduced to the point that they are no longer prey limited. Fisheries provide empirical tests for diversity–stability relations: catch data suggest that more diverse systems recover faster and provide more stable returns than less diverse systems. Fisheries have also provided examples of the tragedy of the commons, as well as counter-examples where common property resources have been managed successfully. We also address two barriers to use of fisheries data to answer ecological questions: differences in terminology for similar concepts and misuse of records of fishery landings (catch data) as a proxy for biomass trends.  相似文献   

16.
Inland fisheries are a vital component in the livelihoods and food security of people throughout the world, as well as contributing huge recreational and economic benefits. These valuable assets are jeopardized by lack of research-based understanding of the impacts of fisheries on inland ecosystems, and similarly the impact of human activities associated with inland waters on fisheries and aquatic biodiversity. To explore this topic, an international workshop was organized in order to examine strategies to incorporate fisheries into ecosystem approaches for management of inland waters. To achieve this goal, a new research agenda is needed that focuses on: quantifying the ecosystem services provided by fresh waters; quantifying the economic, social and nutritional benefits of inland fisheries; improving assessments designed to evaluate fisheries exploitation potential; and examining feedbacks between fisheries, ecosystem productivity and aquatic biodiversity. Accomplishing these objectives will require merging natural and social science approaches to address coupled social-ecological system dynamics.  相似文献   

17.
This paper discusses biotic interactions in agroecosystems and how they may be manipulated to support crop productivity and environmental health by provision of ecosystem services such as weed, pest and disease management, nutrient cycling and biodiversity conservation. Important elements for understanding biotic interactions include consideration of the effects of diversity, species composition and food web structure on ecosystem processes; the impacts of timing, frequency and intensity of disturbance; and the importance of multitrophic interactions. All of these elements need to be considered at multiple scales that depend in part on the range of the movement of the organisms involved. These issues are first discussed in general, followed by an examination of the application of these concepts in agricultural management. The potential for a greater use of ecological management approaches is high; however, owing to the nature of complex interactions in ecosystems, there is some inherent unpredictability about responses to management interventions under different conditions. Such uncertainty needs to be accommodated in the development of recommendations for farm management. This requires an increased emphasis on the effective synthesis of complex and often apparently contradictory information and on field-based adaptive research, monitoring and social learning by farmer/researcher collaborations.  相似文献   

18.
The scientific and applied problem of the ecosystem approach to the management of marine biological resources arose during the last quarter of the 20th century as a component of the Rational Nature Use Concept. This occurred mostly because the existing fishery rules and concepts of the optimum yield theory, which were introduced in the practice of fishery regulations, have proven to be insufficiently effective to conserve biological resources and provide stability of the fishery resource base. The ecosystem approach to biological-resource management implies a change of the autecological studies of commercial stock units (populations) and the managerial single-species models for the sustainable-sized management, taking the impacts of the fishery on marine ecosystems into account, as well as those of marine ecosystems on the fishery. At present, the ecosystem-based biological-resource management includes a complex of ecological topics and issues, such as biodiversity conservation, effect of climate changes, sustainability of stocks and communities, interspecies relationships, multi-species fishery, conservation of rare species, protection of especially important water bodies and landscapes, biotope degradation, anti-pollution measures, invasive species, ranching aquaculture, genetic diversity, etc. The main current problem, besides insufficient knowledge of many of these issues, is how to practically integrate such a large number of parameters into the management system. Thus, the complicated and long-term problem of ecosystem management of marine biological resources should be solved step-by-step, following the progress in the technical capabilities and concepts of natural processes. As well, certain better-studied elements of the ecosystem approach should be implemented first in the practice of management, while taking the regional specifics into account.  相似文献   

19.
IndiSeas (“Indicators for the Seas”) is a collaborative international working group that was established in 2005 to evaluate the status of exploited marine ecosystems using a suite of indicators in a comparative framework. An initial shortlist of seven ecological indicators was selected to quantify the effects of fishing on the broader ecosystem using several criteria (i.e., ecological meaning, sensitivity to fishing, data availability, management objectives and public awareness). The suite comprised: (i) the inverse coefficient of variation of total biomass of surveyed species, (ii) mean fish length in the surveyed community, (iii) mean maximum life span of surveyed fish species, (iv) proportion of predatory fish in the surveyed community, (v) proportion of under and moderately exploited stocks, (vi) total biomass of surveyed species, and (vii) mean trophic level of the landed catch. In line with the Nagoya Strategic Plan of the Convention on Biological Diversity (2011–2020), we extended this suite to emphasize the broader biodiversity and conservation risks in exploited marine ecosystems. We selected a subset of indicators from a list of empirically based candidate biodiversity indicators initially established based on ecological significance to complement the original IndiSeas indicators. The additional selected indicators were: (viii) mean intrinsic vulnerability index of the fish landed catch, (ix) proportion of non-declining exploited species in the surveyed community, (x) catch-based marine trophic index, and (xi) mean trophic level of the surveyed community. Despite the lack of data in some ecosystems, we also selected (xii) mean trophic level of the modelled community, and (xiii) proportion of discards in the fishery as extra indicators. These additional indicators were examined, along with the initial set of IndiSeas ecological indicators, to evaluate whether adding new biodiversity indicators provided useful additional information to refine our understanding of the status evaluation of 29 exploited marine ecosystems. We used state and trend analyses, and we performed correlation, redundancy and multivariate tests. Existing developments in ecosystem-based fisheries management have largely focused on exploited species. Our study, using mostly fisheries independent survey-based indicators, highlights that biodiversity and conservation-based indicators are complementary to ecological indicators of fishing pressure. Thus, they should be used to provide additional information to evaluate the overall impact of fishing on exploited marine ecosystems.  相似文献   

20.
As a consequence of global climate‐driven changes, marine ecosystems are experiencing polewards redistributions of species – or range shifts – across taxa and throughout latitudes worldwide. Research on these range shifts largely focuses on understanding and predicting changes in the distribution of individual species. The ecological effects of marine range shifts on ecosystem structure and functioning, as well as human coastal communities, can be large, yet remain difficult to anticipate and manage. Here, we use qualitative modelling of system feedback to understand the cumulative impacts of multiple species shifts in south‐eastern Australia, a global hotspot for ocean warming. We identify range‐shifting species that can induce trophic cascades and affect ecosystem dynamics and productivity, and evaluate the potential effectiveness of alternative management interventions to mitigate these impacts. Our results suggest that the negative ecological impacts of multiple simultaneous range shifts generally add up. Thus, implementing whole‐of‐ecosystem management strategies and regular monitoring of range‐shifting species of ecological concern are necessary to effectively intervene against undesirable consequences of marine range shifts at the regional scale. Our study illustrates how modelling system feedback with only limited qualitative information about ecosystem structure and range‐shifting species can predict ecological consequences of multiple co‐occurring range shifts, guide ecosystem‐based adaptation to climate change and help prioritise future research and monitoring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号