首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of novel thiazolidin-4-one analogues, characterized by different substitution patterns at positions C-2 and N-3 of the thiazolidin-4-one scaffold for anti-HIV-1 activity has been investigated. Most of the compounds showed anti-HIV-1 activity at micromolar concentrations when tested in TZM-bl cells in vitro. Among the thirty-three compounds tested, compound 16 was the most potent inhibitor of HIV-1 replication against HIV-1IIIB, HIV-1ADA5, HIV-1UG070 and HIV-1VB59 (EC50 = 0.02, 0.08, 0.08 and 0.08 μM, respectively) with selectivity index (SI = 6940, 1735, 1692 and 1692) against tested viral strains, respectively. The results of the present study suggested that the substitution of the nitro group at 6′ position of the C-2 phenyl ring and 4,6-dimethylpyridin-2-yl at the N-3 position of thiazolidin-4-one had a major impact on the anti-HIV-1 activity and was found to lower cytotoxicity. The substitution of the heteroaryl ring with bromo group and bicyclic heteroaryl ring at N-3 thiazolidin-4-one was found to lower anti-HIV-1 activity and increase cytotoxicity. The undertaken docking studies thus facilitated the identification of crucial interactions between the HIV-1 RT enzyme and thiazolidin-4-one inhibitors, which can be used to design new potential inhibitors.  相似文献   

2.
New derivatives of azidothymidine (AZT) substituted by alkyl and alkylsulphonyl groups at N-3 and C-5′, respectively, have been synthesized. The new synthesized derivatives showed remarkable anti-HIV-1 and HIV-2 activity in MT-4 cells. Compounds 8 and 10 have IC50 values of 0.83 and 0.31 μg/mL against HIV-1 with therapeutic index of 83 and 403, respectively, and IC50 values of 0.93 and 0.29 μg/mL against HIV-2 with therapeutic index of 74 and 431, respectively. This means that compounds 8 and 10 were cytotoxic to MT-4 cells at CC50 of 69.2 μg/mL and 125 μg/mL, respectively.  相似文献   

3.
A series of novel S-DABO analogues of 5-alkyl-2-arylthio-6-((3,4-dihydroquinolin-1(2H)-yl)methyl)pyrimidin-4(3H)-ones were synthesized and evaluated as inhibitors of human immunodeficiency virus type-1 (HIV-1). Among them, the most potent HIV-1 inhibitors were compounds 6c1,6c6, and 6b1 (EC(50)=0.24 ± 0.05, 0.38 ± 0.13, 0.39 ± 0.05 μM, respectively), which possess improved or similar HIV-1 inhibitory activity compared with nevirapine (NVP) (EC(50)=0.21 μM) and delavirdine (DLV) (EC(50)=0.32 μM). None of these compounds were active against HIV-2 replication. Furthermore, enzyme inhibitory assays were performed with selected derivatives against HIV-1 wtRT, confirming that the main target of these compounds is the HIV-1 RT and these new S-DABOs are acting as NNRTIs. The preliminary structure-activity relationship (SAR) of these new congeners is discussed briefly and rationalized by docking studies.  相似文献   

4.
A series of 26 diarylpyrimidines, characterized by the hydroxymethyl linker between the left wing benzene ring and the central pyrimidine, were synthesized and evaluated for in vitro anti-HIV activity. Most of the compounds exhibited moderate to excellent activities against wild-type HIV-1. Among them, compound 10i, bearing a chlorine atom at the C-2 position of left benzene ring, was the best congener and showed potent activity against wild-type HIV-1 with an EC(50) value of 0.009 μM, along with moderate activities against the double RT mutant (K103N+Y181C) HIV-1(III(B)) and HIV-2(ROD) with an EC(50) value of 6.2 and 6.0 μM, respectively. The preliminary structure-activity relationship (SAR) of this new series of compounds was also investigated.  相似文献   

5.
New derivatives of azidothymidine (AZT) substituted by alkyl and alkylsulphonyl groups at N-3 and C-5', respectively, have been synthesized. The new synthesized derivatives showed remarkable anti-HIV-1 and HIV-2 activity in MT-4 cells. Compounds 8 and 10 have IC(50) values of 0.83 and 0.31 microg/mL against HIV-1 with therapeutic index of 83 and 403, respectively, and IC(50) values of 0.93 and 0.29 microg/mL against HIV-2 with therapeutic index of 74 and 431, respectively. This means that compounds 8 and 10 were cytotoxic to MT-4 cells at CC(50) of 69.2 microg/mL and 125 microg/mL, respectively.  相似文献   

6.
A series of structurally related 2,5-disubstituted 6-(1-naphthylmethyl)-pyrimidin-4(3H)-ones, compounds 6a-6r, were synthesized and evaluated for their in vitro anti-HIV activities in MT-4 cells. Most of the new compounds investigated showed moderate-to-good activities against wild-type HIV-1, with IC(50) values in the range 5.64-0.21 microM. Compound 6d was the most potent congener (IC(50)=0.21 microM, SI=724) in inhibiting HIV-1 replication, which is ca. 25 times more effective than the reference compound 2',3'-dideoxyinosine (DDI). Preliminary structure-activity relationship (SAR) studies revealed that both modulation of the amino function at C(2) and of the alkyl group at C(5) of the pyrimidine ring are crucial for high anti-HIV-1 activity.  相似文献   

7.
8.
A novel synthetic route and anti-HIV activity evaluation of a new series of 2-(4-(2,4-dibromophenyl)-1,2,3-thiadiazol-5-ylthio)acetamide (TTA) derivatives are described. Bioactivity assay indicated that most of the title compounds showed good activities against HIV-1. In particular, compound 7c displayed the most potent anti-HIV-1 activity (EC50 = 36.4 nM), inhibiting HIV-1 replication in MT-4 cells more effectively than NVP (by sevenfold) and DLV (by eightfold). The preliminary structure–activity relationships (SAR) of the newly synthesized congeners are discussed, and molecular modeling of compound 7c in complex with HIV-1 RT is described, allowing rationalization of some SAR conclusions.  相似文献   

9.
A series of 18 cycloalkyl arylpyrimidines (CAPYs) were designed from lead compounds diarylpyrimidines (DAPYs), synthesized and evaluated for in vitro anti-HIV activity. Among them, the compound 1p displayed potent anti-HIV-1 activity against WT HIV-1 with an EC(50) value of 0.055 μM and a selectivity index (SI) >7290. The preliminary structure-activity relationship (SAR) of this new series of compounds was also investigated, which enriched the SAR of diarylpyrimidines (DAPYs).  相似文献   

10.
Twelve novel zidovudine derivatives were prepared by modifying 5 ′-hydroxyl group of sugar moiety (1–8) and 5-methyl group of thymidine nucleus (9–12) and characterized spectrally. The compounds were evaluated for anti-HIV-1, antitubercular and antibacterial activities. Compound (3-azido-tetrahydro-5- (3,4-dihydro-5-methyl-2,4-dioxopyrimidin- 1 (2H)-yl) furan-2-yl)methyl 7- (4- (2-phenylacetoyloxy) -3,5- dimethylpiperazin-1-yl) -5- (2-phenylacetoyloxyamino) -1-cyclopropyl-6,8-difluoro-1,4-dihydro-4-oxoquinoline-3-carboxylate (5) was found to be the most potent anti-HIV-1 agent with EC50 of 0.0012 μM against HIV-1IIIB and CC50 of 34.05 μM against MT-4 with selectivity index of 28,375. Compound 5 inhibited Mycobacterium tuberculosis with MIC of 1.72 μM and inhibited four pathogenic bacteria with MIC of less than 1 μM.  相似文献   

11.
We previously showed that broadly neutralizing anti-HIV-1 antibody 2G12 (human IgG1) naturally forms dimers that are more potent than monomeric 2G12 in in vitro neutralization of various strains of HIV-1. In this study, we have investigated the protective effects of monomeric versus dimeric 2G12 against HIV-1 infection in vivo using a humanized mouse model. Our results showed that passively transferred, purified 2G12 dimer is more potent than 2G12 monomer at preventing CD4 T cell loss and suppressing the increase of viral load following HIV-1 infection of humanized mice. Using humanized mice bearing IgG "backpack" tumors that provided 2G12 antibodies continuously, we found that a sustained dimer concentration of 5-25 μg/ml during the course of infection provides effective protection against HIV-1. Importantly, 2G12 dimer at this concentration does not favor mutations of the HIV-1 envelope that would cause the virus to completely escape 2G12 neutralization. We have therefore identified dimeric 2G12 as a potent prophylactic reagent against HIV-1 in vivo, which could be used as part of an antibody cocktail to prevent HIV-1 infection.  相似文献   

12.
In the current study, twenty-two compounds based upon 3-hydroxy-3-(2-oxo-2-phenylethyl)indolin-2-one nucleus were designed, synthesized and in vitro evaluated for HIV-1 RT inhibition and anti-HIV-1 activity. Compounds 3d, 5c and 5e demonstrated encouraging potency against RT enzyme as well as HIV-1 in low micromolar to nanomolar concentration with good to excellent safety index. Structure activity relationship studies revealed that halogens such as bromo or chloro at 5th the position of oxindole ring remarkably enhanced the potency against RT. Moreover, methoxy or chloro groups at the ortho position of phenyl ring also significantly favored RT inhibition activity. Seven compounds (3b, 3c, 3d, 3e, 5b, 5c and 5e) with better anti-HIV-1 potency were tested against the mutant HIV-1K103N strain. The putative binding mode, as well as interaction patterns of the best active compound 5c with wild HIV-1 RT were studied via docking studies.  相似文献   

13.
A series of novel 1,4-disubstituted piperidine/piperazine derivatives were designed, synthesized and evaluated for their in vitro activities against HIV-1 Bal (R5) infection in CEMX174 5.25M7 cells. A majority of these compounds showed potent anti-HIV-1 activities with IC(50) at nanomolar levels. N-(4-Fluoro-benzyl)piperazine analog B07 hydrochloride exhibited potency against HIV-1 activity similar to that of TAK-220 hydrochloride, but it had much better water solubility (25 mg/ml in phosphate sodium buffer at 25 °C) and oral bioavailability (56%) than TAK-220 hydrochloride (a solubility of 2 mg/ml and oral bioavailability of 1.4%). These results suggest that B07 hydrochloride may serve as a better lead for the development of new anti-HIV-1 therapies or microbicides for treatment and prevent of HIV-1 infection.  相似文献   

14.
Chen Y  Cao L  Zhong M  Zhang Y  Han C  Li Q  Yang J  Zhou D  Shi W  He B  Liu F  Yu J  Sun Y  Cao Y  Li Y  Li W  Guo D  Cao Z  Yan H 《PloS one》2012,7(4):e34947
For over 30 years, HIV/AIDS has wreaked havoc in the world. In the absence of an effective vaccine for HIV, development of new anti-HIV agents is urgently needed. We previously identified the antiviral activities of the scorpion-venom-peptide-derived mucroporin-M1 for three RNA viruses (measles viruses, SARS-CoV, and H5N1). In this investigation, a panel of scorpion venom peptides and their derivatives were designed and chosen for assessment of their anti-HIV activities. A new scorpion venom peptide derivative Kn2-7 was identified as the most potent anti-HIV-1 peptide by screening assays with an EC(50) value of 2.76 μg/ml (1.65 μM) and showed low cytotoxicity to host cells with a selective index (SI) of 13.93. Kn2-7 could inhibit all members of a standard reference panel of HIV-1 subtype B pseudotyped virus (PV) with CCR5-tropic and CXCR4-tropic NL4-3 PV strain. Furthermore, it also inhibited a CXCR4-tropic replication-competent strain of HIV-1 subtype B virus. Binding assay of Kn2-7 to HIV-1 PV by Octet Red system suggested the anti-HIV-1 activity was correlated with a direct interaction between Kn2-7 and HIV-1 envelope. These results demonstrated that peptide Kn2-7 could inhibit HIV-1 by direct interaction with viral particle and may become a promising candidate compound for further development of microbicide against HIV-1.  相似文献   

15.
Chitooligosaccharides are nontoxic and water-soluble compounds obtained by enzymatic degradation of chitosan, which is derived from chitin by a deacetylation process. Chitooligosaccharides possess broad range of activities such as antitumour, antifungal, antibacterial activities. Sulfated chitooligosaccharides (SCOSs) with different molecular weights were synthesized by a random sulfation reaction. In the present study, anti-HIV-1 properties of SCOSs and the impact of molecular weight on their inhibitory activity were investigated. SCOS III (MW 3-5 kDa) was found to be the most effective compound to inhibit HIV-1 replication. At nontoxic concentrations, SCOS III exhibited remarkable inhibitory activities on HIV-1-induced syncytia formation (EC50 2.19 μg/ml), lytic effect (EC50 1.43 μg/ml), and p24 antigen production (EC50 4.33 μg/ml and 7.76 μg/ml for HIV-1RF and HIV-1Ba-L, respectively). In contrast, unsulfated chitooligosaccharides showed no activity against HIV-1. Furthermore, it was found that SCOS III blocked viral entry and virus-cell fusion probably via disrupting the binding of HIV-1 gp120 to CD4 cell surface receptor. These results suggest that sulfated chitooligosaccharides represent novel candidates for the development of anti-HIV-1 agent.  相似文献   

16.
We prepared two kinds of sulfated silk fibroins, SclFib30 and SclFib31, which contain different amounts of sulfate. These sulfated silk fibroins have anti-HIV-1 activity in vitro, apparently due to interference with the adsorption of virus particles to CD4+ cells, and completely blocked virus binding to the cells at a concentration of 100 μg/ml. Sulfated fibroins also abolished cell-to-cell infection-induced syncytium formation upon cocultivation of MOLT-4 and MOLT-4/HIV-1IIIB cells, suggesting that they would interfere with gp120 and prevent the formation of gp120/CD4 complex. Silk is used in biomaterials such as surgical sutures and is believed to be a safe material for humans. In accordance with low anticoagulant activity and high anti-HIV-1 activity against both X4 HIV-1 and R5 HIV-1 strains, sulfated silk fibroins have potential as antiviral material such for a vaginal anti-HIV formulation.  相似文献   

17.
SAR studies for the exploration a novel class of anti-human immunodeficiency virus type 1 (HIV-1) agents based on the hematoxylin structure (1) are described. The systematic deoxygenations of 1 including asymmetric synthesis were conducted to obtain a compound showing high potencies for inhibiting the nuclear import and viral replication as anti-HIV-1 agent. Among all, C-3-deoxygenated analog 16 exhibited most promising biological activities as anti-HIV-1 agent such as lower cytotoxicity (16:1; >80:40 μM), stronger inhibition of nuclear import (0.5:1.3 μM), and viral replication in HIV-1-infected TZM-bl cells (24.6:100 μM), human peripheral blood mononuclear cells (PMBCs) (30.1 μM: toxic). Different spectra of inhibitory activities against infected three healthy humans macrophages with high (donor A) and low (donor B and C) amounts of virus were also observed. Thus 16 showed 10-times stronger activity than 1 (16:1; 0.1:<1.0 μM) in the case of A, while 16 and 1 showed comparable activities in the cases of B and C (>0.01 and >0.00 1μM). The comparison of the inhibition of viral p24 antigen production was clearly indicated that compound 16 is at least twofold more potent anti-viral activity than 1. Thus, structures and actions of deoxy analogs particularly 16 could provide valuable information for the development of a novel class of anti-HIV-1 agents.  相似文献   

18.
In the present study, fifteen novel 3-(6-methoxy-3,4-dihydroquinolin-1(2H)-yl)-1-(piperazin-1-yl)propan-1-one (6a-o) derivatives were designed as inhibitor of HIV-1 RT using ligand based drug design approach and in-silico evaluated for drug-likeness properties. Designed compounds were synthesized, characterized and in-vitro evaluated for RT inhibitory activity against wild HIV-1 RT strain. Among the tested compounds, four compounds (6a, 6b, 6j and 6o) exhibited significant inhibition of HIV-1 RT (IC50  10 μg/ml). All synthesized compounds were also evaluated for anti-HIV-1 activity as well as cytotoxicity on T lymphocytes, in which compounds 6b and 6l exhibited significant anti-HIV activity (EC50 values 4.72 and 5.45 μg/ml respectively) with good safety index.Four compounds (6a, 6b, 6j and 6o) found significantly active against HIV-1 RT in the in-vitro assay were in-silico evaluated against two mutant RT strains as well as one wild strain. Further, titled compounds were evaluated for in-vitro antibacterial (Escherichia coli, Pseudomonas putida, Staphylococcus aureus and Bacillus cereus) and antifungal (Candida albicans and Aspergillus niger) activities.  相似文献   

19.
4,5,6,7-Tetrahydro-5-methylimidazo[4,5,1-jk][1,4]benzodiazepin-2(1 H)-ones (TIBO), 1, have been shown to significantly inhibit HIV-1 replication, as reported in detail in our prior publications. Since our earlier reports, we have modified the TIBO structures 1 by removing the 5-membered ring of 1, generating 1,3,4,5-tetrahydro-2H-1,4-benzodiazepin-2-ones (TBO), 4, a bicyclic series of compounds. Although compounds 4 possess modest activity when compared to TIBO analogues 1, they clearly demonstrated significant anti-HIV-1 activity.  相似文献   

20.
The anti-HIV-1 activities of butanol, hexane, chloroform and water extracts from four widely used folk medicinal plants (Sophora flavescens, Tulipa edulis, Herba ephedra, and Pachyma hoelen Rumph) were evaluated in this study. The hexane extract of Pachyma hoelen Rumph, PH-4, showed effective inhibition against HIV-1. The 50% effective concentration (EC50) of PH-4 was 37.3 μg/ml in the p24 antigen assay and 36.8% in the HIV-1 recombinant RT activity test (at 200 μg/ml). In addition, the PH-4 showed the protective effect on the infected MT-4 cells, with a 58.2% rate of protection. The 50% cytotoxic concentration (CC50) of PH-4 was 100.6 μg/ml. These results suggest that PH-4 from Pachyma hoelen Rumph might be the candidate for the chemotherapy agent against HIV-1 infection with further study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号