首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We have examined the structure of S-layers isolated from Sulfolobus acidocaldarius using atomic force microscopy (AFM) and transmission electron microscopy (TEM). From the AFM images, we were able to directly observe individual dimers of the crystal, defects in the crystal structure, and twin boundaries. We have identified two types of boundaries, one defined by a mirror plane and the other by a glide plane. This work shows that twin boundaries are highly structured regions that are directly related to the organization of units within each crystal domain. Projection maps from TEM images have shown that there are significant differences in the final average maps has allowed us to relate high magnification views obtained by AFM to the relatively high resolution information obtained by electron microscopy and image processing.  相似文献   

2.
Flat substrate surfaces are a key to successful imaging of biological macromolecules by atomic force microscopy (AFM). Although usable substrate surfaces have been prepared for still imaging of immobilized molecules, surfaces that are more suitable have recently been required for dynamic imaging to accompany the progress of the scan speed of AFM. In fact, the state-of-the-art high-speed AFM has achieved temporal resolution of 30 ms, a capacity allowing us to trace molecular processes played by biological macromolecules. Here, we characterize three types of streptavidin two-dimensional crystals as substrates, concerning their qualities of surface roughness, uniformity, stability, and resistance to nonspecific protein adsorption. These crystal surfaces are commonly resistant to nonspecific protein adsorption, but exhibit differences in other properties to some extent. These differences must be taken into consideration, but these crystal surfaces are still useful for dynamic AFM imaging, as demonstrated by observation of calcium-induced changes in calmodulin, GroES binding to GroEL, and actin polymerization on the surfaces.  相似文献   

3.
Atomic force microscopy (AFM) was used to obtain micrographs of dried bacteria in air, and of living ones in their culture medium. Images of dried bacteria were very similar to images obtained elsewhere by the much more complicated cryoetching preparation technique for transmission electron microscopy. Living bacteria were immobilized on a poly-L-lysine film, and directly observed in their culture medium at a resolution unattainable by any other technique applicable to living material. The images were similar to those obtained in scanning electron microscopy where the specimen must be fixed, dried and coated with conductive material, and as a result, no longer viable.  相似文献   

4.
A maximum likelihood approach to two-dimensional crystals   总被引:1,自引:0,他引:1  
Maximum likelihood (ML) processing of transmission electron microscopy images of protein particles can produce reconstructions of superior resolution due to a reduced reference bias. We have investigated a ML processing approach to images centered on the unit cells of two-dimensional (2D) crystal images. The implemented software makes use of the predictive lattice node tracking in the MRC software, which is used to window particle stacks. These are then noise-whitened and subjected to ML processing. Resulting ML maps are translated into amplitudes and phases for further processing within the 2dx software package. Compared with ML processing for randomly oriented single particles, the required computational costs are greatly reduced as the 2D crystals restrict the parameter search space. The software was applied to images of negatively stained or frozen hydrated 2D crystals of different crystal order. We find that the ML algorithm is not free from reference bias, even though its sensitivity to noise correlation is lower than for pure cross-correlation alignment. Compared with crystallographic processing, the newly developed software yields better resolution for 2D crystal images of lower crystal quality, and it performs equally well for well-ordered crystal images.  相似文献   

5.
Low dose cryoelectron microscopy has been used to record images and electron diffraction patterns of frozen hydrated crystals of the single-stranded DNA binding protein gp32*I. Fourier transforms from 13 image areas, corresponding to approximately 40,000 unit cells, were aligned by a minimal phase residual search and merged by vector addition in reciprocal space. Phases from the resulting composite transform were combined with amplitudes from electron diffraction patterns to reconstruct the projected mass density of the gp32*I crystal at 8.4 A resolution.  相似文献   

6.
Structural studies of CaATPase from sarcoplasmic reticulum have so far been restricted to low resolution due to the poor order of two-dimensional crystal forms. However, we report that three-dimensional microcrystals of detergent-solubilized CaATPase diffract to 7.2 A in x-ray powder patterns and may therefore provide an opportunity to study CaATPase structure at higher resolutions. In the present study, we have characterized the symmetry and molecular packing of negatively stained crystals by electron microscopy (em). By altering the detergent-to-lipid ratio, different sized crystals were produced, which adhere to an em grid in different orientations. Thus, we obtained micrographs of three different projections and from these determined unit cell dimensions to be 151 X 51 X 158 A and the three-dimensional space group to be C2 with an angle beta very close to 90 degrees; x-ray powder patterns of hydrated, unstained crystals yielded dimensions of 166 X 58 X 164 A. Micrographs from each of two principal projections were averaged to produce two-dimensional density maps. Based on these maps and on the previously determined low-resolution structure of CaATPase, a packing diagram for these three-dimensional crystals is presented and major intermolecular contacts are proposed.  相似文献   

7.
Visualization of RNA crystal growth by atomic force microscopy.   总被引:2,自引:0,他引:2       下载免费PDF全文
The crystallization of transfer RNA (tRNA) was investigated using atomic force microscopy (AFM) over the temperature range from 4 to 16 degrees C, and this produced the first in situ AFM images of developing nucleic acid crystals. The growth of the (110) face of hexagonal yeast tRNAPhe crystals was observed to occur at steps on vicinal hillocks generated by multiple screw dislocation sources in the temperature range of 13.5-16 degrees C. Two-dimensional nucleation begins to dominate at 13.5 degrees C, with the appearance of three-dimensional nuclei at 12 degrees C. The changes in growth mechanisms are correlated with variations in supersaturation which is higher in the low temperature range. Growth of tRNA crystals was characterized by a strong anisotropy in the tangential step movement and transformation of growth modes on single crystals were directly observed by AFM over the narrow temperature range utilized. Finally, lattice resolution images of the molecular structure of surface layers were recorded. The implications of the strong temperature dependence of tRNAPhe crystal growth are discussed in view of improving and better controlling crystallization of nucleic acids.  相似文献   

8.
Thin, three-dimensional crystals of CaATPase have been studied at high resolution by electron crystallography. These crystals were grown by adding purified CaATPase to appropriate concentrations of lipid, detergent and calcium. A thin film of crystals was then rapidly frozen and maintained in the frozen-hydrated state during electron microscopy. The resulting electron diffraction patterns extend to 4.1 A resolution and images contain phase data to 6 A resolution. By combining Fourier amplitudes from electron diffraction patterns with phases from images, a density map has been calculated in projection. Comparison of this map from unstained crystals with a previously determined map from negatively stained crystals reveals distinct contributions from intramembranous and extramembranous protein domains. On the basis of this distinction and of the packing of molecules in the crystal, we have proposed a specific arrangement for the ten alpha-helices that have been suggested as spanning the bilayer.  相似文献   

9.
Atomic force microscopy (AFM) images at the molecular level have been obtained for a number of different protein and virus crystals. They can be utilized in some special cases to obtain information useful to crystal structure analyses by x-ray diffraction. In particular, questions of space group enantiomer, the packing of molecules within a unit cell, the number of molecules per asymmetric unit, and the dispositions of multiple molecules within the asymmetric unit may be resolved. In addition, because of the increasing sensitivity and resolution of the AFM technique, some molecular features of very large asymmetric units may be within reach. We describe here high-resolution studies, using AFM, to visualize individual molecules and viruses in their crystal lattices. These investigations included fungal lipase, lysozyme, thaumatin, canavalin, and satellite tobacco mosaic virus (STMV).  相似文献   

10.
The investigation of Protein A and antibody adsorption on surfaces in a biological environment is an important and fundamental step for increasing biosensor sensitivity and specificity. The atomic force microscope (AFM) is a powerful tool that is frequently used to characterize surfaces coated with a variety of molecules. We used AFM in conjunction with scanning electron microscopy to characterize the attachment of protein A and its subsequent binding to the antibody and Salmonella bacteria using a gold quartz crystal. The rms roughness of the base gold surface was determined to be approximately 1.30 nm. The average step height change between the solid gold and protein A layer was approximately 3.0 +/- 1.0 nm, while the average step height of the protein A with attached antibody was approximately 6.0 +/- 1.0 nm. We found that the antibodies did not completely cover the protein A layer, instead the attachment follows an island model. Salt crystals and water trapped under the protein A layer were also observed. The uneven adsorption of antibodies onto the biosensor surface might have led to a decrease in the sensitivity of the biosensor. The presence of salt crystals and water under the protein A layer may deteriorate the sensor specificity. In this report, we have discussed the application and characterization of protein A bound to antibodies which can be used to detect bacterial and viral pathogens.  相似文献   

11.
Atomic force microscopy (AFM) is used to characterize the structure and interactions of clathrin triskelia. Time sequence images of individual, wet triskelia resting on mica surfaces clearly demonstrate conformational fluctuations of the triskelia. AFM of dried samples yields images having nanometric resolution comparable to that obtainable by electron microscopy of shadowed samples. Increased numbers of triskelion dimers and assembly intermediates, as well as structures having dimensions similar to those of clathrin cages, are observed when the triskelia were immersed in a low salt, low pH buffer. These entities have been quantified by AFM protein volume computation.

Structured summary

MINT-7299119, MINT-7299136:Clathrin (uniprotkb:P49951) and Clathrin (uniprotkb:P49951) bind (MI:0407) by atomic force microscopy (MI:0872)  相似文献   

12.
The ultrastructure of isolated fibrils of Chondrosia reniformis sponge collagen was investigated by collecting characteristic data, such as fibril thickness, width, D-band periodicity, and height modulation, using atomic force microscopy (AFM) and transmission electron microscopy (TEM). Therefore an adapted pre-processing of the insoluble collagen into homogeneous suspensions using neutral buffer solutions was essential, and several purification steps have been developed. Fourier transform infrared reflection-absorption spectroscopy (FT-IRAS) of the purified sponge collagen showed remarkable analogy of peak positions and intensities with the spectra of fibrillar calf skin type I collagen, despite the diverse phylogenetic and evolutionary origin. The sponge collagen's morphology is compared with that of other fibrillar collagens, and the typical banding of the separated single fibrils is discussed by comparison of topographical data obtained using AFM and corresponding TEM investigations using common staining methods. As the TEM images of the negatively stained fibrils showed alternating dark and light bands, AFM revealed a characteristic periodicity of protrusions (overlap zones) followed by two equal interband regions (gap zones). AFM and TEM results were correlated and multiperiodicity in Chondrosia collagen's banding is demonstrated. The periodic dark bands observed in TEM images correspond directly to the periodic protrusions seen by AFM. As a result, we provide an improved, updated model of the collagen's structure and organization.  相似文献   

13.
Summary Atomic force microscopy (AFM) holds unique prospects for biological microscopy, such as nanometer resolution and the possibility of measuring samples in (physiological) solutions. This article reports the results of an examination of various types of plant material with the AFM. AFM images of the surface of pollen grains ofKalanchoe blossfeldiana andZea mays were compared with field emission scanning electron microscope (FESEM) images. AFM reached the same resolutions as FESEM but did not provide an overall view of the pollen grains. Using AFM in torsion mode, however, it was possible to reveal differences in friction forces of the surface of the pollen grains. Cellulose microfibrils in the cell wall of root hairs ofRaphanus sativus andZ. mays were imaged using AFM and transmission electron microscopy (TEM). Imaging was performed on specimens from which the wall matrix had been extracted. The cell wall texture of the root hairs was depicted clearly with AFM and was similar to the texture known from TEM. It was not possible to resolve substructures in a single microfibril. Because the scanning tip damaged the fragile cells, it was not possible to obtain images of living protoplasts ofZ. mays, but images of fixed and dried protoplasts are shown. We demonstrate that AFM of plant cells reaches resolutions as obtained with FESEM and TEM, but obstacles still have to be overcome before imaging of living protoplasts in physiological conditions can be realized.Abbreviations AFM atomic force microscope - FESEM field emission scanning electron microscope - PyMS pyrolysis mass spectrometry - TEM transmission electron microscope  相似文献   

14.
In situ atomic force microscopy (AFM) was used to investigate surface evolution during the growth of single crystals of turnip yellow mosaic virus (TYMV). Growth of the (101) face of TYMV crystals proceeded by two-dimensional nucleation. The molecular structure of the step edges and adsorption of individual virus particles and their aggregates on the crystalline surface were recorded. The surfaces of individual virions within crystals were visualized and seen to be quite distinctive with the hexameric and pentameric capsomers of the T = 3 capsids being clearly resolved. This, so far as we are aware, is the first direct visualization of the capsomere structure of a virus by AFM. In the course of recording the in situ development of the crystals, a profound restructuring of the surface arrangement was observed. This transformation was highly cooperative in nature, but the transitions were unambiguous and readily explicable in terms of an organized loss of classes of virus particles from specific lattice positions. In some cases areas of a single crystal surface were recorded in which were captured successive phases of the transition. We believe this provides the first visual record of a cooperative restructuring of the surface of a supramolecular crystal.  相似文献   

15.
Atomic force microscopy (AFM) allows the observation of biological material without fixation procedures. Here we present AFM images of ribonucleoproteins (nucleocapsids) derived from a plant infecting RNA virus (tomato spotted wilt virus, TSWV), which have been recorded in contact mode. The nucleocapsids, prepared from systemically infected leaves of tobacco, were spreaded on a glass surface and dried in air, and appeared as regularly formed rings, resembling the proposed pseudocircular and panhandle structure of encapsidated genomic RNA. Average values between 1300 and 2200 nm of nucleocapsid lengths could be related to dimensions estimated by electron microscopy, thereby validating a filamentous configuration of the TSWV ribonucleoproteins. However, to our knowledge regular, ring-like forms of ribonucleoproteins have not been obtained by electron microscopy, which rather showed an amorphous structure of the virus particles. Hence, the AFM approach provides a starting point for further detailed studies on TSWV ribonucleoprotein complexes.  相似文献   

16.
Gauldie RW 《Tissue & cell》1999,31(2):138-153
Atomic force microscopy (AFM) of the crystalline ultrastructure of otoliths fromPagrus major(Sparidae),Macruronus novaezelandiae(Merlucciidae),Oncorhynchus tshawytscha(Salmonidae),Sebastes alutus(Scorpaenidae), andHoplostethus atlanticus(Trachichthyidae) showed regular deposition of lamellae in the size range 13-490 nm. The orientation of lamellae in the {010} plane was the same as lamellae in crystals of mineral aragonite. Lamellae in mineral aragonite were in the size range 15-45 nm. Lamellae observed in the otolith ofM. novaezelandiaeby transmission electron microscopy showed a range of widths (25-225 nm) similar to lamellae observed by AFM. The observed lamella widths were in the size range that has been described for sub-daily and daily microincrements in otoliths. Observed lamellae widths were also in the size range of alpha-recoil trajectories of(222)Rn and provide a potential diffusion sink correction for the(222)Rn losses in radionuclide method of ageing otoliths. Comparison of the orientations of lamellae to templates based on the Bragg unit cell structure of twinned aragonite indicated that the lamellae resulted from polysynthetic twinning on the {010} aragonite crystal face. Additional cyclic twinning occurred on the {110} face of the aragonite crystal and sometimes led to pseudohexagonal crystals, whose sizes were orders of magnitude larger than lamellae. The organic matrix of the otolith was visible by atomic force and transmission electron microscopy at the nanometer level of resolution, but the organic matrix was confined to the {110} twinning plane of symmetry of the otolith crystal.  相似文献   

17.
Two-dimensional crystallization on lipid monolayers is a versatile tool to obtain structural information of proteins by electron microscopy. An inherent problem with this approach is to prepare samples in a way that preserves the crystalline order of the protein array and produces specimens that are sufficiently flat for high-resolution data collection at high tilt angles. As a test specimen to optimize the preparation of lipid monolayer crystals for electron microscopy imaging, we used the S-layer protein sbpA, a protein with potential for designing arrays of both biological and inorganic materials with engineered properties for a variety of nanotechnology applications. Sugar embedding is currently considered the best method to prepare two-dimensional crystals of membrane proteins reconstituted into lipid bilayers. We found that using a loop to transfer lipid monolayer crystals to an electron microscopy grid followed by embedding in trehalose and quick-freezing in liquid ethane also yielded the highest resolution images for sbpA lipid monolayer crystals. Using images of specimens prepared in this way we could calculate a projection map of sbpA at 7A resolution, one of the highest resolution projection structures obtained with lipid monolayer crystals to date.  相似文献   

18.
Image shift due to beam-induced specimen charging has become the most severe problem in electron microscopy for imaging two-dimensional (2D) crystals of biological macromolecules, especially in the case of highly tilted specimens. Image shift causes diffraction spots perpendicular to the tilt axis to disappear even at medium or low resolution. The yield of good images from tilted specimens prepared on a single layer of continuous carbon support film is therefore very low. In this paper, we have used 2D crystals of aquaporin-4 to investigate the effect of a carbon sandwich preparation method on specimen charging. We find that a larger number of images show sharp diffraction spots perpendicular to the tilt axis if crystals are placed in between two sheets of carbon film as compared to images taken from specimens prepared by the conventional single carbon support film technique. Our results demonstrate that the reproducible carbon sandwich preparation technique overcomes the severe specimen charging problem and thus has the potential to significantly speed up structure analysis by electron crystallography.  相似文献   

19.
We describe the electron microscopy of a crystalline assembly of an alpha-helical coiled-coil protein extracted from the ootheca of the praying mantis. Electron diffraction patterns of unstained crystals show crystal lattice sampling of the coiled-coil molecular transform to a resolution beyond 1.5 A. Using a "spot-scan" method of electron imaging, micrographs of unstained crystals have been obtained that visibly diffract laser light from crystal spacings as small as 4.3 A. A projection map was calculated to 4 A using electron diffraction amplitudes and phases from computer-processed images. The projection map clearly shows modulations in density arising from the 5.1 A alpha-helical repeat, the first time this type of modulation has been revealed by electron microscopy. The crystals have p2 plane group symmetry with a = 92.4 A, b = 150.7 A, y = 92.4 degrees. Examination of tilted specimens shows that c is approximately 18 A, indicating that the unit cell is only one molecule thick. A preliminary interpretation shows tightly packed molecules some 400 A long lying with their long axes in the plane of the projection. The molecules have a coiled-coil configuration for most of their length. The possible modes of packing of the molecules in three dimensions are discussed.  相似文献   

20.
Fujita M  Doi Y 《Biomacromolecules》2003,4(5):1301-1307
In situ annealing and melting of folded-chain single crystals of poly(l-lactic acid) (PLLA) was examined by temperature-controlled atomic force microscopy (AFM). Prominent changes in the crystal appearance during annealing could be followed in real time by the AFM at temperatures above the original crystallization temperature. Thickening of the crystal edges could be occasionally observed, and this indicates that the crystal edges are less perfect than the central, well-ordered regions. At higher annealing temperatures, melting of the unthickened part started. The melting of the unthickened region progressed from the boundaries of the thickened portion normal to the growth face, rather than to the folding surfaces. In addition, it is suggested that melting also initiates at defective or distorted sites in the crystal as revealed by transmission electron microscopy (TEM) and AFM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号