首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
The mixing of phosphatidylserine (PS) and phosphatidylcholine (PC) in fluid bilayer model membranes was studied by measuring binding of aqueous Ca2+ ions. The measured [Ca2+]aq was used to derive the activity coefficient for PS, gamma PS, in the lipid mixture. For (16:0, 18:1) PS in binary mixtures with either (16:0, 18:1)PC, (14:1, 14:1)PC, or (18:1, 18:1)PC, gamma PS > 1; i.e., mixing is nonideal, with PS and PC clustered rather than randomly distributed, despite the electrostatic repulsion between PS headgroups. To understand better this mixing behavior, Monte Carlo simulations of the PS/PC distributions were performed, using Kawasaki relaxation. The excess energy was divided into an electrostatic term Uel and one adjustable term including all other nonideal energy contributions, delta Em. Uel was calculated using a discrete charge theory. Kirkwood's coupling parameter method was used to calculate the excess free energy of mixing, delta GEmix, hence In gamma PS,calc. The values of In gamma PS,calc were equalized by adjusting delta Em in order to find the simulated PS/PC distribution that corresponded to the experimental results. We were thus able to compare the smeared charge calculation of [Ca2+]surf with a calculation ("masked evaluation method") that recognized clustering of the negatively charged PS: clustering was found to have a modest effect on [Ca2+]surf, relative to the smeared charge model. Even though both PS and PC tend to cluster, the long-range nature of the electrostatic repulsion reduces the extent of PS clustering at low PS mole fraction compared to PC clustering at an equivalent low PC mole fraction.  相似文献   

2.
The nonideal mixing of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoserine, (16:0, 18:1)PS, and 1,2-didodecenoyl-sn-glycero-3-phosphocholine, (12:1, 12:1)PC, in fluid lamellar model membranes was studied by measuring binding of aqueous Ca2+ ions and by x-ray diffraction. A region of two-phase coexistence was found by invariance of the aqueous concentration and by the appearance of two sets of lamellar spacings. The phases were identified as fluid from the diffuse x-ray diffraction in the wide-angle region. The width of the two-phase coexistence region was greater at higher ionic strength. In 800 mM KCl, the phase boundaries were at PS mole fraction 0.5 and 0.8. In 100 mM KCl, the phase boundaries were at PS mole fraction 0.52 and 0.62. Monte Carlo simulations of the lateral distributions of these PS/PC mixtures show pronounced clustering of the lipids.  相似文献   

3.
A simulation program using least-squares minimization was developed to calculate and fit heat capacity (cp) curves to experimental thermograms of dilute aqueous dispersions of phospholipid mixtures determined by high-sensitivity differential scanning calorimetry. We analyzed cp curves and phase diagrams of the pseudobinary aqueous lipid systems 1,2-dimyristoyl-sn-glycero-3-phosphatidylglycerol/ 1,2-dipalmitoyl-sn-glycero-3phosphatidylcholine (DMPG/DPPC) and 1,2-dimyristoyl-sn-glycero-3-phosphatidic acid/1, 2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DMPA/DPPC) at pH 7. The simulation of the cp curves is based on regular solution theory using two nonideality parameters rho g and rho l for symmetric nonideal mixing in the gel and the liquid-crystalline phases. The broadening of the cp curves owing to limited cooperativity is incorporated into the simulation by convolution of the cp curves calculated for infinite cooperativity with a broadening function derived from a simple two-state transition model with the cooperative unit size n = delta HVH/delta Hcal as an adjustable parameter. The nonideality parameters and the cooperative unit size turn out to be functions of composition. In a second step, phase diagrams were calculated and fitted to the experimental data by use of regular solution theory with four different model assumptions. The best fits were obtained with a four-parameter model based on nonsymmetric, nonideal mixing in both phases. The simulations of the phase diagrams show that the absolute values of the nonideality parameters can be changed in a certain range without large effects on the shape of the phase diagram as long as the difference of the nonideality parameters for rho g for the gel and rho l for the liquid-crystalline phase remains constant. The miscibility in DMPG/DPPC and DMPA/DPPC mixtures differs remarkably because, for DMPG/DPPC, delta rho = rho l -rho g is negative, whereas for DMPA/DPPC this difference is positive. For DMPA/DPPC, this difference is interpreted as being caused by a negative rho g value, indicating complex formation of unlike molecules in the gel phase.  相似文献   

4.
Substances able to modulate multidrug resistance (MDR), including antipsychotic phenothiazine derivatives, are mainly cationic amphiphiles. The molecular mechanism of their action can involve interactions with transporter proteins as well as with membrane lipids. The interactions between anionic phospholipids and MDR modulators can be crucial for their action. In present work we study interactions of 2-trifluoromethyl-10-(4-[methanesulfonylamid]buthyl)-phenothiazine (FPhMS) with neutral (PC) and anionic lipids (PG and PS). Using microcalorimetry, steady-state and time-resolved fluorescence spectroscopy we show that FPhMS interacts with all lipids studied and drug location in membrane depends on lipid type. The electrostatic attraction between drug and lipid headgroups presumably keeps phenothiazine derivative molecules closer to surface of negatively charged membranes with respect to neutral ones. FPhMS effects on bilayer properties are not proportional to phosphatidylserine content in lipid mixtures. Behavior of equimolar PC:PS mixtures is similar to pure PS bilayers, while 2:1 or 1:2 (mole:mole) PC:PS mixtures resemble pure PC ones.  相似文献   

5.
We present a theoretical analysis of the phase behavior of solutions containing DNA, cationic lipids, and nonionic (helper) lipids. Our model allows for five possible structures, treated as incompressible macroscopic phases: two lipid-DNA composite (lipoplex) phases, namely, the lamellar (L(alpha)(C)) and hexagonal (H(II)(C)) complexes; two binary (cationic/neutral) lipid phases, that is, the bilayer (L(alpha)) and inverse-hexagonal (H(II)) structures, and uncomplexed DNA. The free energy of the four lipid-containing phases is expressed as a sum of composition-dependent electrostatic, elastic, and mixing terms. The electrostatic free energies of all phases are calculated based on Poisson-Boltzmann theory. The phase diagram of the system is evaluated by minimizing the total free energy of the three-component mixture with respect to all the compositional degrees of freedom. We show that the phase behavior, in particular the preferred lipid-DNA complex geometry, is governed by a subtle interplay between the electrostatic, elastic, and mixing terms, which depend, in turn, on the lipid composition and lipid/DNA ratio. Detailed calculations are presented for three prototypical systems, exhibiting markedly different phase behaviors. The simplest mixture corresponds to a rigid planar membrane as the lipid source, in which case, only lamellar complexes appear in solution. When the membranes are "soft" (i.e., low bending modulus) the system exhibits the formation of both lamellar and hexagonal complexes, sometimes coexisting with each other, and with pure lipid or DNA phases. The last system corresponds to a lipid mixture involving helper lipids with strong propensity toward the inverse-hexagonal phase. Here, again, the phase diagram is rather complex, revealing a multitude of phase transitions and coexistences. Lamellar and hexagonal complexes appear, sometimes together, in different regions of the phase diagram.  相似文献   

6.
The interaction of lipid vesicles with uncoated vesicles from bovine brain has been studied by fluorescence energy transfer between fluorescent lipid analogs (NBD-PE, Rh-DOPE), by loss of fluorescence self-quenching (NBD-PE, carboxyfluorescein) and by freeze-fracture electron microscopy. The fluorescence techniques monitor the mixing of membranous lipids and the induced release of encapsulated material. The results demonstrate a mixing of the negatively charged lipid (PA, PS) vesicles with the uncoated vesicles. In parallel with the lipid mixing a release of intravesicularly encapsulated material takes place. Lipid vesicles composed of zwitterionic lipids (PC, DOPC, PC:PE) do not specifically interact with uncoated vesicles. The electron micrographs reveal single fusion events. Studies on the kinetics are consistent with a fusional mechanism of the negatively charged lipid vesicles with uncoated vesicles.  相似文献   

7.
To obtain insight into the potential role of the cytoskeleton on lipid mixing behavior in plasma membranes, the current study explores the influence of physisorbed actin filaments (F-actin) on lipid–lipid phase separations in planar model membrane systems containing raft-mimicking lipid mixtures of well-defined compositions using a complementary experimental approach of epifluorescence microscopy, fluorescence anisotropy, wide-field single molecule fluorescence microscopy, and interfacial rheometry. In particular, we have explored the impact of F-actin on cholesterol (CHOL)–phospholipid interactions, which are considered important for the formation of CHOL-enriched lipid raft domains. By using epifluorescence microscopy, we show that physisorbed filamentous actin (F-actin) alters the domain size of lipid–lipid phase separations in the presence of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylserine (POPS) and cholesterol (CHOL). In contrast, no actin-induced modification in lipid–lipid phase separations is observed in the absence of POPS or when POPS is replaced by another anionic lipid, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylglycerol (POPG). Wide-field single molecule fluorescence microscopy on binary lipid mixtures indicate that PS and PG lipids show similar electrostatic interactions with physisorbed actin filaments. Complementary fluorescence anisotropy experiments on binary PS lipid-containing lipid mixtures are provided to illustrate the actin-induced segregation of anionic lipids. The similarity of electrostatic interactions between actin and both anionic lipids suggests that the observed differences in actin-mediated perturbations of lipid phase separations are caused by distinct PS lipid–CHOL versus PG lipid–CHOL interactions. We hypothesize that the actin cytoskeleton and some peripheral membrane proteins may alter lipid–lipid phase separations in plasma membranes in a similar way by interacting with PS lipids.  相似文献   

8.
Lipid domain formation induced by annexin was investigated in mixtures of phosphatidylcholine (PC), phosphatidylserine (PS), and cholesterol (Chol), which were selected to mimic the inner leaflet of a eukaryotic plasma membrane. Annexins are ubiquitous and abundant cytoplasmic, peripheral proteins, which bind to membranes containing PS in the presence of calcium ions (Ca2+), but whose function is unknown. Prompted by indications of interplay between the presence of cholesterol in PS/PC mixtures and the binding of annexins, we used Monte Carlo simulations to investigate protein and lipid domain formation in these mixtures. The set of interaction parameters between lipids and proteins was assigned by matching experimental observables to corresponding variables in the calculations. In the case of monounsaturated phospholipids, the PS-PC and PC-Chol interactions are weakly repulsive. The interaction between protein and PS was determined based on experiments of annexin binding to PC/PS mixtures in the presence of Ca2+. Based on the proposal that PS and cholesterol form a complex in model membranes, a favorable PS-Chol interaction was postulated. Finally, protein-protein favorable interactions were also included, which are consistent with observations of large, two-dimensional, regular arrays of annexins on membranes. Those net interactions between pairs of lipids, proteins and lipids, and between proteins are all small, of the order of the average kinetic energy. We found that annexin a5 can induce formation of large PS domains, coincident with protein domains, but only if cholesterol is present.  相似文献   

9.
The reason for the enormous lipid variety present in eukaryotic membranes remains largely an enigma. We suggest that its role is to provide an on-off switch for a signaling event at the membrane level. This is achieved through lipid-lipid interactions that convert membrane protein binding and association events into very cooperative processes while maintaining reversibility. We have previously shown [Hinderliter, A., at al. (2001) Biochemistry 40, 4181-4191] that thermodynamic linkage between an intrinsic tendency for lipid demixing and a preferential interaction of a protein with a specific lipid within the mixture leads to dramatic changes in lipid and protein domain formation. Here, we tested the hypothesis that small alterations in lipid chemical structure alter the magnitude of the net interaction free energy (omega(AB)) between unlike lipids in a predictable manner, and that even very small changes in omega(AB) lead to dramatic changes in bilayer organization when coupled with protein binding. We systematically varied the chemical structure of phosphatidylcholine (PC), in mixtures with a fixed phosphatidylserine (PS), by changing the PC acyl chain length and the degree of unsaturation, and examined domain formation upon addition of a peripheral protein, the synaptotagmin I C2A motif. Experimental excimer/monomer ratios (E/M) of pyrene-substituted lipids mimicking the PS were interpreted using Monte Carlo computer simulations. E/M is larger if the PC melting temperature is lower, suggesting that domain formation is a thermodynamic consequence of weak interactions between PC and PS. Consistent with our hypothesis, only very small changes in omega(AB) were required for prediction of large changes in lipid and protein domain formation.  相似文献   

10.
Peripheral proteins can trigger the formation of domains in mixed fluid-like lipid membranes. We analyze the mechanism underlying this process for proteins that bind electrostatically onto a flat two-component membrane, composed of charged and neutral lipid species. Of particular interest are membranes in which the hydrocarbon lipid tails tend to segregate owing to nonideal chain mixing, but the (protein-free) lipid membrane is nevertheless stable due to the electrostatic repulsion between the charged lipid headgroups. The adsorption of charged, say basic, proteins onto a membrane containing anionic lipids induces local lipid demixing, whereby charged lipids migrate toward (or away from) the adsorption site, so as to minimize the electrostatic binding free energy. Apart from reducing lipid headgroup repulsion, this process creates a gradient in lipid composition around the adsorption zone, and hence a line energy whose magnitude depends on the protein's size and charge and the extent of lipid chain nonideality. Above a certain critical lipid nonideality, the line energy is large enough to induce domain formation, i.e., protein aggregation and, concomitantly, macroscopic lipid phase separation. We quantitatively analyze the thermodynamic stability of the dressed membrane based on nonlinear Poisson-Boltzmann theory, accounting for both the microscopic characteristics of the proteins and lipid composition modulations at and around the adsorption zone. Spinodal surfaces and critical points of the dressed membranes are calculated for several different model proteins of spherical and disk-like shapes. Among the models studied we find the most substantial protein-induced membrane destabilization for disk-like proteins whose charges are concentrated in the membrane-facing surface. If additional charges reside on the side faces of the proteins, direct protein-protein repulsion diminishes considerably the propensity for domain formation. Generally, a highly charged flat face of a macroion appears most efficient in inducing large compositional gradients, hence a large and unfavorable line energy and consequently lateral macroion aggregation and, concomitantly, macroscopic lipid phase separation.  相似文献   

11.
The phase diagram of fully hydrated mixtures of dipalmitoylphosphatidylethanolamine and -phosphatidylglycerol was constructed and the coexistence lines of the solidus and liquidus curve calculated based on regular solution theory using two nonideality parameters for each of the phase to account for nonideal and nonsymmetric mixing. Both lipids show nonideal miscibility in the liquid-crystalline phase, while a region of immiscibility exists in the lamellar-gel phase between the mole fraction x(DPPE)=0.05-0.4. Two lines of three-phase coexistence around 35 and 40 degrees C reflects the presence of lipid domains predominantly composed of phosphatidylglycerol as well as of the mixed lipid system. This is reflected in the positive nonideality parameters of the gel phase obtained from the simulation of the phase diagram. Moreover, segregation of pure phosphatidylethanolamine domains was detected in mixtures x(DPPE)>0.9, which formed multilamellar liposomes, while unilamellarity was observed for the mixed lipid systems owing to the presence of the negatively charged phosphatidylglycerol. The packing constraints of these phospholipids, major components of cytoplasmic bacterial membranes, may be of importance in the interaction with various solutes like antimicrobial peptides, and were explained based on the nature of the headgroups and the molecular geometry of the phospholipids.  相似文献   

12.
The interaction of an RGD-containing epitope from the hepatitis A virus VP3 capsid protein and its RGA-analogue with lipid membranes was studied by biophysical methods. Two types of model membrane were used: vesicles and monolayers spread at the air/water interface, with a composition that closely resembles the lipid moiety of hepatocyte membranes: PC/SM/PE/PC (40:33:12:15; PC: 1-palmitoyl-2-oleoylglycero-sn-3-phosphocholine; SM: sphingomyelin from chicken egg yolk; PE, 1,2-dipalmitoyl-phosphatidylethanolamine; PS: L-alpha-phosphatidyl-L-serine from bovine brain). In addition, zwitterionic PC/SM/PE (47:39:14) and cationic PC/SM/PE/DOTAP (40:33:12:15; DOTAP: 1,2-dioleoyl-3-trimethylammonium-propane) membranes were also prepared in order to dissect the electrostatic and hydrophobic components in the interaction. Changes in tryptophan fluorescence, acrylamide quenching, and resonance energy transfer experiments in the presence of vesicles, as well as the kinetics of insertion in monolayers, indicate that both peptides bind to the three types of membrane at neutral and acidic pH; however, binding is irreversible only at low pH. Membrane-destabilizing and fusogenic activities are triggered by acidification at pH 4-6, characteristic of the endosome. Fluorescence experiments show that VP3-RGD and VP3-RGA induce mixing of lipids and leakage or mixing of aqueous contents in anionic and cationic vesicles at pH 4-6, indicating leaky fusion. Interaction with zwitterionic vesicles (PC/SM/PE) results in leakage without lipid mixing, indicating pore formation. Replacement of aspartic acid in the RGD motif by alanine maintains the membrane-destabilizing properties of the peptide at low pH, but not its antigenicity. Since the RGD tripeptide is related to receptor-mediated cell adhesion and antigenicity, results suggest that receptor binding is not a molecular requirement for fusion. The possible involvement of peptide-induced membrane destabilization in the mechanism of hepatitis A virus infection of hepatocytes by the endosomal route is discussed.  相似文献   

13.
To extend our knowledge of model membrane systems based upon one lipid component, multi-lamellar bilayers were made of cholesterol with two phospholipids in equimolar ratio, and the enthalpy change delta H of the main phase transition of the temary mixture was measured by differential scanning calorimetry (DSC) as a function of increasing cholesterol concentration c. The lipids were saturated phosphatidylcholines CnPC of acyl chain length n, and as the n of the two lipids became more different (from C13PC/C14PC to C14PC/C15PC to C14PC/C18PC to C14PC/C19PC) distinct breaks in the delta H versus c plots were observed. These mixtures displayed only one broad DSC endotherm. Mixtures of an unsaturated lipid C18: 1PC (dioleoyl) with C16PC or with C18PC showed two peaks, with each peak being associated with its parent lipid. However, the delta H versus c plots for each of these peaks showed an initial independence of cholesterol concentration followed by a dependence on cholesterol concentration. These results indicate that, in lipid mixtures, the type of interaction of cholesterol with each lipid component depends on the concentration of cholesterol present.  相似文献   

14.
The interaction of platelet talin (P-235) with mixtures of dimyristoylphosphatidylcholine (DMPC), dimyristoylphosphatidylglycerol (DMPG) and dimyristoylphosphatidylserine (DMPS) as well as with pure lipids was studied in reconstituted lipid bilayers. Incorporation of platelet talin into vesicles was achieved by self-assembly during cycles of freeze-thawing of co-dispersions containing vesicles and the purified protein. The yield of protein incorporation as a function of lipid composition was determined by measuring the protein/lipid ratio using protein assay, phosphate determination and gel electrophoresis in parallel. Protein-lipid interactions are monitored by high sensitive differential scanning calorimetry (DSC) measuring (i) the shifts of transition states delta Ts* and delta Tl*, where Ts represents the solidus line, the onset of lipid chain melting, and Tl the liquidus line, the endpoint of chain melting, and (ii) the heats of transition. Cytoplasmic talin differs from a membrane bound form by its ability and mode of lipid interaction. The latter partially penetrates into the hydrophobic region of the bilayer, which renders a low incorporation rate even into neutral lipids. This interaction is greatly enhanced in the presence of charged lipids: a marked shift of Tl occurs due to a selective electrostatic interaction of the protein with the membrane surface. Evidence for a selective binding is also provided by Fourier transform infrared spectroscopy (FTIR). Right-side-out oriented platelet talin can be cleaved by proteinases, which truncate the extrinsic electrostatic binding domain but not the hydrophobic. In addition, reconstituted platelet talin, like in vivo, can be cleaved by thrombin. The interaction of cytoplasmic platelet talin with lipid bilayers is purely electrostatic. Our data suggest that protein reconstitution by freeze-thawing is an equilibrium process and that the protein distribution between the membrane and water is determined by the Nernst distribution law. Consequently, the work of protein transfer from water into the bilayer can be measured as a function of charged lipids.  相似文献   

15.
Fluorescence energy transfer studies reveal that negatively charged lipid vesicles interact with nuclei from mouse liver cells. This interaction was observed with charged lipid vesicles composed of PA or PS but not with the uncharged PC or PE:PC vesicles. The vesicles were prepared by bath sonication and contained either a fluorescent marker in the lipid bilayer or in the vesicular interior. The negatively charged vesicles showed an adsorption to the nuclear membrane visible by fluorescence microscopy. The results obtained by resonance energy transfer experiments are interpreted in terms of a mixing of the lipids from the vesicles with the nuclear membrane. Encapsulation studies documented a staining of the nuclei only if the dye molecules of high or low molecular weight were encapsulated inside negatively charged vesicles. As consequence of the vesicle-nuclei interaction morphological changes on the nuclear surface became visible.  相似文献   

16.
J R Silvius 《Biochemistry》1990,29(12):2930-2938
A novel method that uses a carbazole-labeled fluorescent phosphatidylcholine, which partitions preferentially into liquid-crystalline lipid domains, to monitor the kinetics and the extents of thermotropic and ionotropic lateral phase separations in vesicles combining brominated and nonbrominated phosphatidylcholines (PCs), phosphatidic acids (PAs), and phosphatidylserines (PSs) is described. The calcium-induced segregation of several nonbrominated PA species in liquid-crystalline brominated PC bilayers behaves as a well-defined lateral phase separation; the residual solubility of the PA component in the PC-rich phase in the presence of calcium can vary severalfold depending on the PA acyl chain composition. PC/PS mixtures show a pronounced tendency to form metastable solutions in the presence of calcium, particularly when they contain less than equimolar proportions of PS. This metastability is not readily relaxed by repeated freeze-thawing of vesicles in the presence of calcium, by avidin-mediated contacts between PC/PS vesicles containing biotinylated lipids, or by calcium-induced lateral segregation of PA in the same vesicles. Different PS species exhibit different apparent residual solubilities in liquid-crystalline PC bilayers, ranging from less than 10 mol % for dimyristoyl-PS to ca. 45 mol% for dioleoyl-PS, after prolonged incubations of PC/PS multilamellar vesicles with excess calcium. Results are presented, obtained by using the above lipid-segregation assay and parallel assays of intervesicle lipid mixing, that raise questions concerning the relevance of the equilibrium behavior of calcium-treated PS/PC mixtures to the relatively rapid interactions (fusion and lipid mixing) of PC/PS vesicles that follow initial exposure to calcium.  相似文献   

17.
Phase diagrams of 3-component lipid bilayer mixtures containing cholesterol reveal major differences among the different types of lipids. Here we report that mixtures of cholesterol together with POPC and a high-melting temperature PC or sphingomyelin show different phase behavior from similar mixtures that contain DOPC or di-phytanoyl-PC instead of POPC. In particular, only one region of macroscopic phase coexistence occurs with POPC, a region of coexisting liquid disordered and solid phases, {Lalpha+Lbeta}. Fluorescence microscopy imaging is useful for these studies, but is subject to artifactual light-induced domain formation, as reported by Ayuyan and Cohen [A.G. Ayuyan, F.S. Cohen, Lipid peroxides promote large rafts: Effects of excitation of probes in fluorescence microscopy and electrochemical reactions during vesicle formation, Biophys. J. 91 (2006) 2172-2183.]. This artifact can be attenuated by decreased illumination and low dye concentration. The use of the free radical scavenger n-propyl gallate can reduce the artifact, but this molecule enters the bilayer and itself perturbs the phase behavior. We suggest that the light-induced domain separation artifact might actually arise from pre-existing lipid clusters that are induced to coalesce, and therefore indicates highly nonrandom mixing of the lipid components.  相似文献   

18.
Modulation of bovine milk galactosyltransferase activity by lipids   总被引:3,自引:0,他引:3  
The effect of lipids singly and in combination on the ability of galactosyltransferase to transfer galactose to N-acetyl-D-glucosamine-forming lactosamine and to glucose forming lactose has been studied. Lecithins, as egg phosphatidylcholine (PC), or saturated as dimyristoylphosphatidylcholine and dipalmitoylphosphatidylcholine stimulated the activity of the enzyme to form lactosamine to different extents. Egg PC produced the greatest stimulation of all the lecithins tested. Egg phosphatidic acid (PA) inhibited the activity of the enzyme at very low concentrations of lipid. In mixed vesicles of gel phase or liquid crystalline phase lecithins and egg PA, the acidic lipid was able to overcome the stimulation produced by the lecithins. The dominant effect of the head group was demonstrated by the effects of gel phase dimyristoylphosphatidic acid (DMPA). In mixtures with PC, DMPA also was able to inhibit the enzyme for lactosamine synthesis but higher concentrations of the gel phase DMPA were required for inhibition compared to the liquid crystalline PA. Although the head group appeared to dominate the inhibition, the nature of the acyl chains of the lipid played a secondary role at least. Other acid lipids, phosphatidylserine (PS) and phosphatidylinositol (PI) were much less effective than PA. PS alone inhibited the activity of the enzyme. However, in mixed lipids (PS and egg PC), PS was unable to reverse the stimulation produced by PC while PC was able to reverse the inhibition produced by PS. PI alone had no effect on the enzyme activity. In mixtures with egg PC, the stimulating effect of PC was dominant. In the lactose synthetase reaction, the effect of lipids was similar to that of the lactosamine synthetase, i.e. PC stimulated and PA inhibited activity and in mixtures of PC and PA, the inhibitory effect of PA was dominant.  相似文献   

19.
J E Swanson  G W Feigenson 《Biochemistry》1990,29(36):8291-8297
A simple model system is described that allows measurement of equilibrium Ca2+ binding to multilamellar vesicle mixtures of palmitoyloleoylphosphatidylserine (P,O-PS) and dimyristoleoylphosphatidylcholine (MO,MO-PC). The constraint of the chemical equilibrium among aqueous Ca2+, hydrated P,O-PS/MO,MO-PC, and Ca(PS)2, together with measurements of the Ca2+ concentration in equilibrium with defined PS/PC ratios, enables the determination of the thermodynamic activity of the lipids. The activity coefficient of dilute P,O-PS in PC is analyzed in terms of the partial molal free energy to transfer P,O-PS from an environment of PS to an environment of PC. This study of P,O-PS/MO,MO-PC, by comparison with the earlier study of P,O-PS/P,O-PC [Feigensen, G.W. (1989) Biochemistry 20, 1270-1278], reveals that the excess partial molal free energy to transfer P,O-PS from P,O-PS to P,O-PC is -0.7 kcal mol-1. This free energy change arises in part from the favorable transfer of the negatively charged phosphoserine headgroup from an environment of negative charges to an environment of zwitterions. The contribution of acyl chain mismatch to the partial molal free energy to transfer P,O-PS from P,O-PS to MO,MO-PC is found to be approximately +0.7 kcal mol-1. This value is much larger than that of the excess partial molal free energy of mixing in isotropic solutions of linear hydrocarbons that differ in chain length or unsaturation.  相似文献   

20.
We manipulate lipid bilayer surface charge and gauge its influence on gramicidin A channel conductance by two strategies: titration of the lipid charge through bulk solution pH and dilution of a charged lipid by neutral. Using diphytanoyl phosphatidylserine (PS) bilayers with CsCl aqueous solutions, we show that the effects of lipid charge titration on channel conductance are masked 1) by conductance saturation with Cs+ ions in the neutral pH range and 2) by increased proton concentration when the bathing solution pH is less than 3. A smeared charge model permits us to separate different contributions to the channel conductance and to introduce a new method for "bilayer pKa" determination. We use the Gouy-Chapman expression for the charged surface potential to obtain equilibria of protons and cations with lipid charges. To calculate cation concentration at the channel mouth, we compare different models for the ion distribution, exact and linearized forms of the planar Poisson-Boltzmann equation, as well as the construction of a "Gibbs dividing surface" between salt bath and charged membrane. All approximations yield the intrinsic pKain of PS lipid in 0.1 M CsCl to be in the range 2.5-3.0. By diluting PS surface charge at a fixed pH with admixed neutral diphytanoyl phosphatidylcholine (PC), we obtain a conductance decrease in magnitude greater than expected from the electrostatic model. This observation is in accord with the different conductance saturation values for PS and PC lipids reported earlier (, Biochim. Biophys. Acta. 552:369-378) and verified in the present work for solvent-free membranes. In addition to electrostatic effects of surface charge, gramicidin A channel conductance is also influenced by lipid-dependent structural factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号