首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The activities of digestive protease within the midgut of Mamestra configurata (bertha armyworm) larvae were examined using specific substrates and protease inhibitors. The bulk of the activity was associated with serine proteases comprising trypsin-, chymotrypsin-, and elastase-like enzymes. At least 10-15 serine protease isozymes were detected using one-dimension gelatin gel electrophoresis. Cysteine or aspartic protease activities were not present; however, amino- and carboxypeptidase activities were associated with the midgut extract. Midgut proteases were active in the pH range of 5.0-12.0 with peaks at pH 7.5 and 11.0. In general, the middle region of the midgut exhibited a higher pH (approximately 8.0) than either the posterior or anterior regions (approximately 7.3-7.7). Moulting larvae possessed a neutral gut pH that was 0.5-1.5 units below that of feeding larvae. Degenerate PCR and expressed sequence tag (EST)-based approaches were used to isolate 30 distinct serine protease encoding cDNAs from a midgut-specific cDNA library including 8 putative trypsins, 9 chymotrypsins, 1 elastase, and 12 whose potential activities could not be determined. cDNAs encoding three amino- and two carboxypeptidases were also identified. Larvae feeding upon artificial diet containing 0.2% soybean trypsin inhibitor experienced a significant delay in development.  相似文献   

2.
The proteolytic enzymes in the gut of the banana weevil, Cosmopolites sordidus (Germar) (Coleoptera: Curculionidae), have been characterized. Both larvae and adults rely on a complex proteolytic system based on at least cathepsin D‐, cathepsin B‐, trypsin‐, chymotrypsin‐, leucine aminopeptidase‐, carboxypeptidase A‐, and carboxypeptidase B‐like activities. All endoproteolytic activities were higher in the anterior section of the gut, whereas the exopeptidases were evenly distributed in the anterior and middle sections, and almost no activity was detected in the posterior section. Gelatin‐containing gels confirmed the spatial organization of the proteolytic digestive process. According to this proteolytic profile, the STI (soybean Kunitz trypsin inhibitor) was tested in vivo to establish its potential as a resistance factor against C. sordidus. Newly hatched larvae fed on diets containing 0.2% (w/w) STI experience lower survival rates and display significant reductions in larval growth. Biochemical analysis carried out on guts of larvae reared on STI‐treated diet showed a reduction of trypsin‐like activity compared to that from larvae fed on control diet. This decrease was compensated with an induction of cathepsin B, whereas cathepsin D, chymotrypsin, and leucine aminopeptidase were not affected. These results are discussed as a basis for selecting appropriate inhibitors to obtain transgenic banana and plantain plants with enhanced resistance to this pest.  相似文献   

3.
No significant difference in larval mortality was observed when a sublethal dose of Bacillus thuringiensis (Bt) var. kurstaki HD-1 crystal was supplemented with soybean trypsin inhibitor (STI) in the artificial diet fed to Helicoverpa armigera in the laboratory, but supplementing a nonlethal dose of crystal with STI in the diet led to a pronounced reduction of larval growth. This concentration of crystal and two lower concentrations of STI alone had no significant effects on larval growth. The results of substrate-gel electrophoresis demonstrated that the proteases in the H. armigera midgut fluid responsible for the degradation of protoxin consisted of at least four proteases with molecular weights of 71, 49, 36, and 30 kDa. All four proteases could utilize casein also as the substrate. When larvae were fed with STI or Bt + STI, the proteolytic activities of the 49-kDa enzyme disappeared, and the activities of the other three enzymes were reduced. Enzyme assays also indicated that feeding larvae with diets containing Bt, STI, or Bt + STI significantly decreased the specific activities of larval general proteases and the trypsin-like enzyme. The protein concentration of midgut fluid was elevated, especially in the larvae fed on the diets containing STI and Bt + STI. Both in vitro and in vivo studies showed that the degradation of protoxin and toxin could be inhibited by soybean trypsin inhibitors, but when the incubation time was prolonged, the protoxin could be degraded completely, while the degradation of toxin was inhibited further. This suggested that the retention time of toxins in the larval midgut was extended and synergism between insecticidal crystal protein and soybean trypsin inhibitor occurred, which showed as the inhibition of H. armigera larval growth.  相似文献   

4.
Native Inga laurina (Fabaceae) trypsin inhibitor (ILTI) was tested for anti-insect activity against Diatraea saccharalis and Heliothis virescens larvae. The addition of 0.1% ILTI to the diet of D. saccharalis did not alter larval survival but decreased larval weight by 51%. The H. virescens larvae that were fed a diet containing 0.5% ILTI showed an 84% decrease in weight. ILTI was not digested by the midgut proteinases of either species of larvae. The trypsin levels were reduced by 55.3% in the feces of D. saccharalis and increased by 24.1% in the feces of H. virescens. The trypsin activity in both species fed with ILTI was sensitive to the inhibitor, suggesting that no novel proteinase resistant to ILTI was induced. Additionally, ILTI exhibited inhibitory activity against the proteinases present in the larval midgut of different species of Lepidoptera. The organization of the ilti gene was elucidated by analyzing its corresponding genomic sequence. The recombinant ILTI protein (reILTI) was expressed and purified, and its efficacy was evaluated. Both native ILTI and reILTI exhibited a similar strong inhibitory effect on bovine trypsin activity. These results suggest that ILTI presents insecticidal properties against both insects and may thus be a useful tool in the genetic engineering of plants.  相似文献   

5.
Digestion in Tenebrio molitor larvae occurs in the midgut, where there is a sharp pH gradient from 5.6 in the anterior midgut (AM) to 7.9 in the posterior midgut (PM). Accordingly, digestive enzymes are compartmentalized to the AM or PM. Enzymes in the AM are soluble and have acidic or neutral pH optima, while PM enzymes have alkaline pH optima. The main peptidases in the AM are cysteine endopeptidases presented by two to six subfractions of anionic proteins. The major activity belongs to cathepsin L, which has been purified and characterized. Serine post‐proline cleaving peptidase with pH optimum 5.3 was also found in the AM. Typical serine digestive endopeptidases, trypsin‐like and chymotrypsin‐like, are compartmentalized to the PM. Trypsin‐like activity is due to one cationic and three anionic proteinases. Chymotrypsin‐like activity consists of one cationic and four anionic proteinases, four with an extended binding site. The major cationic trypsin and chymotrypsin have been purified and thoroughly characterized. The predicted amino acid sequences are available for purified cathepsin L, trypsin and chymotrypsin. Additional sequences for putative digestive cathepsins L, trypsins and chymotrypsins are available, implying multigene families for these enzymes. Exopeptidases are found in the PM and are presented by a single membrane aminopeptidase N‐like peptidase and carboxypeptidase A, although multiple cDNAs for carboxypeptidase A were found in the AM, but not in the PM. The possibility of the use of two endopeptidases from the AM – cathepsin L and post‐proline cleaving peptidase – in the treatment of celiac disease is discussed.  相似文献   

6.
The roles of serine proteases involved in the digestion mechanism of the cutworm Spodoptera litura (Lepidoptera: Noctuidae) were examined (in vitro and in vivo) following feeding of plant protease inhibitors. A trypsin inhibitor from Archidendron ellipticum (AeTI) was purified by ammonium sulfate fractionation, ion-exchange chromatography and size-exclusion chromatography (HPLC) and its bioinsecticidal properties against S. litura were compared with Soybean Kunitz trypsin inhibitor (SBTI). AeTI inhibited the trypsin-like activities of the midgut proteases of fifth instar larvae of S. litura by over 70%. Dixon plot analysis revealed competitive inhibition of larval midgut trypsin and chymotrypsin by AeTI, with an inhibition constant (K(i)) of 3.5x10(-9) M and 1.5x10(-9) M, respectively. However, inhibitor kinetics using double reciprocal plots for both trypsin and chymotrypsin inhibitions demonstrated a mixed inhibition pattern. Feeding experiments conducted on different (neonate to ultimate) instars suggested a dose-dependent decrease for both the larval body weight as well as % survival of larva fed on diet containing 50, 100 and 150 microM AeTI. Influence of AeTI on the larval gut physiology indicated a 7-fold decrease of trypsin-like protease activity and a 5-fold increase of chymotrypsin-like protease activity, after being fed with a diet supplemented with 150 microM AeTI. This study suggests that although the early (1st to 3rd) larval instars of S. litura are susceptible to the trypsin inhibitory action of AeTI, the later instars may facilitate the development of new serine proteases, insensitive to the inhibitor.  相似文献   

7.
The midgut protease profiles from 5th instar Mamestra configurata larvae fed various diets (standard artificial diet, low protein diet, low protein diet with soybean trypsin inhibitor [SBTI], or Brassica napus) were characterized by one‐dimensional enzymography in gelatin gels. The gut protease profile of larvae fed B. napus possessed protease activities of molecular masses of approximately 33 and 55 kDa, which were not present in the guts of larvae fed artificial diet. Similarly, larvae fed artificial diet had protease activities of molecular masses of approximately 21, 30, and 100 kDa that were absent in larvae fed B. napus. Protease profiles changed within 12 to 24 h after switching larvae from artificial diet to plant diet and vice versa. The gut protease profiles from larvae fed various other brassicaceous species and lines having different secondary metabolite profiles did not differ despite significant differences in larval growth rates on the different host plants. Genes encoding putative digestive proteolytic enzymes, including four carboxypeptidases, five aminopeptidases, and 48 serine proteases, were identified in cDNA libraries from 4th instar M. configurata midgut tissue. Many of the protease‐encoding genes were expressed at similar levels on all diets; however, three chymoptrypsin‐like genes (McSP23, McSP27, and McSP37) were expressed at much higher levels on standard artificial diet and diet containing SBTI as was the trypsin‐like gene McSP34. The expression of the trypsin‐like gene McSP50 was highest on B. napus. The adaptation of M. configurata digestive biochemistry to different diets is discussed in the context of the flexibility of polyphagous insects to changing diet sources. Published 2010 Wiley Periodicals, Inc.  相似文献   

8.
Midgut trypsins are associated with Bt protoxin activation and toxin degradation. Proteinase inhibitors have potential insecticidal toxicity against a wide range of insect species. This study was conducted to evaluate the interaction of proteinase inhibitors with Bt toxin and to examine midgut trypsin gene profile of Heliothis virescens. A sublethal dose (15ppb) of Cry1Ac, 0.75% soybean trypsin inhibitor, and 0.1% and 0.2% N-α-tosyl-L-lysine chloromethyl ketone significantly suppressed midgut proteinase activities, and resulted in reductions in larval and pupal size and mass. The treatment with inhibitor+Bt suppressed approximately 65% more larval body mass and 21% more enzymatic activities than the inhibitor-only or Bt-only. Eleven trypsin-like cDNAs were sequenced from the midgut of H. virescens. All trypsins contained three catalytic center residues (H(73), D(153), and S(231)), substrate specificity determinant residues (D(225), G(250), and G(261)), and six cysteines for disulfide bridges. These putative trypsins were separated into three distinct groups, indicating the diverse proteinases evolved in this polyphagous insect. These results indicated that the insecticidal activity of proteinase inhibitors may be used to enhance Bt toxicity and delay resistance development.  相似文献   

9.
Abstract In the Ozark Mountains of the U.S.A., the red oak borer Enaphalodes rufulus contributes to the destruction of red oaks. To understand nutrient digestion in E. rufulus larvae, digestive proteinases are compared in both larvae fed heartwood phloem and those transferred to artificial diet. The pH of gut extracts is approximately 6.3 in the midgut and foregut and decreases to 5.5 in the hindgut region. The hydrolysis of casein by midgut extracts from E. rufulus larvae fed either artificial diet or phloem from tree sections increases in buffers greater than pH 6.19, with maximum hydrolysis being observed at pH 10.1. Casein zymogram analysis reveals two major proteinase activities in larval midgut extracts of diet‐fed larvae, with molecular masses of approximately 25 and 40–60 kDa, whereas phloem‐fed larvae have proteinase activities corresponding to 40, 45, 60, 80 and >100 kDa. Substrate analysis indicates at least one major trypsin‐like activity in both gut extracts with a molecular mass of >100 kDa, but two chymotrypsin‐like activities of approximately 25 and >200 kDa are found only in diet‐fed larvae. Inhibitors of serine proteinases are most effective in reducing the general proteolytic activity of midgut extracts from larvae fed either food source. The data indicate that serine proteinase inhibitors have the potential to reduce E. rufulus larval damage to oaks. In particular, transgenic technologies incoporating trypsin inhibitors may be effective in reducing protein digestion in phloem‐feeding larvae.  相似文献   

10.
The major digestive proteinase activities of a new sugar beet pest, Aubeonymus mariaefranciscae Roudier (Coleoptera: Curculionidae), were characterized. Both larvae and adults of A. mariaefranciscae were found to use a complex proteolytic system for protein digestion based on at least trypsin-, chymotrypsin-, elastase-, cathepsin D, leucine aminopeptidase-, carboxypeptidase A- and carboxypeptidase B-like activities. An azocaseinolytic activity at pH 5.0–7.0 was identified, that was not affected by specific inhibitors and activators, making its classification in any of the mechanistic classes established not possible. According to this proteolytic profile, several serine proteinase inhibitors were tested in vitro and in vivo to establish their potential as resistance factors against A. mariaefranciscae. Larvae fed from neonate to pupation on diets containing 0.2% (w/w) soybean Bowman-Birk trypsin-chymotrypsin inhibitor, soybean Kunitz trypsin inhibitor, turkey egg white trypsin inhibitor, or lima bean trypsin inhibitor endure lower survival rates and display significant delays in the developmental time to pupation and to adult emergence. Interestingly, the most significant levels of mortality (about 90%) occurred with larvae fed on diets containing a combination of two or three inhibitors, suggesting a synergistic toxicity.  相似文献   

11.
Proteinases and peptidases from the intestinal tract of fifth-instar larvae of Heliothis (= Helicoverpa) zea (Boddie) (Lepidoptera:Noctuidae) were characterized based on their substrate specificity, tissue of origin, and pH optimum. Activity corresponding to trypsin, chymotrypsin, carboxypeptidases A and B, and leucine aminopeptidase was detected in regurgitated fluids, midgut contents, and midgut wall. High levels of proteinase activity were detected in whole midgut homogenates, with much lower levels being observed in foregut and salivary gland homogenates. In addition, enzyme levels were determined from midgut lumen contents, midgut wall homogenates, and regurgitated fluids. Proteinase activities were highest in the regurgitated fluids and midgut lumen contents, with the exception of leucine aminopeptidase activity, which was found primarily in the midgut wall. Larvae fed their natural diet of soybean leaves had digestive proteinase levels that were similar to those of larvae fed artificial diet. No major differences in midgut proteinase activity were detected between larvae reared under axenic or xenic conditions, indicating that the larvae are capable of digesting proteins in the absence of gut microorganisms. The effect of pH on the activity of each proteinase was studied. The pH optima for the major proteinases were determined to be pH 8.0-8.5 for trypsin, when tosyl-L-arginine methyl ester was used as the substrate; and pH 7.5-8.0 for chymotrypsin, when benzoyl-L-tyrosine ethyl ester was used as the substrate.  相似文献   

12.
A novel trypsin inhibitor was purified from the seeds of Peltophorum dubium (Spreng.). SDS-PAGE under reducing conditions showed that the inhibitor consisted of a single polypeptide chain (ca. 20 kDa). The dissociation constants of 4 x 10(-10) and 1.6 x 10(-10) M were obtained with bovine and porcine trypsin, respectively. This constant was lower (2.6 x 10(-7) M) for chymotrypsin. The inhibitory activity was stable over a wide range of temperature and pH and in the presence of DTT. The N-terminal sequence of the P. dubium inhibitor showed a high degree of homology with other Kunitz-type inhibitors. When fed to the insect Anagasta kuehniella, in an artificial diet (inhibitor concentration 1.6%), the inhibitor produced approximately 56% and delayed the development of this lepidopteran. The concentration of inhibitor in the diet necessary to cause a 50% reduction in the weight (ED50) of fourth instar larvae was approximately 1%. The action of the P. dubium trypsin inhibitor (PDTI) on A. kuehniella may involve inhibition of the trypsin-like activity present in the larval midgut, resistance of the inhibitor to digestion by midgut enzymes and bovine trypsin, and association of the inhibitor with a chitin column and chitinous structures in the peritrophic membrane and/or midgut of the insect.  相似文献   

13.
Larval midgut extracts from the noctuid Sesamia nonagrioides Lef. were assayed for protease activity. Total proteolytic activity, as measured by azocasein hydrolysis, showed a pH optimum in the range 10.0 to 11.5, suggesting a digestive system based largely on serine-like proteases. The ability of midgut extracts to hydrolyze specific synthetic substrates, the elucidation of the pH at which maximal hydrolysis occurs, and their sensitivity to protease inhibitors confirmed the presence of the serine endoproteases: trypsin, chymotrypsin, and elastase; and the exopeptidases: carboxypeptidase A, carboxypeptidase B, and leucine aminopeptidase. The distribution of these digestive proteases along the gut sections and among the different midgut regions was examined. All types of endoproteases and exopeptidases were mainly located in the midgut, with less than 5% of the activity in the foregut and hindgut. When the two halves of the midgut were compared, all proteolytic activities were higher in the anterior portion of the midgut. Trypsin, chymotrypsin, elastase, and carboxypeptidase B activities were mainly located in the endoperitrophic space of the midgut, with some activity in the ectoperitrophic space, whereas aminopeptidase and carboxypeptidase A activities were preferentially located in the midgut epithelium. © 1996 Wiley-Liss, Inc.  相似文献   

14.
Density dependent responses of 4th, 5th and 6th instar gypsy moth larvae were studied at the level of larval mass, midgut loading and activities of three digestive enzymes (alpha-amylase, trypsin and leucine aminopeptidase). High density significantly reduced larval mass while midgut loading (expressed as relative midgut mass) did not change except in the 5th instar where it was increased at high density. Specific amylase and leucine aminopeptidase activities were not affected by crowding. Specific trypsin activity was on average higher in crowded than in isolated larvae. High density also affected the correlations between midgut protein content and activities of two proteolytic enzymes suggesting differences in regulatory mechanisms of insect digestion. The importance of these changes for survival under stressful conditions is discussed.  相似文献   

15.
16.
A giant taro proteinase inhibitor (GTPI) cDNA was expressed in transgenic tobacco using three different gene constructs. The highest expression level obtained was ca. 0.3% of total soluble protein when the cDNA was driven by the Arabidopsis rbcS ats1 promoter. Repeated feeding trials with Helicoverpa armigera larvae fed on clonally derived T0 and T1 plants expressing GTPI demonstrated that, relative to those fed on control plants, some growth inhibition (22–40%) occurs, but there was no increase in larval mortality. Proteinase activities of larvae fed on GTPI-expressing tobacco or GTPI-containing diet were examined to monitor the spectrum of digestive proteinases in the midgut. Total proteinase activity was reduced by 13%, but GTPI-insensitive proteinase activity was increased by up to 17%. Trypsin was inhibited by 58%, but chymotrypsin and elastase were increased by 26% and 16% respectively. These results point to an adaptive mechanism in this insect that elevates the levels of other classes of proteinases to compensate for the trypsin activity inhibited by dietary proteinase inhibitors.  相似文献   

17.
18.
Insect digestive proteinases are often strongly influenced by ambient physicochemical conditions, such as pH, ionic strength, and oxidation-reduction potential. Although the effects of the former two parameters are well documented, the influence of redox potential on catalytic rates of digestive enzymes is not well understood. In this study, we manipulated the midgut redox potential of a generalist caterpillar (the corn earworm, Helicoverpa zea) by augmenting artificial diet with dithiothreitol, a powerful thiol reducing agent that lowers the redox potential in the lumen by 40-45 mV. Effects on total proteolytic activity, as well as on elastase, chymotrypsin, trypsin, leucine aminopeptidase, and carboxypeptidase A and B activities were measured using azocasein and nitroanilide model substrates. The profiles of proteinase activities in the epithelium and lumen were also monitored on days 1, 2, and 3 after the molt in penultimate instar larvae. Although the reducing agent strongly inhibited the activity of some proteinases in vitro, ingestion of the reducing diet failed to affect in vivo proteinase activities. There was also no effect on larval relative growth, consumption, or digestive efficiencies. We conclude that dietary reducing agents must lower midgut redox potential to below -40 mV to significantly impact digestive efficiency. Arch.  相似文献   

19.
《Insect Biochemistry》1990,20(8):839-847
Acetylglucosaminidase, amylase, cellobiase and maltase are more active in anterior midgut cells, whereas aminopeptidase, carboxypeptidase and trypsin are more active in posterior midgut cells of Tenebrio molitor larvae. Differential centrifugation of midgut homogenates prepared in saline (or mannitol) isotonic buffered solutions revealed that aminopeptidase is associated with membranes, which occur in subcellular fractions displaying many microvilli. Carboxypeptidase, trypsin and the carbohydrases are mostly found in the soluble fraction, although significant amounts sediment together with cell vesicles. Data on differential calcium precipitation of midgut homogenates and on partial ultrasound disruption of midgut tissue suggest that aminopeptidase is a microvillar enzyme and that the digestive enzymes recovered in the soluble fraction of cells are loosely bound to the cell glycocalyx. About 5% of the non-absorbable dye amaranth fed to T. molitor larvae remains in the midgut tissue after rinsing. Most dye was recovered in the soluble fraction of midgut cells. This provided further support for the hypothesis that the digestive enzymes found in the soluble fraction are actually extracellular and that the true intracellular enzymes are those associated with cell vesicles. The results suggest that the carbohydrases are secreted by exocytosis from the anterior midgut and carboxypeptidase and trypsin from the posterior midgut.  相似文献   

20.
Proteolytic enzyme biosynthesis in the midgut of the 4th instar larva of Heliothis virescens is cyclical. Protease activity increases immediately after the molt from the 3rd to the 4th instar larvae and declines just before the molt into the 5th instar. Characterization of the midgut proteases using soybean tryspin inhibitor (SBTI) Bowman Birk Inhibitor (BBI) 4-(2-aminoethyl)benzensulfonylfluoride (AEBSF) and N-tosyl-L-phenylalanine chloromethylketone (TPCK) indicate that protease activity is mostly trypsinlike (80%) with a small amount of chymotrypsinlike activity (20%). Injections of late 3rd and 4th instar larval hemolymph into H. virescens larvae inhibited tryspin biosynthesis in the larval midgut. Similar results were obtained when highly purified 4th instar larval hemolymph that crossreacted with Aea-TMOF antisurm using ELISA was injected into 2nd instar larvae. Injections of Aea-TMOF and its analogues into 2nd instar, and Aea-TMOF alone into 4th instar larvae stopped trypsin biosynthesis 24 and 48 h after the injections, respectively. Injections of 4th instar H. virescens larval hemolymph into female Aedes aegypti that took a blood meal stopped trypsin biosynthesis and egg development. These results show that the biosynthesis of trypsin-like enzymes in the midgut of a lepidoptera is modulated with a hemolymph circulating TMOF-like factor that is closely related to Aea-TMOF. Arch.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号